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Abstract

We prove that an operator system is (min, ess)-nuclear if its C∗-envelope is nuclear. This allows us to
deduce that an operator system associated to a generating set of a countable discrete group by Farenick
et al. [‘Operator systems from discrete groups’, Comm. Math. Phys. 329(1) (2014), 207–238] is (min,
ess)-nuclear if and only if the group is amenable. We also make a detailed comparison between ess
and other operator system tensor products and show that an operator system associated to a minimal
generating set of a finitely generated discrete group (respectively, a finite graph) is (min, max)-nuclear if
and only if the group is of order less than or equal to three (respectively, every component of the graph is
complete).

2010 Mathematics subject classification: primary 46L06, 46L07; secondary 47L25, 46M05, 46B28.

Keywords and phrases: operator systems, amenable groups, graphs, nuclearity, C∗-envelopes, tensor
products.

1. Introduction

An operator system is a self-adjoint unital subspace of B(H) for some complex Hilbert
space H . Choi and Effros [5] obtained an abstract characterization of an operator
system and quite recently this abstraction proved very useful in the development
of the theory of tensor products in the category of operator systems in a series of
papers [7, 9, 13–16]. A short survey of this development is available in [10, Ch. 4].
Essentially, a lattice of five tensor products of operator systems consisting of the
so-called minimal (min), the maximal (max), the maximal commuting (c), the left
enveloping (el) and the right enveloping (er) tensor products was introduced in [15]
and, unlike the category of C∗-algebras, a variety of nuclearity considerations were
made, namely, given two operator system tensor products α and β, an operator system
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S is said to be (α, β)-nuclear if S ⊗α T = S ⊗β T for every operator system T . In
the last few years, various characterizations of these notions of nuclearity among the
primary tensor products in terms of some intrinsic properties of operator systems,
namely, exactness, weak expectation property (WEP), double commutant expectation
property (DCEP), operator system local lifting property (OSLLP) and completely
positive factorization property (CPFP) have been established [7, 9, 13–16]; also, it
is known that the maximum nuclearity expected for a finite-dimensional operator
system which is not isomorphic to a C∗-algebra is (min, c)-nuclearity, equivalently,
C∗-nuclearity [14, 15].

Very recently, Farenick et al. in [8] associated an operator system S(u) to every
generating set u of a discrete group G and, based on the developments of [7, 9, 14],
they could relate the longstanding operator algebraic questions of Connes’ embedding
problem and Kirchberg’s conjecture to the tensor products of such operator systems
associated to the free group with two generators. In the same paper they also
introduced and initiated the study of the natural operator system tensor product ‘ess’
arising from the enveloping C∗-algebras, namely,

S ⊗ess T ⊆ C∗e(S) ⊗max C∗e(T ).

It was shown in [14, Section 10] that the (2n + 1)-dimensional operator system
Sn associated to the universal generating set of the free group with n generators, for
n ≥ 2, is not exact and hence Sn is not C∗-nuclear. This also illustrates that unlike
C∗-algebras, finite-dimensional operator systems need not be nuclear.

This paper came into existence out of the curiosity to understand nuclearity
properties of the operator systems associated to amenable discrete groups. Lance
proved that the group C∗-algebra of a discrete group is nuclear if and only if the group
is amenable [18]. Also, if u is a generating set of a discrete group G and the associated
operator system S(u) is a C∗-nuclear operator system, then, by [16, Corollary 9.6], the
group C∗-algebra of G is a nuclear C∗-algebra and, therefore, the group G is amenable.
However, it is not yet clear (at least, to us) whether the converse holds or not. Making
some progress in this direction, we deduce in Section 5 that for any generating set u of
a discrete group G, S(u) is (min, ess)-nuclear if and only if the group is amenable.

The tool that helps us to achieve this is the notion of the C∗-envelope of an operator
system, which was introduced by Arveson in [3] and whose existence for an arbitrary
operator system was first established by Hamana in [11].

It is known that, in general, nuclearity does not pass to C∗-subalgebras [4, Remark
4.4.4]. In particular, the same therefore holds for (min, c)-nuclearity of operator
systems. The relationship between an operator system and its C∗-envelope is equally
mysterious, which we highlight briefly at the beginning of Section 4. Thereafter, we
are able to see that the nuclearity of the C∗-envelope behaves well if we restrict to
(min, ess)-nuclearity. Moreover, we prove that if an operator system contains enough
unitaries of its C∗-envelope, then its (min, ess)-nuclearity is equivalent to the nuclearity
of its C∗-envelope.
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After a short section on preliminaries in Section 2, we first make some comparisons
between the ess operator system tensor product and other operator system tensor
products in Section 3.

In Section 5, apart from the characterization of (min, ess)-nuclearity of the
group operator system S(u) in terms of amenability of the group, we also provide
an exhaustive list of (min, max)-nuclear operator systems associated to minimal
generating sets of finitely generated groups.

In Section 6, we characterize (min, max)-nuclear graph operator systems (as
introduced in [15]) for finite graphs, purely in terms of graph-theoretic properties.
We achieve this characterization using an identification of their C∗-envelopes obtained
in [19].

Finally, in Section 7, as yet another application of our results on C∗-envelopes,
we discuss nuclearity-related properties of some known examples of operator systems
(from [1, 2, 8]) whose C∗-envelopes are either known or whose nuclearity can be easily
deduced.

2. Preliminaries

For the basics on operator systems, we refer the reader to [6, 20]. And, in order
to avoid repetition, we will freely borrow and follow terminologies and notations for
tensor products of operator systems and nuclearity-related properties from [14–16].
However, for the sake of completeness we include certain definitions and results that
will be used subsequently.

A C∗-cover [11, Section 2] of an operator system S is a pair (A, i) consisting of a
unital C∗-algebra A and a complete order embedding i : S→ A such that i(A) generates
the C∗-algebra A. An essential extension [11, Section 2] of an operator system S is
a pair (W, j) consisting of an operator system W and a complete order embedding
j : S →W such that for any operator system T and any unital completely positive
map ϕ :W→T , ϕ is a complete order embedding whenever ϕ ◦ j is. The injective
envelope [5], denoted by I(S), of an operator system S is the minimal injective
operator system that contains S. Its existence and uniqueness were first proved by
Hamana in [11].

We will work with Hamana’s version of a C∗-envelope [11], according to which
the C∗-envelope of an operator system S is a C∗-cover defined as the C∗-algebra
generated by S in its injective envelope I(S) and is denoted by C∗e(S). It is known
that the injective envelope I(S) is an essential extension of S [11, Section 3] and the
C∗-envelope C∗e(S) enjoys the following universal ‘minimality’ property.

Identifying S with its image in C∗e(S), for any C∗-cover (A, i) of S, there is a unique
surjective unital ∗-homomorphism π : A→ C∗e(S) such that π(i(s)) = s for every s in S
[11, Corollary 4.2].

The following proposition, which is folklore, is an immediate consequence of the
above universality and will be used quite often in the coming sections.
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Proposition 2.1. If an operator system S possesses a nuclear C∗-cover, then C∗e(S) is
nuclear.

Proof. Using the universal property of C∗-envelopes and the fact that the quotient of a
nuclear C∗-algebra is nuclear [4, Corollary 9.4.4], the statement follows. �

We now list some useful rigidity properties (among which (ii) was also pointed out
in [14, Section 1]) and an immediate consequence of the universality of C∗e(S) and,
even though these are folklore, we provide their details for the sake of completeness.
We would like to thank K. H. Han for sharing alternate proofs of (i) and (ii), which we
have included here for their brevity.

Proposition 2.2. For an operator system S, the following hold.

(i) Suppose that C∗e(S) ⊂ B(H) and ϕ : C∗e(S) → B(H) is a unital completely
positive map that fixes S; then ϕ fixes C∗e(S).

(ii) If ψ : C∗e(S)→ T is a unital completely positive map into an operator system
T such that ψ|S is a complete order embedding, then ψ is a complete order
embedding.

(iii) If S is unitally completely order isomorphic to a unital C∗-algebra, then S =

C∗e(S).

Proof. By injectivity of B(H), ϕ admits a unital completely positive extension ϕ̃ :
I(S)→ B(H) and, for the same reason, the inclusion ι : C∗e(S)→ I(S) also admits a
unital completely positive extension ι̃ : B(H)→ I(S). The composition ι̃ ◦ ϕ̃ : I(S)→
I(S) clearly fixes S and is unital completely positive; therefore, by rigidity of I(S) (as
in [11, Section 3]), it fixes the whole of I(S); and, since ϕ agrees with ι̃ ◦ ϕ̃ on C∗e(S),
this proves (i).

Let T ⊂ B(H) for some Hilbert space H. Then, by injectivity of B(H), the map
ψ : C∗e(S)→T ⊂ B(H) admits a unital completely positive extension ψ̃ : I(S)→ B(H).
Since ψ̃|S is a complete order embedding and S ⊂ I(S) is an essential extension [11,
Section 3], it follows that ψ̃ is a complete order embedding and hence (ii) follows.

For (iii), let ϕ : S → A be a unital complete order isomorphism for some unital C∗-
algebra A. Then (A, ϕ) being a C∗-cover of S, by universality of C∗e(S), there exists
a surjective unital ∗-homomorphism π : A→ C∗e(S) such that π ◦ ϕ(s) = s for every
s ∈ S, implying that S = C∗e(S). �

We must remark here that Proposition 2.2(iii) turns out to be the main ingredient in
the classification of nuclear operator systems associated to finitely generated groups
and finite graphs. It also allows us to identify some nonnuclear finite-dimensional
operator systems, as we will see in Section 7.

An operator subsystemS of a unital C∗-algebra A is said to contain enough unitaries
of A if the unitaries in S generate A as a C∗-algebra [16, Section 9]. We will come
across quite a few instances where we will have to appeal to the following useful result
of Kavruk [14, Proposition 5.6].
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Proposition 2.3. Suppose that S ⊂ A contains enough unitaries. Then, up to a ∗-
isomorphism fixing S, we have A = C∗e(S).

In order to distinguish between operator system tensor products and C∗-tensor
products, we will use ⊗C∗-min and ⊗C∗-max to denote the minimal and maximal C∗-tensor
products, respectively.

Corollary 2.4. LetS ⊂ A andT ⊂ B be operator systems containing enough unitaries
of A and B, respectively. Then, up to a ∗-isomorphism fixing S ⊗ess T , we have
C∗e(S ⊗ess T ) = A ⊗C∗-max B.

Proof. By the definition of ⊗ess, we note that S ⊗ess T contains enough unitaries
of C∗e(S) ⊗C∗-max C∗e(T ) and hence, by Proposition 2.3, there does exist a desired ∗-
isomorphism. �

Apart from the C∗-envelope of an operator system, there is one more fundamental
C∗-cover associated to an operator system S, namely, the universal C∗-algebra C∗u(S)
introduced by Kirchberg and Wassermann [17, Section 3]. We use this notion and
operator system techniques to provide a proof of the following folklore result.

Proposition 2.5. If A is a nonnuclear unital C∗-algebra, then there exists a unital C∗-
algebra B such that there is no ∗-isomorphism between A ⊗C∗-min B and A ⊗C∗-max B
fixing A ⊗ B.

Proof. Since A is a nonnuclear C∗-algebra, by [15, Corollary 6.8], there exists an
operator system S such that A ⊗min S , A ⊗max S. Now, using injectivity of ⊗min,
A ⊗min S ⊆ A ⊗min C∗u(S) and, by definition of ⊗c and the fact that ⊗c coincides with
⊗max if one of the factors in the tensor product is a C∗-algebra [15, Theorem 6.7], we
have A ⊗max S = A ⊗c S ⊆ A ⊗max C∗u(S), where the last complete order embedding is
guaranteed by [16, Lemma 2.5]. Thus, A ⊗min C∗u(S) , A ⊗max C∗u(S) and [15, Theorem
5.12] then clearly implies that for the unital C∗-algebra B = C∗u(S), there does not exist
a ∗-isomorphism between A ⊗C∗- min B and A ⊗C∗- max B fixing A ⊗ B. �

Kirchberg had realized that exactness is quite a fundamental property in the
category of C∗-algebras and over the years it has shown its prominence in the
categories of operator spaces and operator systems as well. The notion of exactness
saw its relevance in the theory of operator systems after Kavruk et al. developed an
appropriate formalism of the notion of quotient of operator systems in [16, Section 3].

Given an operator system S, a subspace J ⊆ S is said to be a kernel [16, Definition
3.2] if there exist an operator systemT and a unital completely positive map φ : S→T
such that J = ker φ. For such a kernel J ⊂ S, Kavruk et al. showed that the quotient
space S/J forms an operator system [16, Proposition 3.4] with respect to the natural
involution, whose positive cones are given by

Cn =Cn(S/J)
= {(si j + J)i, j ∈ Mn(S/J) : (si j) + ε(1 + J)n ∈ Dn for every ε > 0},

https://doi.org/10.1017/S1446788716000082 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788716000082


[6] Operator system nuclearity via C∗-envelopes 361

where

Dn = {(si j + J)i, j ∈ Mn(S/J) : (si j + yi j)i, j ∈ Mn(S)+ for some yi j ∈ J}

and the Archimedean unit is the coset 1 + J.
For an operator system S, a unital C∗-algebra A and a closed ideal I in A,

let S ⊗̄ I denote the closure of S ⊗ I in the completion S ⊗̂min A of the minimal
tensor product S ⊗min A. Then S ⊗̄ I is a kernel in S ⊗̂min A and the induced map
(S ⊗̂min A)/(S ⊗̄ I)→ S ⊗̂min (A/I) is unital and completely positive [14, Section 4].

Definition 2.6 [16]. An operator system S is said to be exact if for every unital C∗-
algebra A and a closed ideal I in A, the induced map

(S ⊗̂min A)/(S ⊗̄ I)→ S ⊗̂min (A/I)

is a complete order isomorphism.

Exactness is one of the few intrinsic properties of operator systems that has been
used as a tool, by Kavruk et al. (see for example [14]), in characterizing nuclearity
properties of operator systems. Recall the term nuclearity for operator systems,
a generalization from the category of C∗-algebras, which was introduced in [15,
Section 3].

Given two operator system tensor products α and β, an operator system S is said to
be (α, β)-nuclear if the identity map between S ⊗α T and S ⊗β T is a complete order
isomorphism for every operator system T , that is,

S ⊗α T = S ⊗β T .

Also, an operator system S is said to be C∗-nuclear if

S ⊗min A = S ⊗max A

for all unital C∗-algebras A.
The following characterizations established in [16, Section 5] and [14, Section 4]

are used quite often.

Theorem 2.7. (i) An operator system S is exact if and only if it is (min, el)-nuclear.
(ii) Exactness passes to operator subsystems, that is, if S is exact, then every

operator subsystem of S is exact. Conversely, if every finite-dimensional
operator subsystem of S is exact, then S is exact.

(iii) An operator system S is (min, c)-nuclear if and only if S is C∗-nuclear.
(iv) An operator system is (c,max)-nuclear if and only if it is unitally completely

order isomorphic to a C∗-algebra.

We now concentrate on the main class of operator systems that we study in
this article, namely, the operator systems associated to generating sets of discrete
groups. Let G denote a countable discrete group, u denote a generating set of G and
S(u) denote the operator system associated to u by Farenick et al. in [8], that is,
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S(u) := span{1, u, u∗ : u ∈ u} ⊂ C∗(G), where C∗(G) denotes the full group C∗-algebra
of the group G [21, Ch. 8]. It was shown in [8] that if u is a generating set of the free
group Fn, then S(u) is independent of the generating set u and is simply denoted by
Sn. In general, such independence is not expected.

The following observation of [8] is immediate from Proposition 2.3 and plays a
fundamental role in the analysis of nuclearity of operator systems associated to discrete
groups.

Proposition 2.8. Let u be a generating set of a discrete group G. Then, up to a ∗-
isomorphism that fixes the elements of S(u), we have C∗e(S(u)) = C∗(G).

Since the reduced group C∗-algebra is equally important as the full group C∗-
algebra, given any generating set u of a discrete group G, we associate another
obvious operator system, namely, Sr(u) := span{1, u, u∗ : u ∈ u} ⊂ C∗r (G). In view of
Proposition 2.3, analogous to Proposition 2.8 and the fact that G is amenable if and
only if C∗(G) = C∗r (G) [4, 18], we have the following proposition.

Proposition 2.9. Let u be a generating set of a discrete group G. Then:

(i) up to a ∗-isomorphism fixing the elements of Sr(u), we have C∗e(Sr(u)) = C∗r (G);
(ii) G is amenable if and only if the identity map on u extends to a complete order

isomorphism between S(u) and Sr(u).

Since finite-dimensional C∗-algebras are nuclear and since C∗r (Fn) is exact [4], by
Theorem 2.7 and Propositions 2.1, 2.9 and 2.3, we observe the following corollary.

Corollary 2.10. (i) If u is a generating set of a nonamenable discrete group G, then
S(u) and Sr(u) do not possess nuclear C∗-covers.

(ii) In particular, the finite-dimensional operator systems S(u) (for example, Sn for
n ≥ 2) andSr(u), for |u| <∞, do not admit complete order embeddings into finite-
dimensional C∗-algebras.

(iii) If u is a generating set of a free group with 2 ≤ |u| ≤ ∞, then Sr(u) is exact and
does not have any nuclear C∗-cover.

As in the case of group algebras, Proposition 2.8 also suggests that two
nonisomorphic group operator systems can have isomorphic C∗-envelopes: for
example, consider the nonabelian group D8 (that is, the Dihedral group of order eight)
with presentation D8 = 〈a, b | a2 = b4 = 1, bab = a〉 and the Quaternion group Q8 with
presentation Q8 = 〈x, y | x4 = 1, x2 = y2, xyx = y〉. It is well known that

C∗(D8) = C ⊕ C ⊕ C ⊕ C ⊕M2 = C∗(Q8)

and yet D8 � Q8. Let u = {a, b} and v = {x, y} be generating sets of D8 and Q8,
respectively; then u and v are both minimal generating sets, but S(u) � S(v) as
dim(S(u)) = 4 , 5 = dim(S(v)).
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3. A comparison between ess and other tensor products
Recall that, for operator systems S and T , analogous to the commuting tensor

product, their ess tensor product was defined, in [8], via the embedding S ⊗ess T ⊂

C∗e(S) ⊗max C∗e(T ). It was also proved there, in Lemma 3.2, that the operator systems
associated to free groups satisfy Sn ⊗ess Sm = Sn ⊗c Sm for all n,m ≥ 2. Analogous
to this, we will prove in this section that for operator systems associated to amenable
groups the ess tensor product is identical with the maximal injective operator system
tensor product ‘e’. Before that, we first make some other useful observations about the
tensor product ess and compare it with other tensor products.

Analogous to the behavior of ⊗c in [15, Theorem 6.6], we have the following
proposition.

Proposition 3.1. For any two unital C∗-algebras A and B,
A ⊗ess B = A ⊗c B = A ⊗max B.

Proof. By [6, Theorem 6.2.4], the injective envelope I(A) has a canonical C∗-algebraic
structure and the mapping iA : A→ I(A) is a C∗-algebraic isomorphism onto its image.
In particular, we can assume that A ⊆ I(A) and, since the C∗-envelope of A is the C∗-
algebra generated by A in its injective envelope I(A), we have C∗e(A) = A. Similarly,
C∗e(B) = B. Hence, by the definition of ⊗ess and the fact that A ⊗c B = A ⊗max B [15,
Theorem 6.6], the assertion holds. �

Recall, from [15, Section 3], that for two operator system tensor products σ and τ,
one says that σ ≤ τ if for any two operator systems S and T the identity map from
S ⊗τ T onto S ⊗σ T is completely positive. With this notion, the following lattice
structure on operator system tensor products is known [14–16]:

min ≤ e ≤ el, er ≤ c ≤ max.
Also, it can be easily seen that for three operator system tensor products σ ≤ τ ≤ ρ, an
operator system S is (σ, ρ)-nuclear if and only if it is (σ, τ)- and (τ, ρ)-nuclear.

Further, an operator system tensor product α is said to be functorial if for operator
systems S1, S2, T1 and T2 and unital completely positive maps φ : S1 → S2 and
ψ : T1 → T2, the associated map φ ⊗ ψ : S1 ⊗α T1 → S2 ⊗α T2 is unital completely
positive [15]. A tensor product α is said to be symmetric if the flip map θ : s ⊗ t 7→ t ⊗ s
extends to a unital complete order isomorphism from S ⊗α T onto T ⊗α S, and
associative if the natural isomorphism from (S ⊗ T ) ⊗ R onto S ⊗ (T ⊗ R) yields a
complete order isomorphism from (S ⊗α T ) ⊗α R onto S ⊗α (T ⊗α R) for all operator
systems S,T and R.

Proposition 3.2. The operator system tensor product ess is symmetric and not
functorial.

Proof. Since max is symmetric [15, Theorem 5.5], the flip map

C∗e(S) ⊗max C∗e(T ) 3 a ⊗ b
Φ
−→ b ⊗ a ∈ C∗e(T ) ⊗max C∗e(S)

extends to a complete order isomorphism for any two operator systems S and T and,
by definition of ⊗ess, the restriction of Φ to S ⊗ T implies the symmetry for ⊗ess.
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Then, in view of Proposition 3.1, the facts that c is the minimal symmetric and
functorial extension of max which agrees with max on C∗-algebras [15, Theorem 6.7]
and that ess ≤ c [8, Section 2] imply that ess is not functorial. �

Like the tensor product c, it is not known whether ess is associative or not. As
applications of our main results, we will be able to make some more significant
comparisons between ess and other tensor products in the following section.

We now review some basic facts about the dual of an operator system from [5, 16].
For an operator system S, the Banach space dual Sd is a matrix ordered space with

ordering

Mn(Sd) 3 ( fi j) ≥ 0 if and only if
F : S → Mn given by F(s) = ( fi j(s)) is completely positive.

But Sd need not be an operator system, as it might not have an Archimedean ordered
unit. However, if S is finite dimensional, the dual Sd possesses an Archimedean
order unit and hence admits an operator system structure [5, Corollary 4.5]. It was
shown in [16, Proposition 6.2] that Sdd is always an operator system with a canonical
Archimedean ordered unit and the canonical inclusion S ⊂ Sdd is a complete order
embedding.

As in [16, Definition 6.4], an operator system S is said to have the weak expectation
property (WEP) if there exists a complete order embedding S ⊂ B(H) such that the
canonical map ι : S → Sdd extends to a completely positive map ι̃ : B(H)→ Sdd. It is
known that S has the WEP if and only if it is (el,max)-nuclear (see [16, Section 6] and
[13, Section 4]).

Proposition 3.3. Let S and T be operator systems whose C∗-envelopes possess the
WEP. Then S ⊗ess T = S ⊗e T .

Proof. By [16, Theorem 6.9] (also see [12, Corollary 4.2] and [4, Corollary 3.6.8]),
a unital C∗-algebra A possesses the WEP if and only if A ⊗max B ⊆ A1 ⊗max B for any
inclusion A ⊆ A1 and any unital C∗-algebra B (Lance’s characterization of WEP). Thus,

S ⊗ess T ⊆ C∗e(S) ⊗max C∗e(T ) ⊆ I(S) ⊗max I(T )

and consequently S ⊗ess T = S ⊗e T . �

This allows us to deduce what we had promised at the beginning of this section, that
is, analogous to [8, Lemma 3.2], for amenable groups, we have the following corollary.

Corollary 3.4. Let u and v be generating sets of amenable discrete groups G and H,
respectively. Then S(u) ⊗ess S(v) = S(u) ⊗e S(v).

Proof. Since the full group C∗-algebras of amenable groups are nuclear, and the fact
that every nuclear C∗-algebra has the WEP [21, Section 17], by Propositions 2.8
and 3.3, the proof follows. �
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In view of Proposition 2.9, Corollary 3.4 holds for Sr(u) and Sr(v) as well. In
[16], a generalization of the notion of WEP was introduced and was called the double
commutant expectation property (DCEP). An operator system S is said to have the
DCEP if for every complete order embedding S ⊂ B(H), there exists a completely
positive map ϕ : B(H)→ S′′ fixing S.

Proposition 3.5. Let A be a unital C∗-algebra; then, for every operator system S
possessing the DCEP,

S ⊗ess A = S ⊗el A = S ⊗max A.

Proof. By [16, Theorems 7.1 and 7.3], an operator system S has the DCEP if and
only if for every operator system S1 with S ⊆ S1 and any operator system R, we have
S ⊗c R ⊆coe T ⊗c R. In particular, by [15, Theorem 6.7] and the fact that A = C∗e(A)
(as observed in Proposition 3.1),

S ⊗max A = S ⊗c A ⊂ C∗e(S) ⊗c A = C∗e(S) ⊗max A ⊃ S ⊗ess A.

Also, by [16, Theorem 7.3] again, S has the DCEP if and only if it is (el, c)-nuclear
and we are done. �

4. Nuclearity of an operator system via its C∗-envelope

In this section we compare various notions of nuclearity of operator systems with
their C∗-envelopes.

Kirchberg and Wassermann [17] gave an example of a (min,max)-nuclear operator
system whose C∗-envelope, as observed by Kavruk in [14, Section 6], is nonexact and
hence nonnuclear. The other direction, in general, is equally mysterious.

Proposition 4.1. The notions of (min, c)-nuclearity, (min, er)-nuclearity and (el, c)-
nuclearity do not pass to an operator system from its C∗-envelope.

Proof. For the operator system S2 associated to the free group with two generators,
there exists a complete order embedding of its dual Sd

2 into M4 (see [9, Theorem 4.4]
and [14, Theorem 10.11]). And, since S2 is not exact, by [14, Corollary 10.14], Sd

2 is
not (min, er)-nuclear. Hence, it fails to be (min, c)-nuclear as er ≤ c. In particular, as
exactness passes to operator subsystems (Theorem 2.7), Sd

2 ⊆ M4 is exact and hence
(min, el)-nuclear [16, Section 5]. Therefore, it is not (el, c)-nuclear as well.

By Proposition 2.1, C∗e(Sd
2) is nuclear. Thus, none of (min, c)-nuclearity, (min, er)-

nuclearity or (el, c)-nuclearity passes to an operator system from its C∗-envelope. �

However, by the very way ⊗ess is defined, we have the following result.

Proposition 4.2. An operator system is (min, ess)-nuclear if its C∗-envelope is nuclear.
Moreover, a unital C∗-algebra is (min, ess)-nuclear as an operator system if and only
if it is nuclear as a C∗-algebra.

https://doi.org/10.1017/S1446788716000082 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788716000082


366 V. P. Gupta and P. Luthra [11]

Proof. Let S be an operator system with nuclear C∗-envelope. By injectivity of
⊗min, we have S ⊗min T ⊆ C∗e(S) ⊗min C∗e(T ) and, by the definition of ⊗ess, S ⊗ess T ⊆

C∗e(S) ⊗max C∗e(T ) for any operator system T . By [15, Corollary 6.8], a nuclear C∗-
algebra is (min,max)-nuclear as an operator system, C∗e(S) ⊗min C∗e(T ) = C∗e(S) ⊗max
C∗e(T ) and, hence, S is (min, ess)-nuclear.

Conversely, if A is a unital C∗-algebra which is (min, ess)-nuclear, then, by
Proposition 3.1, A ⊗min B = A ⊗ess B = A ⊗max B for every unital C∗-algebra B.
Therefore, by [14, Proposition 4.11], A is (min, c)-nuclear as an operator system and,
hence, by [15, Theorem 6.7 and Corollary 6.8], A is nuclear as a C∗-algebra. �

We do not know whether the C∗-envelope of a (min, ess)-nuclear operator system is
nuclear in general or not. However, the situation is better in the enough unitaries case.

Theorem 4.3. Let S ⊂ A contain enough unitaries of the unital C∗-algebra A. Then S
is (min, ess)-nuclear if and only if A is a nuclear C∗-algebra.

Proof. If A is nuclear, then it follows from Propositions 2.3 and 4.2 thatS is (min, ess)-
nuclear. Conversely, suppose that A is not nuclear. Then, by Proposition 2.5, there
exists a unital C∗-algebra B such that the identity map on A ⊗ B does not extend to
a ∗-isomorphism between A ⊗C∗- min B and A ⊗C∗- max B. Note that, by injectivity of
⊗min, S ⊗min B has enough unitaries in A ⊗C∗- min B and, by definition of ⊗ess, so does
S ⊗ess B in A ⊗C∗- max B. Thus, by Proposition 2.3 again, A ⊗C∗- min B is the C∗-envelope
of S ⊗min B and likewise A ⊗C∗- max B is that of S ⊗ess B. In particular, this implies that
S ⊗min A , S ⊗ess A and hence S is not (min, ess)-nuclear. �

Recall from [8, Section 2] that ess ≤ c. However, as an application of our main
results (Proposition 4.2 and Theorem 4.3), the next proposition shows that ess does
not compare that well with er and el.

Proposition 4.4. We have er � ess, ess � er and ess � el.

Proof. We saw in Proposition 4.1 that there exists a complete order embedding of Sd
2

into M4. So, by Proposition 4.2, Sd
2 is (min, ess)-nuclear. In Proposition 4.1, we also

saw that Sd
2 ⊂ M4 is not (min, er)-nuclear. This implies that er � ess.

Then, by [16, Proposition 9.9], S2 is (min, er)-nuclear but, by Theorem 4.3, it is not
(min, ess)-nuclear and hence ess � er. Finally, if u is a generating set of a free group
F with 2 ≤ |u| ≤ ∞, then C∗r (F) being exact (see [21, Ch. 8] and [4, Proposition 5.1.8]),
Sr(u) is (min, el)-nuclear by Theorem 2.7; and, on the other hand, by Theorem 4.3
again, Sr(u) is not (min, ess)-nuclear, implying that ess � el. �

It is not clear whether el ≤ ess or not. However, we will prove later (in
Corollary 4.10) that (min, ess)-nuclearity implies (min, el)-nuclearity.

As an immediate consequence of Proposition 4.2, we observe that (min, ess)-
nuclearity passes to an operator system from its C∗-envelope. However, since a unital
C∗-algebra is (min, ess)-nuclear if and only if it is nuclear, and as nuclearity is not
preserved by C∗-subalgebras [4, Section 4], we observe, in general, the following.

Remark 4.5. The notion of (min, ess)-nuclearity does not pass to operator subsystems.
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Proposition 4.6. The notions of (el, c)-nuclearity and (el,max)-nuclearity do not pass
to operator subsystems.

Proof. Since a C∗-algebra is nuclear if and only if it is exact and has the WEP
[21, Section 17], and as exactness passes to C∗-subalgebras, the failure of passage
of nuclearity to C∗-subalgebras [4] also shows that the WEP does not pass to C∗-
subalgebras. And, as the WEP and the DCEP are the same for a C∗-algebra [14, 16],
this also illustrates that the DCEP (equivalently, (el, c)-nuclearity) and the WEP
(equivalently, (el,max)-nuclearity) do not pass to operator subsystems in general. �

On the other hand, the following corollary is an immediate consequence of
Propositions 2.1 and 4.2.

Corollary 4.7. An operator system S is (min, ess)-nuclear if it admits a nuclear C∗-
cover.

In particular, we also see that if S ⊂ A is an operator subsystem of a finite-
dimensional C∗-algebra A, then S is (min, ess)-nuclear. We saw in Proposition 4.1
that Sd

2 ⊂ M4 is not (min, c)-nuclear; so, it also serves as an example of a finite-
dimensional (exact) operator system which is not (ess, c)-nuclear. We thus have the
following remark.

Remark 4.8. An operator system need not be (ess, c)-nuclear if it possesses a nuclear
C∗-envelope. In particular, (ess, c)-nuclearity does not pass to operator subsystems.

By Proposition 4.2, every C∗-algebra which is (min, ess)-nuclear is also nuclear and
hence exact. In fact, the same is true for operator systems as well, which will follow
from the proposition given below, where the notations ⊗̂ and ⊗̄ have similar meanings
as in Definition 2.6:

Proposition 4.9. Let S be an operator system and I be a closed ideal in a unital C∗-
algebra A. Then S ⊗̄ I is a completely biproximinal kernel in S ⊗̂ess A and the induced
map

S ⊗̂ess A
S ⊗̄ I

→ S ⊗̂ess A/I

is a unital complete order isomorphism.

Proof. Since ess is induced by a C∗-algebraic tensor product, by [16, Proposition
5.14], S ⊗̄ I is a completely biproximinal kernel in S ⊗̂ess A, that is, Cn(S ⊗̂ess A/
S ⊗̄ I) =Dn(S ⊗̂ess A/S ⊗̄ I) for all n ≥ 1 [16, Definition 4.9], and the induced map
ϕ : S ⊗̂ess A/S ⊗̄ I → C∗e(S) ⊗̂max A/C∗e(S) ⊗̂max I is a complete order isomorphic
inclusion. On the other hand, the canonical map θ : (C∗e(S) ⊗̂max A/C∗e(S) ⊗̂max I)→
C∗e(S) ⊗̂max A/I is a complete order isomorphism (by [16, Corollary 15.6]) and we
have S ⊗̂ess A/I ⊆ C∗e(S) ⊗̂max A/I. Clearly, θ ◦ ϕ is a surjection onto S ⊗̂ess A/I and
agrees with the induced map S ⊗̂ess A/S ⊗̄ I → S ⊗̂ess A/I and hence the assertion
holds. �
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Corollary 4.10. Every operator system which is (min, ess)-nuclear is also (min, el)-
nuclear.

As remarked earlier, we do not know whether el ≤ ess or not, but Corollary 4.10
does hint that it could very well be true.

The converse to Corollary 4.10 is false. Consider the free group Fn with n generators
and n ≥ 2. Its reduced group C∗-algebra C∗r (Fn) is exact, that is, (min, el)-nuclear
[4, 21], but not C∗-nuclear and hence, by Proposition 4.2, it is not (min, ess)-nuclear.

Before moving on to the section on operator systems associated to discrete groups,
we point out that, unlike the category of C∗-algebras, exactness, (min, ess)-nuclearity,
(min, c)-nuclearity and (min, max)-nuclearity do not pass to operator system quotients.

Corollary 4.11. The notion of (min, ess)-nuclearity does not pass to operator system
quotients.

Proof. For each n ≥ 2, let Jn ⊂ Mn(C) be the kernel [9, Section 2] in Mn(C) consisting
of all diagonal matrices D ∈ Mn(C) with tr(D) = 0; andWn be the operator subsystem
of C∗(Fn−1) spanned by {uiu∗j : 1 ≤ i, j ≤ n}, where u2, . . . , un are the universal unitaries
that generate C∗(Fn−1) and u1 := 1. For n ≥ 3, by [9, Theorem 2.4], Mn/Jn is
completely order isomorphic to Wn and C∗e(Wn) = C∗e(Mn/Jn) = C∗(Fn−1). By
Theorem 4.3, we deduce that the quotient Mn/Jn is not (min, ess)-nuclear. �

In addition, the example of Mn/Jn also shows that C∗e(Mn/Jn) is isomorphic to
C∗(Fn−1), which is not exact [21, Section 17]. Now, since Wn contains enough
unitaries of C∗(Fn−1), Wn and hence Mn/Jn is not exact (by [16, Corollary 9.6]).
In particular, exactness, (min, c)-nuclearity and (min,max)-nuclearity do not pass to
quotients in the category of operator systems as well.

Note that Kavruk [14, Theorem 10.2] showed that the quotient operator system
M3/J3 has a deep relationship with Kirchberg’s conjecture. It was established that
Kirchberg’s conjecture has a positive answer if and only if M3/J3 possesses the
DCEP. There is one more quotient operator system which is equally deeply related to
Kirchberg’s conjecture, namely, Tn/Jn, where Tn := {[ai, j] ∈ Mn : ai, j = 0 if |i − j| > 1}.
It was also established, in [14, Corollary 10.6], that Kirchberg’s conjecture is true
if and only if T3/J3 possesses the DCEP. This was a consequence of the fact [14,
Theorem 10.5] that Tn/Jn is completely order isomorphic to Sn−1 for all n ≥ 3. We
easily deduce, again from Theorem 4.3, that the quotient operator system T3/J3 is not
(min, ess)-nuclear.

Furthermore, as observed in Proposition 4.4, the dual Sd
2 of the free group operator

systemS2 is (min, ess)-nuclear, whereasSdd
2 = S2 (up to complete order isomorphism)

is not (min, ess)-nuclear and hence we also observe the following corollary.

Corollary 4.12. The notion of (min, ess)-nuclearity does not pass to operator system
duals.
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5. Nuclearity of group operator systems

Recall that if S(u) is a (min, c)-nuclear operator system, then C∗(G) is a nuclear
C∗-algebra [16, Corollary 9.6] and, since the group C∗-algebra of a discrete group
is nuclear if and only if the group is amenable [4, 18], it follows that the group is
amenable. By Theorem 4.3, we realize that amenability can, in fact, be recovered from
(min, ess)-nuclearity itself. Surprisingly, it is not yet clear (at least, to us) whether the
amenability of a group guarantees (min, c)-nuclearity of an operator system associated
to a generating set of the group. The following theorem can be treated as a small step
in this direction, whose proof is now an immediate consequence of Proposition 2.8 and
Theorem 4.3:

Theorem 5.1. Let u be a generating set of a discrete group G. Then the operator
systems S(u) and Sr(u) are (min, ess)-nuclear if and only if G is amenable.

Note that Theorem 5.1, kind of, falls in line with the fact that amenability of a
discrete group is equivalent to the nuclearity of its reduced group C∗-algebra C∗r (G)
and injectivity of its group von Neumann algebra L(G) (see [4, Section 3] and [18]).

We now move towards identifying the (min,max)-nuclear group operator systems
associated to finitely generated groups. For a finite-dimensional operator system S,
it is known that S is (c,max)-nuclear if and only if it is unitally completely order
isomorphic to a C∗-algebra [14, Proposition 4.12]. In fact, since ess ≤ c, this allows us
to conclude the following proposition.

Proposition 5.2. Let S be a finite-dimensional operator system. Then the following
are equivalent.

(i) S is (ess,max)-nuclear.
(ii) S is (c,max)-nuclear.
(iii) S is unitally completely order isomorphic to a C∗-algebra.
(iv) S is (min,max)-nuclear.

Since an injective operator system admits the structure of a C∗-algebra [5, Theorem
3.1], Proposition 5.2 has the following immediate consequence.

Corollary 5.3. Let u be a finite generating set of a discrete group G. Then S(u) is
(min,max)-nuclear if and only if S(u) is injective.

We now provide the promised exhaustive list of nuclear group operator systems
associated to minimal generating sets of finitely generated groups.

Theorem 5.4. Let u be a generating set of a finitely generated discrete group G.

(i) If u is finite and S(u) is (min,max)-nuclear, then G is finite.
(ii) If u is a minimal generating set, then S(u) is (min,max)-nuclear if and only if G

is of order less than or equal to three.
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Proof. We prove both assertions simultaneously. Note that since G is finitely
generated, u is finite in (ii) as well. So, by Proposition 5.2, S(u) is (min, max)-
nuclear if and only if S(u) is completely order isomorphic to a C∗-algebra. Then,
by Proposition 2.2(iii), S(u) is completely order isomorphic to a C∗-algebra if and
only if S(u) = C∗e(S(u)) = C∗(G), which is true if and only if u ∪ u−1 ∪ {e} = G, where
u−1 := {u−1 : u ∈ u}.

Suppose that S(u) is (min,max)-nuclear. Since u is finite, S(u) = C∗(G) is finite
dimensional and hence G is finite. Note that if |u| > 1 and a, b ∈ u with a , b, then,
by minimality of u, the set {ab} ∪ u ∪ u−1 ∪ {e} is linearly independent in C∗(G) and
therefore ab < S(u). So, u must be a singleton, that is, G must be cyclic. And,
clearly, for a singleton u, the equality u ∪ u−1 ∪ {e} = G holds only if G = Z1,Z2 or
Z3. Conversely, if G = Z1,Z2 or Z3, then clearly u ∪ u−1 ∪ {e} = G and S(u) is then
(min,max)-nuclear. �

Note that minimality of u cannot be dropped from the statement of Theorem 5.4. For
example, if G = Z3 ⊕ Z3 and u = {(1, 0), (1, 1), (0, 1), (1, 2)}, then S(u) is (min,max)-
nuclear but G is neither cyclic nor |G| ≤ 3. On the other hand, it is not yet clear whether
S(u) is (min,max)-nuclear if u is infinite even if it equals G or G \ {e}.

We thus obtain yet another collection of finite-dimensional (min, ess)-nuclear
operator systems which are not (min, max)-nuclear.

Corollary 5.5. For any finitely generated amenable group G with |G| ≥ 4 and any
finite generating set u of G such that u ∪ u−1 ∪ {e} , G, S(u) is (min, ess)-nuclear but
not (min,max)-nuclear. In particular, (ess,max)-nuclearity does not pass to operator
subsystems.

The preceding corollary also gives examples of operator systems which are not
(min, max)-nuclear and yet possess nuclear C∗-envelopes.

6. Nuclearity of graph operator systems

Given a finite graph G with n vertices, Kavruk et al. in [15] associated an operator
system SG as the finite-dimensional operator subsystem of Mn(C) given by

SG = span{{Ei, j : (i, j) ∈ G} ∪ {Ei,i : 1 ≤ i ≤ n}} ⊆ Mn(C),

where {Ei, j} is the standard system of matrix units in Mn(C) and (i, j) denotes (an
unordered) edge in G. In view of Proposition 4.2, the graph operator system SG ⊆ Mn

is always (min, ess)-nuclear.
It is known that if G is chordal, that is, no minimal cycle of G has length greater than

3, then SG is C∗-nuclear [15, Proposition 6.11]. It is not known whether the converse
is true or not. However, motivated by the discussions in [19, Section 3], we obtain the
following characterization of the (min,max)-nuclear graph operator systems.

Theorem 6.1. Let G be a finite graph. Then the associated operator system SG is
(min,max)-nuclear if and only if each component of G is complete.
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Proof. Suppose that each connected component of G is a complete graph. Then we
easily see that SG = Mn1 ⊕ · · · ⊕ Mnk ⊂ Mn, where the ni are the number of vertices in
the connected components of G, k is the number of connected components of G and n
is the number of vertices in G. Thus, SG is (min,max)-nuclear.

Conversely, suppose that SG is (min,max)-nuclear. Then, by Proposition 2.2(iii),
we have SG = C∗e(SG) and Ortiz and Paulsen proved in [19, Theorem 3.2] that
C∗e(SG) = C∗(SG) ⊆ Mn(C) for any graph G. Let F be a connected component of G
and v , w be any two vertices in F . Then there exists a sequence of connected edges
(v, i1), (i1, i2), (i2, i3), . . . , (ir,w) in F connecting v with w. Further, since SG = C∗(SG),
we get Ev,w = Ev,i1 Ei1,i2 · · · Eir−1,ir Eir ,w ∈ SG. This implies that (v,w) ∈ G, that is, v and
w are connected by an edge and hence F is complete. �

7. Nuclearity properties of some known examples

7.1. Operator systems of commuting and noncommuting n-cubes. Inspired by
Tsirelson’s noncommutative analogues of n-dimensional cubes, Farenick et al. in [8]
introduced an (n + 1)-dimensional operator system NC(n) as follows.

Let G = {h1, . . . , hn}, let R = {h∗j = h j, ‖h‖ ≤ 1, 1 ≤ j ≤ n} be a set of relations in the
set G and let C∗(G|R) denote the universal unital C∗-algebra generated by G subject to
the relations R. The operator system

NC(n) := span{1, h1, . . . , hn} ⊂ C∗(G|R)

is called the operator system of the noncommuting n-cube.
They showed that up to a ∗-isomorphism, C∗e(NC(n)) = C∗(∗nZ2) [8, Corollary 5.6]

and that NC(1) is (min, max)-nuclear [8, Proposition 6.1] and NC(2) is (min, c)-
nuclear [8, Theorem 6.3]. Further, it follows from [8, Theorem 6.13] that NC(n) is
not (min, max)-nuclear for all n ≥ 2. Proposition 2.2(iii) now provides an alternate
proof of this fact.

Farenick et al. further introduced the operator system of the commuting n-cube as
the operator subsystem C(n) ⊂ C([−1, 1]n) given by

C(n) = span{1, x1, x2, . . . , xn},

where xi is the ith coordinate function on [−1, 1]n. Clearly, the C∗-algebra generated
by C(n) in C([−1, 1]n) is commutative. As a consequence, the C∗-envelope of C(n) is
also commutative and hence nuclear; in particular, C(n) is (min, ess)-nuclear.

There was one more important example introduced in [8], namely, the operator
systemV ⊂ `∞4 given by

V := {(a, b, c, d) : a + b = c + d} ⊂ `∞4 .

They proved in [8, Theorem 6.11] that V is not (min, max)-nuclear. It will be
interesting to investigate the following question.

Question. Let A be a unital commutative C∗-algebra and S be an operator subsystem
of A. Is S C∗-nuclear?
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7.2. Operator systems generated by a single operator. Determining the C∗-
envelope of a given operator system is in general quite challenging. However, very
recently, Argerami and Farenick [1, 2] considered the operator systems generated by
single operators of certain classes of operators and successfully calculated their C∗-
envelopes. The calculation of these C∗-envelopes together with Proposition 4.2 leads
to interesting examples of finite-dimensional (min, ess)-nuclear operator systems.
Further, using Proposition 2.2(iii) and simple dimension comparisons, we check
whether these singly generated operator systems are (min, max)-nuclear or not.

The operator system generated by a bounded linear operator T acting on a
complex Hilbert space H is defined to be the unital self-adjoint subspace OS(T ) =

span{1, T, T ∗} ⊂ B(H). Argerami and Farenick exploited the ∗-isomorphism between
C∗e(OS(T )) and the quotient of C∗(T ) by the Silov boundary ideal of OS(T ) given by
Arveson [3] in order to do the explicit calculations of the C∗-envelopes. The results
below follow from [1, Remarks].

Example 7.1. (i) If T is normal, then C∗e(OS(T )) is commutative and hence nuclear,
implying that OS(T ) is (min, ess)-nuclear.

(ii) If T is a contraction such that T ⊂ σ(T ), then C∗e(OS(T )) = C(T) and hence
OS(T ) is (min, ess)-nuclear.

(iii) If T is an isometry, then OS(T ) is (min, ess)-nuclear. This is true because of (i)
and the fact that C∗e(OS(T )) = C(T) if T is not unitary.

Since the dimensions of the operator systems OS(T ) in (i), (ii) and (iii) do not equal
the dimensions of their respective C∗-envelopes, OS(T ) , C∗e(OS(T )) in all the three
cases and, therefore, the above operator systems are not (min,max)-nuclear.

For the sake of convenience of the reader, we now recall the definitions of the classes
of operators whose operator systems were considered in [1] and [2].

Example 7.2. If C× := C�{0} and ξ = (ξ1, ξ2, . . . , ξd) ∈ (C×)d, then the irreducible
weighted unilateral shift with weights ξ1, ξ2, . . . , ξd is the operator W(ξ) on Cd+1 given
by the matrix

W(ξ) =



0 0
ξ1 0

ξ2
. . .

. . . 0
ξd 0


.

By [1, Proposition 3.2], C∗e(OS(W(ξ))) = Md+1(C), which is a nuclear C∗-algebra
and hence OS(W(ξ)) is (min, ess)-nuclear. Since Md+1(C) is at least four dimensional,
OS(W(ξ)) , C∗e(OS(W(ξ))), which further implies that OS(W(ξ)) is not (min,max)-
nuclear.

Example 7.3. A weighted unilateral shift operator is an operator W on l2(N) whose
action on the standard orthonormal basis {en : n ∈ N} of l2(N) is given by

Wen = wnen+1, n ∈ N,
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where the weight sequence {wn}n∈N for W consists of nonnegative real numbers with
supn wn <∞. If there is a p ∈ N such that wn+p = wn for every n ∈ N, then W is called
a periodic unilateral weighted shift of period p. If at least one of w1, . . . ,wp is not
repeated in the list, W is said to be distinct.

By [1, Theorem 3.5], C∗e(OS(W)) = C(T) ⊗ Mp(C), which is again a nuclear C∗-
algebra and hence OS(W) is (min, ess)-nuclear and, clearly not (min,max)-nuclear.

Note that Example 7.2 is a special case of this.

Recall that an operator J on an n-dimensional Hilbert space H is a basic Jordan
block if there is an orthonormal basis ofH for which J has a matrix representation of
the form

Jn(λ) :=



λ 1 0 . . . 0

0 λ 1
. . .

...
...
. . .

. . .
. . . 0

...
. . .

. . . 1
0 . . . . . . 0 λ


for some λ ∈ C.

Example 7.4. Let J =
⊕∞

k=1 Jmk (λ) ∈ B(l2(N)) and m := sup{mk : k ∈ N}. Then, by [2,
Proposition 2.2],

C∗e(OS(J)) =

C(T) if m =∞,

Mm(C) if m <∞

and hence OS(J) is (min, ess)-nuclear. As in earlier examples, one can see that for
m > 1, OS(J) is not (min,max)-nuclear.

An operator J ∈ B(l2(N)) is said to be a Jordan operator if J =
⊕

j Jn j (λ j) for
some finite or infinite sequence of basic Jordan operators Jn j (λ j). In this definition,
the n j or the λ j are not required to be distinct. But repetitions of the same pair n j, λ j

are not allowed: if a direct sum of d copies of a basic Jordan block Jn(λ) is considered,
then it is denoted by Jn(λ) ⊗ 1d.

Example 7.5. Consider the Jordan operator

J =


1
ω
ω2

0 1
0 0

 ,
where ω = (−1 − i

√
3)/2. Then, by [2, Remark 2.7], C∗e(OS(J)) = C3, which shows

that OS(J) coincides with its C∗-envelope and hence is (min,max)-nuclear.
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Example 7.6. If J =
⊕n

k=1(Jmk (λk) ⊗ Idk ), with λ1 > λ2 > · · · > λn all real and
max{m2, . . . ,mn−1} ≤ min{m1,mn}, then, by [2, Corollary 2.12], C∗e(OS(J)) equals

Mm1 (C) ⊕ Mmn (C) if min{m1,m2} ≥ 2,
C ⊕ C if m1 = mn = 1,

Mmn (C) if m1 = 1,mn ≥ 2, |λ1 − λn| ≤ cos
π

mn + 1
,

C ⊕Mmn (C) if m1 = 1,mn ≥ 2, |λ1 − λn| > cos
π

mn + 1
,

Mm1 (C) if m1 ≥ 2,mn = 1, |λ1 − λn| ≤ cos
π

m1 + 1
,

Mm1 (C) ⊕ C if m1 ≥ 2,mn = 1, |λ1 − λn| > cos
π

mn + 1
,

implying that OS(J) is (min, ess)-nuclear but not (min,max)-nuclear for all of the
above cases except for the case when m1 = mn = 1. If m1 = mn = 1, OS(J) turns out to
be (min,max)-nuclear.
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