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RIGID SETS

LUCA GUERRINI AND PlER LUIGI PAPINI

The term "rigid set" appears often in the literature in different contexts and with
different meanings. In many cases the notions are unrelated, while in others they
refer to related facts. Here we study infinite sets which are rigid according to [2]
and analyse the relationship with the notion of rigidity used in [1]. We make several
remarks, summarise different results in the area and prove a few new results.

1. INTRODUCTION

The term "rigid set" appears in the literature in many contexts. A few of these are:

(a) in describing situations where endomorphisms, or similar maps, reduce
more or less to the identity (for rigid sets in this sense see, for example,
[21] for manifolds and [14] for infinite dimensional topological, but not
necessarily normed, spaces);

(b) in relation to a famous problem of Mazur concerning isometries for the
unit sphere ("transitive" norms, see, for example, [1] and [3] for general
results);

(c) by using sequences, as done in [2];

(d) in relation to "intrinsic distances", as done, for example, by K. Borsuk
around two decades ago (see [10] for recent results).

We are interested here in rigid sets according to (c), which are connected with rigidity as
used in (b).

We now list our definitions. Our settings will be in a complete metric space, that
we denote by (E, p). According to [1], a subset A C E is called rigid if it is compact and
has the property that

(/?) given a,b € A, there exists an isometry T of A onto itself with Ta = b.

If a subset A of E satisfies property (/?), we say that the group of isometries acts transi-

tively on A. This definition of rigidity was given in [1] for a finite dimensional normed
space E.

According to [2], a sequence (xn) C E is called rigid if its closure is compact and it
has the property
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(7) for all n € N and k > 1, p{xn+k, xn) - p(xi+k, xx),

or equivalently,

(7') for all pairs i, j <E N, p{xi+1,xj+1) = p(xi,Xj).

A subset A = (xn) C E is called rigid if it is the closure of a rigid sequence.

To avoid confusion between these two definitions of rigidity, we adopt the following
terminology. We call a set that is compact and satisfies property (/?) a rigid set and a
sequence (xn) C E that satisfies property (7) a a-rigid sequence. Further, we call the
closure of a a-rigid sequence a a-rigid set, and a cr-rigid set that is compact an s-rigid
set.

For example, the sequence of all natural numbers, with its natural ordering and
metric, is cr-rigid. Of course, being a-rigid for a sequence is not invariant for reordering.
If A is s-rigid and A = [xn), where (xn) is a-rigid (and bounded), we say that (xn)
represents A.

A finite ordered sequence (x\,... ,Xi) is called cr-rigid if it satisfies property (7)
whenever n + k ^ i. A finite set is then called an s-rigid set if, for some ordering, it is
a a-rigid sequence. We shall speak of an infinite sequence to indicate a sequence (xn)
containing infinitely many different elements.

A set A C E is called equilateral if p(x, y) is independent of x, y s A. An equilateral
sequence (xn) is clearly bounded, closed and a-rigid. If it is infinite, then it is not s-rigid
(since a discrete sequence has no convergent subsequence). Moreover, the isometries act
transitively on an equilateral set (in fact, a map only exchanging two points x, y and
leaving the others fixed is an isometry).

Given a bounded set A of E, the number 6(A) = sup{p(x,y) : x,y 6 A} is called
the diameter of A.

Let T : D -* D be a map from a subset D of E into itself. The map T is called
nonexpansive if, for a l l x , y e D , p{Tx, Ty) ^ p(x, y ) , a n d a n isometry if, for a l l x , y € D ,
p(Tx,Ty) — p(x,y). Let Tk denote the fc-fold composition of T with itself. A point
x 6 D is called a periodic point of the map T, of (minimal) period k, if Tkx — x and
Thx ^ x for h< k.

Suppose that x G D. The orbit of a; (under T), denoted by o(x,T), is defined by the
formula

o(x,T) = (x,Tx,T2x,T3x,...),

and the omega limit set of x, denoted by LJ(X,T), is defined to be the subset of D
consisting of all the limit points of the orbit of x, that is,

u(x,T) = P | (Tnx,Tn+1x,Tn+2x,...).

The paper is organised as follows. In Section 2, we recall some simple and known
facts. In Section 3, we indicate some other results. In Section 4, we deal with finite rigid
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[3] Rigid sets 195

sets. In Section 5, we consider the existence of infinite rigid sets in real Banach spaces
and we raise some problems. In Section 6, we discuss the rigidity of the unit sphere in
Banach spaces. In Section 7, we deal with equilateral sets and orthogonality.

2. K N O W N RESULTS

The following facts are well known (see, for example, [15] for references).

LEMMA 2 . 1 . Suppose that (E, p) is a complete metric space, C is a closed subset
of E and T :C -¥ C is a map. For any x, we have

(i) w{x,T) is closed, T(LJ{X,T)) C LJ{X,T). Further, T(w(x,T)) = w(x,T) if

T is continuous and C is compact.

(ii) Iftj(x,T) ^ 0 and T is nonexpansive, then ui(y,T) — u(x,T) for ally 6

u(x,T) and T restricted to u>(x,T) is an isometry ofui(x,T) onto itself.

(iii) Ifuj(x, T) is also compact, then there is a commutative group ofisometries

acting transitively on it.

From [2, Lemma 3.3 and Lemma 4.1], we obtain the following result.

LEMMA 2 . 2 . Suppose that (E, p) is a complete metric space, K is a closed subset

of E and T : K —• K is a map. We have

(i) If K is compact, T is an isometry and, for some a G K, u(a,T) is dense in

K, then p(Trx, x) = p{TTy, y) for any x,y € K and all r € N. Therefore

in this case either T is the identity or it has no fixed point.

(ii) IfK is a compact set and T is nonexpansive and onto, then T is an isometry

ofK. In particular, under these assumptions on K and T, the set of points

of a periodic orbit, as well as the closure of any orbit, is an s-rigid set.

REMARK 2.3. The assumption that "T is surjective" in Lemma 2.2 (ii) is essential.
Take, for example,

and define T by T ( l / n ) = l / ( n + 1) and T(0) = 0.

From [2, Lemma 3.2], we have the following result.

LEMMA 2 . 4 . Suppose that Ac E is compact. The following are equivalent:

(i) A is s-rigid.

(ii) There exists an isometry T : A —• A and a point x € A such that

o{x,T) = A.

(iii) There exists an isometry T : A-* A such that for all the points x € A,
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This result is also true if (x\, x2, •. • ,xn,...) consists of a finite number of distinct
elements. The isometry T is constructed as follows. If A is an s-rigid set of E represented
by (xi,x2,...,xn,...), then set

Tx = lim xni+u
t-»oo

where (xn.)i is a subsequence of (xn)n such that lim xn. — x.
t-»oo

LEMMA 2 . 5 . [13, Lemma 1]) Suppose that A is an infinite s-rigid set of E.
Then A is a rigid set. Moreover, its corresponding group of isometries is commutative.

The next result was given for s-rigid sets in [2, Lemma 3.4]. For the sake of com-
pleteness, we prove here its simple extension to rigid sets in general.

PROPOSITION 2 . 6 . Suppose that A is a rigid set of E. Then it is diametral,
that is, for every x € A there exists an element dx 6 A such that p(x, dx) = S(A).

PROOF: By compactness, there exists a pair y, z in A such that p(y,z) = S(A).
Given x € A, let T be an isometry onto A sending z into x. Let Ty = w. We have
p(w,x)=p(Ty,Tz)=p{y,z)=5{A). D

We recall a few properties of "diametral sets" (see [7, Proposition 2]).

PROPOSITION 2 . 7 . Suppose that A is a diametral set ofE. We have

(i) IfO<r'<r <6{A), then

{xeA: p(y,x) ̂  r} £ {x € A : p(z,x) ^ r'}

for any y,z € A.

(ii) A is not symmetric about any of its points, that is, A — x is not symmetric

with respect to the origin for any x £ A.

(iii) A is nowhere dense.

3. SOME OTHER SIMPLE RESULTS

In general, if A is not an s-rigid set, o(x, T) ^ A. The next results give information
related to Lemma 2.4.

PROPOSITION 3 . 1 . Suppose that A is a subset of E and T : A -> A an
isometry. If, for some x G A, the orbit o(x, T) of x is infinite, then all the elements
in o(x, T) are distinct.

PROOF: Suppose there exists a pair n, k such that Tn+kx = Tnx. We have

p{Tkx,x) = p(Tn{Tkx),Tnx) = 0

and so Tkx — x. This implies that

Tk+1x - Tx, Tk+2x = T2x, Tk+3x = T3x,...

https://doi.org/10.1017/S0004972700040041 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700040041


[5] Rigid sets 197

Therefore the orbit o(x,T) = (x,Tx,...,Tk~lx) is finite. D

We recall that , in general, a compact set must be separable and cannot contain an

infinite e-discrete subset for any e > 0 (in fact, if p(xi,Xj) ^ e for i ^ j , then {xn} cannot

contain convergent subsequences). This fact will be used in the proof of the next result.

PROPOSITION 3 . 2 . Let A be an s-rigid set ofE. If A is infinite, then none of

its points is isolated.

PROOF: Suppose that A is represented by the sequence (xn). Take x £ A and define
T : A -> A by Tx = lim xni+i, where (rn) is a sequence with lim xni = x. This is a well

defined isometry and so, by Lemma 2.4, A — o(x,T).

By Proposition 3.1, all the elements of o(x,T) are distinct. Moreover, we know that
A — {x,Tx,T2x,...} satisfies the property (7).

Let y = Tnx € o(x, T) for some n € N. If y is isolated, then there exists e > 0 such
that p(T"+kx, T"x) ^ e for all k (and n 6 N). This shows that all pairs of points in
o(x, T) are at a distance ^ e, violating the compactness of A.

Now assume that y e A - o(x,T). Then there is a sequence (rii) such that
y = lim xni, where xnj = Tn'x. If y is isolated, then there exists e > 0 such that
p(lim xnj+k,y) > e for all k > 0. Thus p(Tn>+*x,Tn>x) ^ e for all k € N, that is, o(x,T)

is e-discrete, and this contradicts the compactness of A. This concludes the proof. D

PROPOSITION 3 . 3 . Suppose that A is an s-rigid set and letT : A -> A be the
isometry defined in the proof of Proposition 3.2. Let x £ A and set

qk = p(Tn+kx, Tnx), for all n, k e N.

00

Then there is a subsequence q^ of (qk) such that 5Z Qj < °°- ^a Particular,
i=i

liminf q^ = 0.
k-KX>

PROOF: If A is finite, then since A = [x, Tx, T*x,..., TNx) for some N € N, it
follows <7w = <72W = . . . = 0 and so the statement holds.

If A = (xn) is infinite, then according to Proposition 3.2, for any point x e A, there
is a sequence xn. such that lim xn. = x but xn. ^ x for all j . Given a > 0, let j \ be the

first index such that p(xjx, x) ^ a. Then, let j'2 be the first index such that

1 a
p{xh,x)^ -p(xh,x) ^ - .

T h U S 3 3
p{xh,xh)^ -p(xh,x) ^ -a.
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Proceeding in this way we construct a sequence {XJ{ } such that

p{xji+1,x) ^-p(Xji,x) ^ j v

and
3 3 3

This implies that
oo oo

t = l 1=1 1=1

Moreover, by setting kt = j i + 1 — j i t we see that liminf qk = 0. D
k—foo

We end this section with some remarks concerning rigid and s-rigid sets.

REMARK 3.4. The notion of "s-rigid set", unlike that of "rigid set", involves some
ordering. In fact, reordering of sets does not preserve the property a.

EXAMPLE 3.5. Let (E, p) be the Euclidean plane and consider the points x\ = (0,0),
x2 = (1,0), x3 = (0,1), x4 = (—1,0), x5 = (0,-1) . Then (x2,xi,x3) satisfies property
(7) (we assume that n + k < 3), while (11,12,2:3) does not. Similarly, (x2,x3,Xi,x5)
satisfies (7) (use indices between 2 and 5), while (x2,X4,x3,Xs) does not.

REMARK 3.6. Rigidity, as well as s-rigidity, is not inherited by subsets. A subset of a
rigid set need not be compact or satisfy (7).

EXAMPLE 3.7. ([13, Remark 1]) Let {E,p) be the Euclidean plane and

A' = {(1,0), (0,2), (0,0)} C {(1,0), (1,2), (0,2), (0,0)} = A.

Then A is a rigid set (an isometry sending A to A' exists; we can exchange pairs at the
same distance), while A' is not.

The previous remark does not say that it is not possible to find subsets of an s-rigid
(or rigid) set that are still s-rigid (or rigid). In fact, for example, if A — (xn) is a-rigid,
then its subsets A' = (xkn)n and A" = (xk+n)n {k G N fixed) are still a-rigid.

REMARK 3.8. If A is an s-rigid set, then, by definition, it is cr-rigid. Moreover, by
Lemma 2.5, we know that A is also rigid. Now a-rigid does not imply rigid ((x2>xi,x3)
in Example 3.5 is a-rigid, but not rigid since no isometry sends Xi to x2). But also
rigid does not imply a-rigid, (the set A of Example 3.7 is rigid, but not a-rigid for any
ordering).

Another example of a rigid set which is not s-rigid is the following (private commu-
nication by R.D. Nussbaum).

EXAMPLE 3.9. Let G be the symmetric group Sn acting on K" by permutation of
indices and let A be the set of all images of the points (1 ,2 , . . . , n) under elements of Sn.
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4. F I N I T E RIGID S E T S

We speak of a finite s-rigid set A when we consider property (7) restricted to a finite

subset of N. If a subset A of E consists of only two elements, then (7) is trivially satisfied.

If it has more than two, this is not necessarily true. An example is A' in Example 3.7,

or, more generally, a set A = {x, y, z} where p(x,y), p(x,z), and p{y,z) are different. In

fact, no reordering of A satisfies (7).

In some cases, it is possible to represent a finite s-rigid set {xi,..., xN} by an s-rigid

sequence of the form (x\,... , X J V , £ I , • • • ,XN,XI, . . . ) . In this case, xs+j — Xj for all j € N,

and so by property (7) we should have

p(x{, Xi) = p(xN, Xi_i) = p(xN-r,Xs) = p(xN-s,Xr)

with r, s € N such that
i — 1 = r + s.

PROPOSITION 4 . 1 . Let A be an s-rigid set represented by (xn). The following
assertions are equivalent:

(i) A is a Unite set with N elements.

(ii) (xn) has a periodic point, of period N.

(iii) All points of A are periodic of period N.

PROOF: TO show that (i) implies (iii), we argue as follows. Since A = (xn) is finite
with N elements, there are two indices i and j (i > j) with i- j ^ N such that x4 = Xj.
By property (7), for n — j and k — i — j , we have

0 = p{Xi,Xj) = p{Xj+ii-i),Xj) = piXi+ti-jj^x)

that is, xi+(j_j) = x\. Again by property (7), for k = i — j and n arbitrary, we have

xn+(i_j) = xn for all n € N. Thus A = {xi,x2, • • •, ^ t - j} . N = i - j .

It is trivial that (iii) implies (ii).

To show that (ii) implies (i), let xm be an element of period N, that is,

Xm+N = Xm+2N = Xm+3N =

Then by property (7), for k = N and n = m + N it follows that

0 = p(xm+2N,Xm+N) =

that is xl+N = x\. Again by (7), for k = N and n arbitrary, we have xn+N = xn for all
n E N .

Repeating the previous argument for n = m + N and A; = 2N, 3N,..., we shall have
Xi - xi+N = xi+2N = xi+3N = . . . for all i ^ 2. Therefore A - {x i , . . . , xN}. Moreover,
Xj ^ Xj for i — j < N (otherwise the period of xm would be $J i — j). U
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PROPOSITION 4 . 2 . If A = {xi,...,xN} is a Gnite s-rigid (ore-rigid) set, which

can be represented as

( x i , . . . , x N , X i , . . . , x N , x i , . . . ) ,

then A is rigid.

P R O O F : Set Tx{ = xi+x for i ^ N - 1 and TxN = xx. Then T maps A onto A and
for all i € N we have o{xu T) = wfo, T) = A. D

5. EXISTENCE OF INFINITE RIGID SETS IN BANACH SPACES

Let E be a real vector space and assume that the distance p in E is given by a norm
|| • ||. Let SE denote the unit sphere of E.

PROPOSITION 5 . . 1 . Let A be an s-rigid set of E, then A is not convex.

P R O O F : According to Lemma 2.4, there exists an isometry T : A ->• A with the
property that inf{||a; —Tx|| : x e A} isa nonzero constant. This implies that A cannot be
convex (see, for example, [16, p. 35]). The same conclusion follows also using Schauder's
Theorem (see [16, p. 15]). D

We start now our investigation on the existence of infinite (s-) rigid sets in a Banach
space E.

EXAMPLE 5.2. The unit sphere 5 of the Euclidean plane E2 is rigid. Given a and b,
a rotation of 5 sending a into b is an isometry and so it is rigid. Moreover, if the angle
between a and b is not a rational multiple of 2TT, then the orbit of any point is dense in
S. Thus 5 is also s-rigid.

REMARK 5.3. Referring to Remark 3.6, the rigid set S has subsets that are not rigid.
For example, any connected proper subset A of S is not rigid (see Proposition 2.6). If A
is "less than half of 5", this can also be viewed as a consequence of the following result
(see [9]):

"Let A be a rigid set in a Hilbert space. Given io € A and an isometry T : A —» A
such that Ai — {Tnx0} is dense in A, then there exists y € CO(J4I) such that for y the best
approximation from A is not unique (in practice, if A C S, then co(Ai) should contain
the origin)".

The unit sphere in the Euclidean plane is probably the simplest example of an infinite
s-rigid set.

The next result tell us that infinite (s-) rigid sets in finite dimensional normed spaces
are rare.

THEOREM 5 . 4 . ([1]) If a two dimensional normed space E contains an infinite

rigid set A, then A is a circle and the norm is Euclidean.

Also the following fact is known.
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[9] Rigid sets 201

THEOREM 5 . 5 . If dim E < oo and t ie norm is polyhedral, then any rigid set in
E is finite.

The result of Theorem 5.5, contained in an unpublished paper [20] (see, for example,
[11]), was reproved in a different way for s-rigid sets (see [6]).

Many papers in the area deal with the following problems.

PROBLEM 1. Let dimi? < oo and assume (s-) rigid sets in E to be finite. Find the
optimal upper bounds for the largest cardinality for (s-) rigid sets in E (see, for example,
[15])-

PROBLEM 2. Find conditions on E implying (s-) rigid sets in E to be finite. In particular,
are there infinite-dimensional spaces where no infinite rigid set exists?

A space E contains only finite s-rigid sets if every bounded set satisfying (7) is finite.

Recall that there exist infinite dimensional Banach spaces containing only finite
equilateral sets (see [17]).

PROBLEM 3. Are there spaces E containing infinite rigid sets A, but no infinite s-rigid
set?

PROPOSITION 5.6.

(i) Let X be a space with a rigid (or s-rigid) set A. If X embeds isometrically
into a space Y, then A is also rigid (or s-rigid) in Y.

(ii) Let A C X be a rigid (or o-rigid) set and let T : A —t Y be an isometry.
Then T(A) is a rigid (or cr-rigid) set of Y. In particular, translations
preserve such properties.

This result together with Example 5.2 imply that any space E containing an iso-
metric copy of the Euclidean plane has an infinite rigid set.

EXAMPLE 5.7. E = Li[0,1] (see [22]); E = LP, with p a positive even integer and
dimE sufficiently large (see [5]), contain an isometric copy of the Euclidean plane.

The example of the circle 5 in R2, embedded in larger spaces, is an example of an
infinite (s-) rigid set A such that dim(span[A|) = 2. It would be interesting to produce
"better" examples.

EXAMPLE 5.8. (Private communication by V. Milman) Take E = R2 © R2, with the
norm in E determined by the convex hull of the two unit circles in each R2. A rigid set
is given by the two chosen unit circles. We may rotate one of the two circles (leaving
the other fixed), or "reflect" one circle on another. All these are transformations that
preserve the norm and send any point on these circles to another point.

REMARK 5.9. More generally, consider the space X@Y. Let A be a rigid set in X and
B a rigid set in Y. If | |a| |x = c, for all a e A and ||6||K = c2 for all be B, then A U B is
rigid in the space X © Y endowed with a "monotone" norm (for example, in (X © Y)i).
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In fact, if {Tna} is dense in A and {Tnb} is dense in B (for a pair a € A and b € B),
then a, b, Ta, Tb, T2a, T2b,..., gives the correct isometry.

EXAMPLE 5.10. (See [6].) The space CQ has infinite rigid sets that lie on its unit sphere.

The previous example implies that all Banach spaces in which Co can be embedded
isometrically have infinite s-rigid sets.

PROBLEM 4. Find an example of an infinite s-rigid set in li.

Let assume now that the space where we work is "centreable", in the sense that for
any set A, there exists a point c e X such that

sup p(c, a) =
aeA *

Among Banach spaces, these can be characterised as 'Pi-spaces (see [4]; see [8] for another
characterisation). These are the spaces which are isometric to the space of all continuous
functions on an extremally disconnected compact Hausdorff space X (that is, the closure
of each open set in X is again open in X), with the sup norm.

Recall that every Banach space can be embedded isometrically in a 'Pi-space.

PROPOSITI ON 5 . 1 1 . Let A be a rigid set in a Pi-space X. Then A is contained
in a circle of X.

P R O O F : Since X is centreable, there exists c S X such that

If we had ||x — c\\ < (6(A)/2) for some x € A, then we would have

sup \\x - y\\ ^ \\x - c\\ + sup ||c - y|| < M +

and this violates Proposition 2.6. Thus A C S(c, (<5(,4)/2))). D

COROLLARY 5 . 1 2 . Let A be a rigid set of X. Then there exists some y in a
Vx-embedding Y of X such that A C S(Y, (5(A)/2))nX.

REMARK 5.13. Since l°° is a 7Vspace, the fact that the rigid set of CQ mentioned in
Example 5.10 contains only points of the unit sphere is not surprising. Indeed, in that
example, the centre given by the corollary (in /°°) also belongs to CQ.

6. RIGIDITY OF THE UNIT SPHERE

We recalled in Example 5.2 that the unit sphere in the Euclidean plane is rigid. In

fact, we have the following theorem.
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THEOREM 6 . 1 . ([1, Theorem 6.1]) Let E be a smooth, strictly convex normed
space, dimi? < oo and odd. Then, if the unit sphere is rigid, E is Euclidean.

The following result is classical.

THEOREM 6 . 2 . If dim E < oo and for every u,v £ SE there exists a linear
isometry T from E onto E such that Tu = v, then the norm of E is Euclidean.

In general, a norm satisfying the hypothesis of the above theorem is called transitive.
In infinite-dimensional Banach spaces, it is known that the property stated in Theorem
6.2 does not characterise Hilbert spaces in the nonseparable case, while it is still open
whether the implication is true in the separable case.

Concerning the relations among the assumptions of Theorems 6.1 and 6.2, the fol-
lowing question was raised in [18] (also for dimX and d imy finite).

Let X, Y be two Banach spaces and assume that there exists an isometry T from
Sx onto Sy- Can we extend T to a linear, or affine, map from X to Y1 Partial results
are known in some special spaces (see [19]). It is also known that for several spaces X,
an isometry of Sx onto Sx maps antipodal points to antipodal points (see [12]). This
question is of interest for finite dimensional spaces, for otherwise S is not a compact set.

7. EQUILATERAL SETS AND ORTHOGONALITY

Suppose that p > 0 and let (xn) be a sequence satisfying

(n lc\ I I T - — T - I I P — I I T I I P - I - l l x l l P f o r 17 — i l — Ic
\P,K) \\Xt — X}\\ — ||Z,|| -I- \\Xj\\ , IOr |l — J\ — K.

This condition can be considered as a kind of orthogonality, and, of course, it does
not imply anything about property (7).

EXAMPLE 7.1. In the space I2, an orthogonal sequence satisfying (2, k) for all k 6 N is
not s-rigid.

Let (xn) be a sequence satisfying the condition that

(kk) Ĥ n+fc - xn|| is constant, for all n € N.

This condition still does not imply property (7).

EXAMPLE 7.2. Let (xr) be the sequence in CQ defined by xn = (0,0,...) if n is even,
and a;4n_3 = e2n-i - z-in and z4n_i = e2n-i + e2n if n is odd, where en denotes the
sequence (0 ,0 , . . . , 0,1,0, . . .) , with 1 in the nth place. This sequence is not a-rigid. In
fact, it satisfies (1,1) and (11) (for any n € N, \\xn+i - xn\\ — \\xn+x\\ + ||:rn|| = 1), but,
depending on n, | |xn+2 - zn | | is 0, 1 or 2.

LEMMA 7 . 3 . Let (xn) be a sequence that satisfies condition (p, k) for some p > 0
and condition (kk) for k — 1,2. Tien, for all n 6 N, ||xn|| is constant.
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P R O O F : Let start considering the elements x\, x2, x3, z4 of our sequence. Conditions
(p, 1) and (11) imply that | | i i | | = ||rrr31| and ||x2|| = ||x4||. Since (p, 1) and (22) give
\\xi\\ — \\X2\\, we have \\xi\\ = H^H = ||x3|| = ||z4||. By starting now with xi,x5,x<i,x1

and repeating the same argument, we get ||z4|| = ||x5|| = ||x6|| = ||x7||. Proceeding in
this way, we therefore obtain ||XJ|| = ||XJ|| for all pairs i, j . D

COROLLARY 7 . 4 . Let (xn) be a sequence satisfying the hypothesis of the pre-
vious Lemma. Then (xn) is equilateral.

PROOF: The condition (p, k) and ||xi|| = c (a constant), imply

which is a constant, for all i, j € N. The result follows. D

PROPOSITION 7 . 5 . Let E be an Hilbert space. Any a-rigid subset A of E
consisting of pairwise orthogonal elements is equilateral.

P R O O F : This follows using property (7) and condition (2, k), for all k. D
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