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FINITE SETS OF INTEGERS WITH EQUAL POWER SUMS 
BY 

D. 1. DJOKOVICC) 

This note originated in an attempt to generalize the assertion of Problem 164 
which was proposed by Moser [2]. 

Let us first state our generalization. We fix positive integers m > 2 and n. If i is 
an integer and 

0 < f < m n - l 

then i can be written, in a unique way, as 

n - l 

1 = 2 armT 

r=0 

where ar are suitable integers which satisfy 

0 < ar < m-\ (0 < r < n-l). 

We define 

n - l 

a(m, i) = 2 0r-
r=0 

Let E be the set of integers 0, 1, 2 , . . . , ran— 1. If 

Ek = {/ e E | o-(m, /) = k (mod m)} 

then (̂ fc), 0 < & < r a - l i s a partition of E. We shall agree that 0°= 1. 
Then we have the following: 

THEOREM 1. With the above notations we have 
(i) the equality 

(1) m 2 I*' = 2 *'s 

is valid for all 0 < s < n — 1 and all 0<k<m—l; 
(ii) if€mj^\ is an mth root of unity in the complex field then 

(2) 2 4(m'°/' = 
0 f o r 0 < ^ < « - l 
S for s = n 

where 

(3) S = «!mn(%-l)"nm^). 
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In order to obtain the assertion of Problem 164 from this theorem we take 
m = 2. One can easily check that the coefficients ex defined in [2] are given by 

e. = _(_i)*<a.o. 

Then the second assertion of Theorem 1 coincides with that of Problem 164. 
The first assertion of Theorem 1 is in fact a particular case of a theorem of Lehmer 

[1], Two other proofs of Lehmer's theorem were published by Wright [3]. We refer 
to [1] and [3] for the references to earlier results connected with this theorem. I 
am grateful to Professor J. W. S. Cassels for bringing to my attention the work of 
E. M. Wright. 

It turned out that our proof of Theorem 1 applies, without any change, to 
Lehmer's theorem. Moreover we have a result for s=n which does not appear in 
[1] or [3]. 

THEOREM 2. Let m>2 and m>\ be integers and let zr(0<r<n—l) be any com­
plex numbers. Let E(k) (0<k<m — 1) be the set of all sequences 

{ai) = (tfo,fli , . . . ,an-i) 

such that a^s are integers, 0<ai<m—l, and 

a0 + axH htfn-i = fc (mod m). 

Then 
(i) ifO<s<n— 1 is an integer the sum 

(4) 2 (a0z0 + a1z1 + • • • + an _ xzn _ J 5 

(aOeE(k) 

does not depend on k; 
(ii) ifem^l is an mth root of 1 then 

r*\ "v 1 k v t , , , ŝ / ° forO < s < « - - 1 
(5) Z €m Z (a0z0 + a1z1+ • • • +tfn_1zn„1)s = < c ,• 

k = 0 (aOeE(k) K& LOT S — n 

where 

(6) S = n\m\€m-l)-n Çjjzry 

Proof. Let / be the ideal of Z[X] generated by 1 + X + X 2 + • • • +Zm" : L and 
let £ be the image of X under the canonical mapping Z[X] ->Z[X]/L 

Then 

(7) im = 1, 

(8) i + f + £ i + . . . + | m - i : = o , 

(9) it-\)nfa? = m. 
a = 0 
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Let 
m - l 

^ = 2 £* 2 («0^0 + «l^ l+"-+«n-l^n- l ) S -
k = 0 (aOeEVc) 

If£=Uî?-o1£(ik)then 

* = 2 fa° + - + a « - 1 ( ^ 0 + " - + « n - l ^ - l ) S 

where F is the set of all mappings {1, 2 , . . . , s} -> {0, 1, 2 , . . . , n -1}. 
If 0 < ^ < « - l then (8) implies that 

(10) 2 ^ + "'+a^tlcimzm = 0 
(aOeE r-1 

for e a c h / e F . Hence, in that case R=0 which proves the first assertion of the 
theorem. 

If s—n then (10) is valid for those fe F which are not bijective. Hence, in that 
case we have 

(n - l \ /m-l \n 

J3*) (£«•)• 
Using (9) we get 

(11) ({-l)*R = n\m*Çnzr)-

We have a homomorphism Z[£] -> Z[cm] which sends £ to em. This homomorphism 
transforms (11) into (5) for s=n with S given by (6). Of course, formula (5) for 
0<s<n— 1 follows from the first assertion of the theorem. 

This completes the proof of Theorem 2. 
If we choose 

zr = mr, 0 < r < n — 1 

then we obtain Theorem 1 from Theorem 2. 
Note that formula (5) for s=n implies that the sums (4) for s = n and fc = 0, 1, 2, 

. . . , ra — 1 cannot be all equal. 
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