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ABSTRACT. Simulations of grounding-line migration in ice-sheet models using a fixed grid have been
shown to exhibit poor convergence at achievable resolutions. We present a series of ‘shelfy-stream’
flowline model experiments using an idealized set-up. We assess the performance of a range of
grounding-line parameterizations (GLPs) over a large input space by varying bedrock gradient, rate
factor, basal drag coefficient and net accumulation. The relative performance of GLPs is similar to
Gladstone and others (2010a) except at low basal drag, in which case the grounding-line errors are very
small for all GLPs. We find that grounding-line errors are far more sensitive to basal drag than to the
other inputs or to choice of GLP. We then quantify grounding-line errors as a function of resolution
while varying basal drag and channel width (using a parameterization to represent buttressing).
Reducing either basal drag or channel width reduces the errors associated with the grounding line. Our
results suggest that a structured fixed-grid shelfy-stream ice-sheet model would need to run at a
horizontal resolution of �1–2 km to accurately simulate grounding-line positions of marine ice-sheet
outlet glaciers such as Pine Island Glacier, Antarctica.

INTRODUCTION
In order to make predictions about the future behaviour of
marine ice sheets, ice-sheet models need to adequately
represent grounding-line motion. Fixed-grid models have
been demonstrated to give inconsistent results when spatial
resolution is varied (Vieli and Payne, 2005). Recent studies
have shown that modelled grounding-line behaviour is
convergent, but very high resolution is needed to achieve
convergence (Durand and others, 2009; Gladstone and
others, 2010b). Attempts to parameterize the grounding line
have met with varying degrees of success (Pattyn and others,
2006; Pollard and DeConto, 2009; Gladstone and others,
2010b). However, grounding-line modelling typically has
been tested with idealized simulations from, or similar to,
the Marine Ice-Sheet Model Intercomparison Project (MIS-
MIP; full project information can be found at http://home-
pages.ulb.ac.be/fpattyn/mismip/), which impose high basal
drag and no ice-shelf buttressing and may represent
scenarios that are more demanding than many real marine
ice-sheet outlet glaciers of interest.

In the current study the self-consistency of modelled
steady-state grounding-line positions is investigated over a
range of idealized scenarios with parameter values relevant
to a variety of real-world settings. A flowline ice-sheet
model, described below, is used.

In the first set of experiments we carry out perturbed
parameter ensembles of model simulations for each of the
24 different grounding-line parameterizations (GLPs) of
Gladstone and others (2010b) at a fixed resolution (by GLP
we refer to a special treatment of the gridcell containing the
grounding line, such as modification of the basal drag
coefficient in that gridcell). The rate factor, net accumu-
lation, basal drag coefficient and bedrock slope are all
varied. The aims of the ensembles are to investigate how
grounding-line errors vary in response to varying parameters
in response to choice of GLP.

Motivated by the results of the perturbed parameter
ensembles, a second set of experiments is carried out in

which the size of grounding-line errors is quantified as a
function of resolution for varying basal drag coefficient and
channel width (here a lateral drag parameterization for
flowline models is used to represent buttressing). The aim of
these experiments is to quantify the resolution required to
simulate grounding-line positions to a specified accuracy (in
this case 1 km) over a range of scenarios that includes
parameter values appropriate to marine ice-sheet outlet
glaciers featuring ice-shelf buttressing.

Finally, we discuss the relevance of these simulations to
application of ice-sheet models to marine ice sheets such as
Pine Island Glacier (PIG), West Antarctica.

METHOD: MODEL AND EXPERIMENTS
All the simulations presented here are carried out using the
fixed-grid ice-stream ice-shelf (FGSTSF) model of Gladstone
and others (2010a). This is identical to the FGSTSF model of
Vieli and Payne (2005) except that the higher-order
piecewise parabolic method (PPM) is used for thickness
evolution (for a description of the PPM method, see
Gladstone and others, 2010a). It is a vertically integrated
(vertical shear is not represented) flowline model using the
‘shelfy-stream’ equation.

In addition, the second set of experiments (in which
resolution is varied) is carried out using a parameterization
for buttressing in which the ice sheet is assumed to flow
within a channel of constant width W with a ‘no slip’
condition at the side walls along the length of the model
(Van der Veen and Whillans, 1996; Vieli and Payne, 2003).

The force balance is given by
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where H is the ice thickness, x is distance from the ice
divide, � is the effective viscosity, u is the depth- and width-
averaged velocity, A is the temperature-dependent rate
factor, �2 is a basal drag coefficient, g is the acceleration
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due to gravity, � is the ice density and s is the surface height.
The second term on the left-hand side is removed for the first
set of experiments. � is given by

� ¼ A�1=n @u
@x

����
����
1�nð Þ=n

: ð2Þ

The flow-law parameter, n, is set to 3 for all simulations in
the current study.

The left-hand boundary of the domain represents the ice
divide and has a zero-velocity boundary condition. The
right-hand boundary represents the calving front of the
floating ice shelf, and a force-balance boundary condition is
used. See Gladstone and others (2010a) for a full model
description.

Grounding-line parameterizations
24 GLPs are used, as presented by Gladstone and others
(2010b). They are based on choice of an interpolation
function for thickness across the gridcell containing the
grounding line, which is used along with the flotation
condition to determine grounding-line position at sub-
gridscale precision. The six thickness interpolation schemes
are summarized in Table 1.

A choice is then made as to how the thickness function is
used to apply a correction to the forcing terms: basal drag
and gravitational driving stress. These forcing correction
schemes are summarized in Table 2.

Linear basal drag scaling refers to use of the interpolated
grounding-line position to scale the basal drag coefficient
according to the proportion of the cell that is grounded.

‘Profile scaling’ refers to use of the full thickness function
rather than simply grounding-line position in calculating a
correction to the forcing terms. See Gladstone and others
(2010b) for a full description of the GLPs.

GLPs are referred to by combining the abbreviations in
Tables 1 and 2 (e.g. LI_B1 uses linear interpolation for
thickness across the grounding line and linear scaling of the
basal drag term in the gridcell containing the grounding line).

Experimental set-up
The experimental set-up is similar to MISMIP experiments 1
and 2, but with greater variation of parameters. In all
experiments the bedrock is downsloping towards the ocean
and linear. The net accumulation rate is uniform at 0.3ma–1

except where stated otherwise. All simulations were spun up
from a uniform ice sheet of 100m thickness.

Given that fixed-grid models erroneously exhibit a range
of steady-state grounding-line positions (Gladstone and
others, 2010a), we have carried out pairs of advance and
retreat simulations. Advance simulations comprise spin-up

to steady state with constant forcing. Given the uniform
100m initial thickness condition, this results in advance of
the grounding line towards steady state in all simulations
presented in the current study. The retreat simulation
corresponding to any given advance simulation comprises
spin-up close to steady state under enhanced forcing
followed by a forcing reset and adjustment to a new steady
state. This is intended to cause the grounding line to retreat
towards its final steady state, which occurs in all simulations
in the current study except where stated otherwise. The
enhanced forcing differs for the two sets of experiments and
is described at the start of each section. For each set of
experiments, different methods for applying enhanced
forcing were tested (modifying rate factor, accumulation
and combinations of both), with the outcome that the
method of forcing modification has no impact on the final
grounding-line position so long as the forcing enhancement
is sufficient that significant retreat occurs after the forcing
reset. There are strong theoretical grounds (Schoof, 2007) to
believe that the advance and retreat simulations should
reach the same steady-state grounding-line positions.

The above describes the set-up common to both sets of
experiments in the present study. Details specific to each set
of experiments are described at the start of the relevant
section.

PERTURBED PARAMETER ENSEMBLES
Gladstone and others (2010b) demonstrated modest sensi-
tivity of grounding-line errors to choice of GLP within a
MISMIP-like set-up. Here we explore sensitivity of ground-
ing-line errors to different parameter values and different
GLP choices, including combined parameter and GLP
choices. This allows a more general reassessment of the
relative performance of GLPs and a first assessment of the
implications of a non-MISMIP-like set-up for grounding-line
errors.

Errors in steady-state grounding-line position, and the
relative performance of the different grounding-line par-
ameterizations (GLPs) presented by Gladstone and others
(2010b), are now investigated over a range of values for four
different inputs. The inputs comprise two internal model
parameters (rate factor A and drag coefficient �2), a forcing
term (net accumulation a) and a domain set-up parameter
(bedrock gradient b’). A and �2 are varied widely between
barely plausible upper and lower limits (Table 3). The
bedrock gradient and net surface accumulation are varied
not to extremes but rather to ensure a spread of steady-state
grounding-line positions that lie comfortably within the
model domain (i.e. within limits that allow simulations to
run successfully to completion). These four inputs and their
upper and lower limits (Table 3) define the input space for

Table 1. Summary of interpolation schemes in the GLPs used in this
study

GLP name Thickness profile

LI Linear interpolation
PA Pattyn and others (2006)
LE Linear extrapolation
HM Harmonic-mean-based interpolation
H2 Second-order harmonic-mean-based interpolation
CI Cubic interpolation

Table 2. Summary of forcing modifications in the GLPs used in this
study

GLP name Gravitational driving stress Basal drag scaling

B1 No modification Linear scaling
GB1 Profile scaling Linear scaling
B2 No modification Profile scaling
GB2 Profile scaling Profile scaling
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the ensemble experiments. Note that the range of values for
A corresponds approximately to a temperature range of zero
down to –258C.

The domain size is 2112 km from ice divide (left
boundary of domain) to ice front (right boundary of domain).
The gridpoint spacing �x is 2.4 km and the time-step �t is
0.2 years. The implementation of advance and retreat
simulations is identical to that described in Gladstone and
others (2010b, appendix A), with the forcing enhancement
for the retreat experiments based on accumulation and rate
factor, the only difference being that the total run length is
greater in the current study. The analyses are based on
steady-state grounding-line positions achieved through very
long simulations. All advance experiments were run for
100 ka, and all retreat experiments were run for 200 ka
(100 ka initial phase, 10 ka of gradual forcing reset and 90 ka
to final steady state). Long run times were needed to ensure
steady state for the whole range of inputs. In particular it
takes longer to reach steady state when the basal drag is high
and when bedrock slope is shallow.

The bedrock profile, linearly downsloping in all experi-
ments, is given by

bðxÞ ¼ 511� 32449972b02 � b0ðx � 1018139Þ, ð3Þ
where b is the bedrock height relative to sea level, b’ is the
magnitude of the prescribed bedrock gradient and all
distances are in m. The form of Eqn (3) is chosen so as to
prevent the steady-state grounding-line position leaving the
domain in the case of the shallower bedrock profiles.

Ensembles of simulations are carried out to investigate
sensitivity to the inputs and to compare the GLPs. Two
different sampling techniques are used: One at a Time (OAT)
and Latin Hypercube Sampling (LHS). These sampling
techniques, described in the Appendix, are used to generate
an OAT ensemble and an LHS ensemble, both of which are
run for all 24 GLPs.

Errors are assessed here by the metric ‘retreat minus
advance’ (RMA; Gladstone and others, 2010b). RMA is a
quantification of the size of the region of locally stable
grounding-line positions (Gladstone and others, 2010a) and
is defined as

RMA ¼ xgr � xga, ð4Þ
where xgr is the final grounding-line position from a retreat
experiment and xga is the final grounding-line position from
the corresponding advance experiment. It follows from the
theoretical work of Schoof (2007) that RMA should be zero
in these experiments, and it has been shown (Gladstone and
others, 2010b) that RMA approaches zero as resolution
increases for the ice-sheet model presented here. It is worth
noting that xgr� xga for all simulations in the current study.

RMA for all 24 GLPs from the OAT experiments is shown
in Figure 1. RMA shows some dependence on rate factor and
bedrock slope, but a much greater dependence on basal
drag coefficient. Higher basal drag, shallower bedrock and
higher rate factors (i.e. warmer ice) all increase grounding-
line errors. The GLPs that incorporate profile scaling in the
correction to the basal drag term in the gridcell containing
the grounding line give generally smaller errors, but the
spread of errors due to choice of GLP is small compared
with the spread of errors due to varying the basal drag
coefficient. Accumulation has little discernible impact on
grounding-line errors. There is a 10–20 km variation in
grounding-line errors associated with varying rate factor,

comparable to the spread associated with choosing different
GLPs. The variations in bedrock slope cause a larger
variation in grounding-line errors, ranging from a few km
for steeper slopes up to 20–30 km for shallow slopes. But
increasing basal drag coefficient causes errors from much
less than 1 km for low basal drag (�2�3.2� 109 Pa sm–1) up
to 100 km for high basal drag.

The OAT ensembles show how grounding-line errors and
GLP performance respond to varying one input at a time, but
they cannot capture potentially nonlinear responses to
varying more than one input. The LHS ensembles allow
investigation of grounding-line errors and relative GLP
performance over the full input space, varying all inputs
together.

The RMA metric for the simplest GLP, LI_B1 (see Tables 1
and 2), is shown in Figure 2 for the full LHS ensemble. This
shows similar patterns to the OAT simulations when plotted
against each input separately, but with some scatter as the
combined impacts of all inputs are now shown.

Basal drag is the only input for which the RMA values
from the OAT simulations follow the same trend and are
consistently of the same order of magnitude as those for the
LHS simulations. This indicates that basal drag dominates
not only the other inputs individually but also combinations
of inputs (i.e. there is no strong nonlinear response in terms
of grounding-line errors to varying multiple parameters).

Although it can be seen that errors increase with
shallowing bedrock slope, the trend for increasing errors
with increasing rate factor, seen in the OAT results (Fig. 1),
cannot be seen in Figure 2. This does not mean that such a
trend is not present, but if present it is hidden at least to
visual inspection by the scatter induced by varying �2.

The LHS ensembles for the other GLPs (not shown) all
show similar behaviour to LI, though the size of the errors
varies a small amount. The GLP H2_GB2 shows slightly less
spread in steady-state grounding-line positions and also
generally smaller values for the RMA metrics, consistent
with the single input comparison shown by Gladstone and
others (2010b).

The relative performance of the different GLPs measured
by the RMA metric over the LHS ensemble is summarized in
Figure 3 in which the GLPs are ranked according to RMA for
each member of the ensemble. There is a clear difference
between the orderings for low basal drag (in which the GLPs
with profile-based forcing corrections perform relatively
poorly) and the orderings for medium to high basal drag (in
which the GLPs with profile-based forcing corrections do
well). From a practical viewpoint, given that errors are much
less than a gridcell at low basal drag values for all GLPs, the
ordering of GLPs is not important for low basal drag values.
Hence the GLPs involving profile-based forcing term
adjustments can be said to offer better overall performance.

Table 3. Parameter value ranges used in the ensemble experiments

Parameter Unit Min. value Max. value

Rate factor, A Pa–3 s–1 9.8� 10–26 5.4�10–24

Drag coefficient, �2 Pa sm–1 3.156�108 3.156� 1011

Bedrock gradient, b’ – 10–3 5� 10–3

Accumulation, a ma–1 0.2 0.3
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In terms of the different thickness profiles, it is noteworthy
that linear interpolation (LI) performs relatively poorly, along
with the higher-order thickness profiles, linear extrapolation
(LE) and cubic interpolation (CI), which use upstream and
downstream gradients as well as thickness values. The
second-order harmonic-mean-based interpolation (H2) and
the interpolation of Pattyn and others (2006) offer the best
performance.

Inputs other than �2 were not found to be important in
ranking the GLPs. The relationship between ranking and rate
factor is far weaker than that between ranking and basal drag
(Fig. 3). Similarly to rate factor, bed gradient and accumu-
lation do not have a strong impact on the ranking of GLPs
(not shown). However, the input space used here is not a
superset of all real-world inputs. Rate factor and drag
coefficient are not expected to vary beyond the range of
inputs in the current study, but bedrock gradient and
accumulation might. The sensitivity of errors to accumu-
lation appears negligible, but this is not the case with
bedrock gradient. Errors increase as bed gradient shallows
for all GLPs in the current study. Also, the impact of bedrock
features of shorter wavelength than the domain has not been
investigated in this study.

In summary, the recommendations of Gladstone and
others (2010b) are confirmed in this exploration of ground-
ing-line errors over input space for multiple GLPs: while use
of a GLP is important (Gladstone and others 2010a), choice
of which GLP is of secondary importance (at least out of the
GLPs presented here). In particular, the impact of basal drag

coefficient on grounding-line errors dominates choice of
GLP and also dominates other inputs and combinations of
inputs.

GROUNDING-LINE ERRORS AND RESOLUTION
Gladstone and others (2010b) demonstrated convergence of
steady-state grounding-line position for the different GLPs
given fixed inputs. In the previous section, grounding-line
errors at 2.4 km resolution were shown to be highly sensitive
to basal drag. We postulate that the high grounding-line
errors for high basal drag are due to the step change in basal
drag across the grounding line from nonzero to zero. In
addition to this step change being problematic to represent
in a conventional finite-difference-based fixed-grid model,
there is also, at least in simulations without a GLP, a step
change in the forcing regime when the grounding line
advances or retreats by �x due to the step change in area
over which the basal drag force is applied. This forcing step
change is mitigated by use of a moving grid model that
tracks the grounding line (Vieli and Payne, 2005). Ideally a
GLP would resolve this problem by allowing the grounding-
line position to move smoothly through the gridcell, but in
practice the GLPs used here show step-like behaviour
(Gladstone and others, 2010b), hence grounding-line error
is sensitive to basal drag.

Having established that grounding-line errors increase as
basal drag increases, we now speculate that grounding
errors decrease as ice-shelf buttressing or ice-stream lateral

Fig. 1. The RMA metric from the OAT simulations shown against (a) rate factor, (b) basal drag coefficient (�2), (c) bedrock gradient and
(d) accumulation. Line types separate the different forcing corrections that constitute the GLPs (see Table 2; Gladstone and others, 2010b):
black lines indicate the default parameterization (linear in basal drag) whereas grey lines indicate profile scaling of basal drag; solid lines
indicate no correction to the gravitational driving stress term whereas dashed lines indicate profile scaling. Note that the tendency of the
steady-state grounding line to lie at or near a gridpoint (Gladstone and others, 2010b) means that several of the 24 GLPs approximately
overlie each other in this figure.
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drag increases. The reason for this is that back-stress from
ice-shelf buttressing, due to the lateral drag from non-slip
side walls along the length of the floating ice shelf, imposes
a force in the upstream direction that diminishes as basal
drag increases across the grounding line, effectively redu-
cing the step change in forcing across the grounding line.

In this section, grounding-line errors are quantified as a
function of resolution for two sets of simulations. In the first
set of simulations, 11 different values of �2 are used, chosen
on a log scale from 7.2�108 Pa sm–1 (i.e. the MISMIP value
�10–2) to 7.2� 1011 Pa sm–1 (i.e. the MISMIP value � 10).
Buttressing is not included in these simulations. In the second
set of simulations a lateral drag parameterization is used (Van
der Veen and Whillans, 1996; Vieli and Payne, 2003). Seven
experiments are carried out in which the basal drag
coefficient �2 is fixed at 1010 Pa sm–1 and the parameterized
channel width W takes the values 100, 200, 400, 800, 1600
and 3200 km and infinity (no lateral drag). The simulations
are run at six different resolutions from 0.3 to 9.6 km, with a
factor two change between each resolution. Note that
100 km is already wide for an ice stream. The current study
aims to investigate the range of behaviours from no
buttressing to significant buttressing. 100 km was chosen as
the narrow end of the range of values for W because a much
narrower channel width leads to grounding-line migration
beyond the model domain for the current idealized set-up.

The domain is as in MISMIP experiments 1 and 2, but
extended in the seawards direction to be 2400 km long. The
bedrock height relative to sea level b(x) is given (in m) by

b xð Þ ¼ 720� 778:5� x
750 000

: ð5Þ

Rate factor is 2.15� 10–25 Pa–3 s–1 (as in step 5 of MISMIP

experiment 1). The net accumulation is 0.3ma–1, enhanced
to 0.5ma–1 for the initial phase of the retreat simulations.
The retreat simulations have an initial phase of 50 ka and a
total run length of 100 ka. The advance simulations have a
run length of 70 ka.

The linear interpolation GLP LI_B1 is used. This GLP is
chosen because it is the simplest to implement, even in a
two-dimensional ice-sheet model, and in terms of perform-
ance there is not a large difference between GLPs.

Steady state was established through visual inspection
of grounding-line evolution plots (not shown), and
all simulations reached steady state except for the
four highest basal drag coefficient values (i.e. values
>4.5�1010 Pa sm–1). Simulations using these four values
are omitted from the rest of this section. This does not affect
our analysis or conclusions since the high basal drag values
are less relevant to our scenarios of interest, marine ice-sheet
outlet glaciers, and because the ‘shelfy-stream’ model used
here becomes less justifiable for high basal drag values when
the neglected vertical shear becomes significant.

The steady-state grounding-line positions are shown
against resolution in Figure 4 both for experiments with
varying basal drag (Fig. 4a) and varying parameterized
channel width (Fig. 4b). As expected, the advance and
retreat simulations appear to converge towards the same
steady-state grounding-line position for all variations of
basal drag and parameterized channel width presented here.
Both advance and retreat simulations appear to overestimate
the grounding-line position. The cause of this is not fully
understood, though it is hypothesized to result from the
GLP. Gladstone and others (2010a) found that, without a
GLP, advance simulations tended to massively underesti-
mate the steady-state grounding-line position, whereas using

Fig. 2. The RMAmetric for the linear interpolation GLP (LI_B1; Gladstone and others, 2010b) from the LHS simulations shown against (a) rate
factor, (b) basal drag coefficient (�2), (c) bedrock gradient and (d) accumulation. Crosses mark individual simulations from the LHS sample.
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the same GLP as the current study gave advance simulations
that overestimate the grounding-line position.

The previous section showed that grounding-line errors
are higher for higher basal drag values. Figure 4a confirms
that this finding is consistent over a range of resolutions and
also demonstrates that convergence is poorer at higher basal
drag values.

As buttressing is increased by reducing the parameterized
channel width (Fig. 4b), the steady-state grounding-line
position moves seawards, errors decrease and convergence
with resolution improves.

In order to quantify the relationship between grounding-
line errors and resolution at a finer scale than can be
ascertained from Figure 4, we define and plot an error

estimate ". It is assumed (Gladstone and others, 2010a) that
the most accurate solution for a given set of inputs is given
by the highest resolution the model has been run at. The
steady-state grounding-line error estimate "gs is therefore
defined as

"gs ¼ jx�x
gs � xmax

gs j, ð6Þ

where x�x
gs is the steady-state grounding-line position from a

simulation at resolution �x, and xmax
gs is the steady-state

grounding-line position from a simulation run at maximum
resolution (i.e. �x=300m in the current study). We set a
target error of "=1 km as being an acceptable error for
grounding-line position in real-world applications to marine

Fig. 3. Relative GLP performance over input space. The unlabelled x- and y-axes are basal drag coefficient and rate factor, respectively, both
on log scales identical to those of the x-axes of Figure 2b and a, respectively (i.e. rate factor increases logarithmically from
9.8� 10–26 Pa–3 s–1 to 5.4� 10–24 Pa–3 s–1, and basal drag coefficient increases logarithmically from 3.156� 108 Pa sm–1 to 3.156�
1011 Pa sm–1). The RMA metric is used to rank the simulations over GLPs for each member of the LHS ensemble. The rank is shown linearly
in greyscale from black (best-performing GLP for the given input) to white (worst-performing GLP). The GLP labels are those of Gladstone
and others (2010b) (see also Tables 1 and 2). The GLPs are arranged in approximate order of increasing complexity of thickness interpolation
function from top to bottom, and in order of increasing complexity of forcing parameterization (where profile-based correction of forcing
terms is considered more complex than linear or no correction) from left to right.
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ice-sheet outlet glaciers, where grounding-line movement of
tens of km can occur on a timescale of decades (Joughin and
others, 2010).

The error estimate " is shown against resolution in Figure 5.
Plotting " instead of actual grounding-line position allows a
log scale to be used. Convergence is apparent for all basal
drag values (Fig. 5a) and for all parameterized channel widths
(Fig. 5b) down to the target error of 1 km.With no buttressing,
the target error is only achievable with basal drag coefficient
<2.8�109 Pa sm–1 and at resolution finer than �x=1.2 km
(Fig. 5a). With 100 km parameterized channel width and
basal drag coefficient 1010 Pa sm–1, the target error is
achievable at resolution �x=2.4 km (Fig. 5b).

These experiments support the hypothesis that both
increasing buttressing and decreasing basal drag reduce
grounding-line errors.

CONCLUSIONS
We have assessed model performance for a variety of GLPs
over a region of input space and specifically for varying basal
drag and parameterized channel width over a range of
resolutions, focusing on the known problem of poor con-
vergence of grounding-line behaviour. The metrics used,
RMA and ", are measures of self-consistency of steady-state
grounding-line behaviour and should be viewed as a model
verification step rather than validation, which can be done
only through comparison against observational data. The
model and GLPs presented here have already been verified
against a semi-analytic benchmark (Schoof, 2007; Gladstone
and others, 2010b) for a fixed set of inputs.

Gladstone and others (2010b) showed that the GLPs with
profile-based forcing corrections performed well for a fixed
set of inputs. Our findings support the ranking of GLPs found
by Gladstone and others (2010b) over a wider input space,
except for very low values of basal drag, in which case the
errors for all GLPs are sufficiently small not to be of concern.
We find that the spread in grounding-line errors due to

choice of GLP is small compared with the spread induced by
varying inputs, especially basal drag coefficient. The
implementation of a GLP is essential for the model presented
here, but the choice of GLP is secondary to the model set-
up. In other words, the scenario the model is to be used for
has a much larger impact on resolution requirements than
does GLP choice.

Our results show that numerical errors related to
grounding-line behaviour are smaller in certain situations
relevant to real-world outlet glaciers than in MISMIP
experiments. In other words, MISMIP is too harsh a test
for some real-world applications. More specifically, PIG in
West Antarctica, predicted to cause several cm of sea-level
rise over the next century (Joughin and others, 2010), is
relevant to the current study. PIG flows into an embayment
in which buttressing occurs, and the basal drag coefficient
under the ice stream and near the grounding line is less
than the value of 1010 Pa sm–1 used in the buttressing
experiments in the current study (Vieli and Payne, 2003).
Our results suggest that PIG could be modelled adequately
(from the perspective of self-consistent grounding-line
behaviour) with a resolution of 1 km or coarser, a resolution
that current ice-sheet models are already capable of
achieving, at least for individual outlet glaciers (e.g. Joughin
and others, 2010).

However, the current study omits investigation of the
impact of bedrock undulations of wavelength less than the
model domain, which are thought to cause ice plains and
temporary stability (Joughin and others, 2010), and it omits
ice-shelf melting, which is high especially for PIG (Jenkins
and others, 1997). A recent modelling study of PIG achieved
a resolution of �x=160m in the vicinity of the grounding
line, yet the solution still exhibited strong resolution
dependence (Joughin and others, 2010). We speculate that
the ice-shelf basal melt parameterization of Joughin and
others (2010), which imposes shelf melt rates of over
100ma–1 next to the grounding line, adds to the conver-
gence problems for grounding-line modelling.

Fig. 4. Steady-state grounding-line positions against resolution are shown in greyscale for (a)W=1 (no lateral drag) and basal drag coefficient
values from �2 = 7.2� 108 Pa sm–1 (black lines) through 1.4� 109, 2.8� 109, 5.7� 109, 1.1� 1010, 2.3� 1010 and 4.5� 1010 (light
grey lines); and (b) �2 = 1010 Pa sm–1 and parameterized channel width values from W=100 km (black lines) through 200 km, 400 km,
800 km, 1600 km, 3200 km and infinity (light grey lines). Both advance (solid lines) and retreat (dashed lines) simulations are shown.
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The current study is based on experiments using a one-
dimensional ‘shelfy-stream’ model (Gladstone and others,
2010a) with a linear basal drag law. The dynamical response
of the system might vary for different model formulations,
though qualitatively other fixed-grid (and, to a lesser extent,
adaptive-grid) models are also challenged by convergence of
grounding-line behaviour (Durand and others, 2009). We
recommend that convergence of grounding-line behaviour
needs to be demonstrated by any model being used to make
statements or predictions about marine ice sheets and that
the convergence experiments should be directly relevant in
terms of model inputs/parameters to the physical regime
being studied. In particular, shelf melt and bedrock undula-
tions may affect convergence of modelled grounding-line
behaviour and these effects have not yet been studied.
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APPENDIX: SAMPLING INPUT SPACE
Sampling is the process of selecting a number of points
within input space, i.e. selecting a number of parameter
combinations to use in a simulation. The current study uses
two sampling methods: One At a Time (OAT) sampling and
Latin Hypercube Sampling (LHS).

Fig. 5. The error estimate " against resolution is shown in greyscale for (a) W=1 (no lateral drag) and basal drag coefficient values from
�2 = 7.2� 108 Pa sm–1 (black lines) through 1.4� 109, 2.8� 109, 5.7� 109, 1.1� 1010, 2.3� 1010 and 4.5� 1010 Pa sm–1 (light grey lines);
and (b) �2 = 1010 Pa sm–1 and parameterized channel width values from W=100 km (black lines) through 200 km, 400 km, 800 km,
1600 km, 3200 km and infinity (light grey lines). Both advance (solid lines) and retreat (dashed lines) simulations are shown.
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The OAT ensembles are intended to provide a limited but
easily interpretable exploration of input space. A default
value is chosen for each of the four inputs, and one input is
varied at a time while the other inputs are held at
default value.

Given that some of the inputs vary over several orders of
magnitude and that we are interested in learning about
behaviour at all orders of magnitude, a sampling distribution
that is uniform over the inputs would provide a sample that is
unjustifiably sparse in the lower orders of magnitude. Hence
we define a distribution for sampling that is uniform over the
logs of the inputs. If P is an input then its default value Pd is
given by the log centre of the range of allowed values (see
minimum and maximum values, Table 3), given by

log10ðPdÞ ¼
log10ðPmaxÞ þ log10ðPminÞ

2
, ðA1Þ

where Pmax and Pmin are the upper and lower limits of the
parameter, respectively. Each input is varied between its
minimum and maximum values while the other inputs
remain at their default values. Nine values are chosen for
each input, spanning the range from minimum to maximum

linearly in the log of P. Specifically, if i is an integer from
1 to 9,

log10ðPiÞ ¼
i � 1ð Þ
8

log10ðPmaxÞ þ 9� ið Þ
8

log10ðPminÞ, ðA2Þ
where Pi is the ith value for P. This gives a total of
4 (inputs)� 9 (values) = 36 members of the ensemble (i.e. 36
simulations to be carried out).

While OAT sampling gives easily interpretable outputs, it
does not allow for quantification of possible nonlinear
interactions between inputs. The LHS (e.g. Santner and
others, 2003, p. 127) ensemble is intended to provide a
more thorough exploration of input space. A full de-
scription of LHS is not given in the current study, but
note that LHS provides a more space-filling design than
random sampling while still preserving the underlying
distribution. In practice this means that, for a sufficiently
large sample, LHS allows all combinations of parameter
variations to be studied, including possible nonlinear
response to parameter combinations that would not be
detectable using OAT sampling. A sample size of 100 has
been used for the LHS.
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