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Abstract
This study builds upon the existing literature on the Working curve and backwardation to explore the
impact of storage regimes on the volatility measures of substitute agricultural commodity markets. We
investigate the impact of commodity fundamentals (storage regime and stocks-to-use ratio), commod-
ity-specific financial variables (options hedging pressure-long and -short), world economic activity, mar-
ket-wide volatility index, seasonality, and time-to-maturity on nearby and deferred implied volatility (IV)
series of selected commodity pairs of corn-soybean and winter wheat-spring wheat. Our work confirms
that, in some cases, grain and oilseed IV derived from options premia respond to shocks in commodity
(and substitute commodity) fundamentals which are in line with the behaviour of volatility in futures mar-
kets. Own-storage regime effects on price variability are stronger in the selected markets, while spillover
effects from substitute commodity storage regimes show a modest impact on volatilities. We also find some
evidence for the stocks-to-use ratio of both corn and soybean to impact both their own and each other’s IV,
while options hedging pressure has some impact only on wheat IVs.
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Introduction
Futures contracts on storable commodities reflect price expectations based on information regard-
ing inventories (Working, 1948). However, they cannot reflect the level of uncertainty that the
market associates with these price expectations. Implied volatility (IV), on the other hand, meas-
ures the degree of uncertainty the market puts on the futures price at the expiration of the option
contract and can be regarded as a forward-looking measure of volatility (McNew and Espinosa,
1994). Furthermore, IV is shown to better predict realised volatility, which is backward-looking
(Guo, Han, and Zhao, 2014; Haugom et al., 2014; Mixon, 2002; Szakmary et al., 2003).
Understanding the determinants of IV is important to both agricultural policy makers and market
participants. The Risk Management Agency (RMA) of the United States Department of
Agriculture (USDA) also uses IV as a market-based measure of expected prices’ variability in
determining premium rates in crop revenue insurance for major commodities. A better knowledge
of future uncertainty levels is also important for determining effective hedge ratios and managing
risks with temporal dimensions (Egelkraut, Garcia, and Sherrick, 2007). Consequently, market
uncertainty levels, including IV, serve as important benchmarks or indicators in largely volatile
food commodity markets, where price variability and supply-demand shocks are closely related.
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Our paper aims to shed light on the determinants of volatility measures, especially the forward-
looking IV. To this end, we turn our attention to the impact of fundamentals on volatilities in
futures and options markets for substitutable agricultural commodities, while controlling for other
factors that are shown to affect volatility. Since some agricultural commodities are characterised as
production or economic substitutes for each other, we focus not only on the own market’s fun-
damentals but also on the spillover effects of substitute commodity fundamentals.

During the commodity price boom of 2007–2008, higher volatility of global food prices became
an even greater concern. Some blamed commodity index funds for putting speculative pressure on
food prices, while a more commonly accepted reasoning was the increase in food demand from
developing countries. This increased demand drove inventories to low levels, causing spikes in
storable commodity prices (Beckmann and Czudaj, 2014; Carpentier and Dufays, 2013; Carter,
Rausser, and Smith, 2011; Wright, 2011). The prevalent economic crisis and linkages among com-
modity prices during that period worsened the impact of shocks to fundamentals in storable com-
modity markets.

The extant literature investigates the nexus between price volatility, defined as the day-to-day
percentage change in a commodity price, and storage regimes, while few prior studies explore the
link between IV and storage (Adjemian et al., 2017; Litzenberger and Rabinowitz, 1995; Robe and
Wallen, 2016). Determining similar drivers of a forward-looking volatility measure is important
for assessing the relative costs and risks of hedging for various market participants. As IV antici-
pates realised volatility better than historical information, market participants can use the infor-
mation content of IV in developing better trading strategies.

Storage plays a shock-absorbing role in commodity markets against the predictable compo-
nents of fluctuations in supply and demand. Further, when inventories are low, the size of com-
modity futures price changes, another measure of volatility, in response to demand/supply or
information shocks is large (see Thurman 1988; Karali and Thurman, 2009; Williams and
Wright, 1991; and Karali, 2011). Thus, storage has a moderating influence on both current
and future uncertainty. In our study, we adopt a measure of storage that captures the future state
of inventories. Economic theory suggests that the future price of a storable commodity should be
equal to the current spot price plus the cost of storage, including interest charges and risk pre-
mium. In practice, however, spot prices might exceed nearby futures prices, or near-delivery
futures prices might exceed far-delivery futures prices (Working, 1933, 1948). This phenomenon
is known as the “inverted market” and can occur due to “convenience yield” generated as an
embedded option value, that is, an implied benefit accrued from the physical storage of commod-
ities (Joseph, Irwin, and Garcia, 2016; Kaldor, 1939; Paul, 1970; Telser, 1958; Working, 1949). The
opposite price pattern, in which more distant prices exceed nearby prices, is called the “normal
market.” In many previous studies, the term “backwardation” has been interchangeably used for
an inverted market and “contango” for a normal market.1 We adopt this terminology to align with
the literature. To analyse the link between the forward-looking volatility measure (IV) and storage,
we proxy inventory conditions by price-based, forward-looking net cost of carry, calculated from
different-delivery futures contract prices. This empirical relationship between storage and the
intertemporal price differences (i.e., the Working curve) represents a forward-looking measure
of the inventory situation in commodity markets.

Few studies establish the role of commodity-related fundamentals as key determinants of IV.
Litzenberger and Rabinowitz (1995) show that oil production is inversely related to IV, while
backwardation is positively related. Robe and Wallen (2016) find that the relation between crude
oil IV and the slope of the futures term structure (represented by the ratio of deferred futures price
to nearby futures price) is stronger in periods of contango compared to the periods of backwar-
dation. For grain markets, Adjemian et al. (2017) establish that near-stockouts tend to boost

1While inverted and normal market terms reflect the snapshot of different-maturity prices at a point in time, backwardation
and contango terms reflect the pattern of a given-maturity price over time.
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nearby IV, whereas high inventories reduce it. The differential impact of the state of inventories on
oil versus grain IV is likely associated with the fact that oil production is continuous throughout
the year in contrast to the seasonal production of grains. IV patterns in grain markets should also
reflect seasonal patterns in production. For example, uncertainty in grain markets should be high
during the summer months when adverse weather might cause a shortage in supply. Our work
builds upon these previous studies and facts to investigate how the IV dynamics depend on com-
modity fundamentals as well as macroeconomic and financial market indicators in grain and oil-
seed markets. We further extend the previous work by studying potential spillover effects across
substitute commodity markets on both the nearby and deferred IV patterns.

In the U.S., corn and soybean are close substitutes in production and their growing areas over-
lap, specifically across the Corn Belt. Producers make planting decisions based on the corn-to-
soybean price ratio, which is one of the many measures used to ascertain the profitability of corn
and soybean (Taylor and Koo, 2010). As a result, they both compete for storage space where the
supply of storage for corn (soybean) can be reduced due to higher inventories/production of soy-
bean (corn) (Liu, 1983). The overlapping production areas also indicate that the impact of weather
shocks on production is highly correlated for corn and soybean. Similarly, the impact of shocks to
transportation, which would affect the derived demand for corn and soybean, should also be cor-
related in these two markets. Therefore, it is reasonable to expect production surprises and/or
supply disruptions in one market to drive price reactions in the other market. In fact, soybean
futures prices, for example, are shown to be sensitive to production surprises in the corn market
(Karali et al., 2019).

Hard red winter (HRW) wheat and hard red spring (HRS) wheat belong to hard wheat classes,
where substitution elasticities indicate that winter and spring wheat types are economic substitutes
for milling purposes (Marsh, 2005). Moreover, HRW wheat accounts for 40% of U.S. wheat pro-
duction, which makes it the largest wheat class in the U.S.2 As a result, a bad crop year resulting in
low inventories of winter wheat will put pressure on producers to increase spring wheat produc-
tion to meet the demand of domestic flour millers for the high protein hard wheat class. Wilson
(1983) also establishes the dominant role of commodity-specific fundamentals in determining the
price relationships between the two classes of wheat. Therefore, one should account for possible
spillover effects across commodity fundamentals while determining the underlying factors affect-
ing the IV series of substitute wheat varieties.

Our approach enables studying grain and oilseed IV patterns in the context of substitute com-
modity markets, where apart from the own fundamentals we expect the substitute commodity
fundamentals to impact the IV series while controlling for other macroeconomic and financial
market indicators. Specifically, we analyse the impact of physical commodity measures, such
as inventory conditions proxied by backwardation and contango and stocks-to-use ratio, on
the forward-looking measure of price variability (i.e., IV) in both own and substitute commodity
markets. This reconciles our approach with the literature that emphasises the impact of underly-
ing supply and demand-related factors on both backward-looking and forward-looking measures
of price variability in the grain markets.

We adopt the methodology of Goodwin and Schnepf (2000), who investigate the impact of
various factors including growing conditions and stocks-to-use ratios on both futures price vari-
ability and volatility implied in the options market. Their study finds strong impacts of shocks to
growing conditions on IV series of corn and spring wheat, but a modest impact of stocks-to-use
ratios. However, our study’s premise to include storage regimes—as determinants of expected-
price variability—is that extreme events in the form of glut (also referred to as contango) or
stock-outs (also referred to as backwardation) should heighten volatilities derived from options
as the uncertainty related to commodity fundamentals increases. For example, inventory

2The production data source for wheat classes is USDA’s Economic Research Service (ERS) agency, retrieved from https://
www.ers.usda.gov/topics/crops/wheat/wheat-sector-at-a-glance/.
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conditions indicating a glut in the corn market are likely to increase the demand for storage—with
the supply of storage relatively constant—therefore, spiking future uncertainty levels. Likewise,
stock-outs in hard wheat markets can spike future uncertainty levels in the commodity markets
as HRW and HRS are the mainstays of the domestic U.S. flour market.

Across our nearby- and deferred-contract analyses, we show some evidence of both own and
spillover effects of storage regimes on futures return variances and IVs in the U.S. grain and oil-
seeds markets. We find modest spillovers from storage regimes in the substitute commodity mar-
ket to impact futures and options-derived volatilities of a crop, whereas own market’s storage
regimes have stronger impacts. While the market-wide volatility index has a significant impact
in all markets but winter wheat, our results demonstrate that it cannot be the sole determinant
of volatilities in grain and oilseeds markets and both own and substitute commodity fundamentals
should be considered to accurately portray IV patterns.

Empirical Model
Following Goodwin and Schnepf (2000), we investigate the factors affecting commodity price var-
iability through a couple of different econometric approaches. Given that IVs are derived from
futures prices, we first analyse the futures return in each market by modelling its variance through
both a conditional heteroskedasticity (CH) model and a generalised autoregressive heteroskedas-
ticity (GARCH) model. Then, employing a GARCH framework we focus on the determinants of
the IV series. Finally, we estimate a nonstructural vector autoregressive (VAR) model for each IV
series to evaluate their dynamic relationships with a subset of variables that affect price volatility.

CH Model of Futures Returns

Futures return for each commodity can be specified as:

Rt � µ� Xtδ� ɛt; (1)

where Rt= 100× (lnPt−lnPt− 1) is the continuously compounded daily return on the futures con-
tract with price Pt on day t, Xt is the vector of independent variables, including lagged futures
returns to account for serial correlation and commodity fundamentals in both own and substitute
market (net cost of carry during contango and backwardation, stocks-to-use ratio), δ is the param-
eter vector, and ϵt is the error term with zero mean and variance of Var�ɛt� � σ2

t � f �Ztθ�. Thus,
the variance of futures returns depends on a set of explanatory variables Zt. As the error term is
unobservable, the estimated residuals from equation (1), ɛ̂2t , can be used to form the following CH
model (Harvey, 1976):

ln ɛ̂2t � Ztθ� νt ; (2)

where θ is the parameter vector and νt is the error term with zero mean and constant variance.
This formulation helps us model heteroskedasticity in line with the general multiplicative heter-
oskedasticity models. The explanatory variables in (2) include an intercept, lagged variances of
returns (i.e., lags of ln ɛ̂2t to account for serial correlation), commodity fundamentals in both
own and substitute market (net cost of carry during contango and backwardation, stocks-to-
use ratio), dummies for crop planning/planting and preharvest seasons, financial market indicator
(volatility index—VIX), macroeconomic indicator (Hamilton index), time-to-maturity (TTM),
contract roll dummy and a dummy for the 2007–2008 economic crisis.

GARCH-X Model of Futures Returns

We also employ a GARCH-X(1,1) framework with multiplicative heteroskedasticity for modelling
futures return variance as shown below:
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Var ɛt� � � σ2
t � αɛ2t�1 � βσ2

t�1 � exp�Ztθ�; (3)

where α and β are ARCH and GARCH parameters, respectively, and the vector Zt contains the
same explanatory variables as in equation (2).

GARCH Model of IV Series

Because IV series exhibit ARCH effects based on the Lagrange Multiplier test, we model each IV
series with the error variance specified by a simple GARCH(1,1) framework:

IVt � φ� Htγ � εt; (4)

Var εt� � � σ�2
t � ω� α�ε2t�1 � β�σ�2

t�1; (5)

where Ht is the vector of explanatory variables, including lagged IVs to account for serial corre-
lation, commodity fundamentals in both own and substitute market (net cost of carry in contango
and backwardation, stocks-to-use ratio), dummies for crop planning/planting and preharvest sea-
sons, financial market indicators (VIX and options hedging pressure), macroeconomic indicator
(Hamilton index), TTM, contract roll dummy and a dummy for the 2007–2008 economic crisis.
The parameters ω, α* and β* in (5) represent the constant conditional volatility, ARCH and
GARCH effects, respectively.

Vector Autoregressive Model and Impulse Response Functions

Similar to Goodwin and Schnepf (2000), we estimate a ten-equation nonstructural vector autor-
egressive (VAR) model for each IV series to evaluate their dynamic relationships with a subset of
variables (commodity fundamentals in both own and substitute market, hedging pressure in own
market, and VIX) that affect futures price volatility. Each of these VAR models also contains as
exogenous factors the Hamilton index, TTM, dummy variables for crop planning/planting and
preharvest seasons, contract rollover dummy, and a dummy for the 2007–2008 economic crisis.
We illustrate the adjustment paths of implied volatility to shocks in those other variables using
orthogonalised impulse response function (IRF) analysis.

Data
Our sample period spans from 1996 to 2019. In the following, we describe in detail all variables
used in our analysis.

Futures and IV Series

We use daily data on futures prices and IV series obtained from Barchart (formerly, the
Commodity Research Bureau).3 Corn, soybean and hard red winter (HRW) wheat contracts
are traded at the Chicago Mercantile Exchange (CME) Group, and hard red spring (HRS) wheat
contracts are traded at the Minneapolis Grain Exchange (MGEX). Futures contracts of the selected
commodities expire on the business day preceding the 15th day of the maturity month, and the
associated options contracts terminate a few days prior to the futures contracts’ delivery period.
To avoid the impact of the delivery process, we roll over these contracts on the 15th calendar day of
the month prior to maturity.4 Table 1 lists the specific contracts we use to construct nearby futures
and IV series for our analysis. In our empirical models, we include a dummy variable indicating

3Barchart calculates implied volatility as the average of implied standard deviation of the two nearest-the-money call
options and that of the two nearest-the-money put options using the Black options pricing model (Black, 1976).

4We exclude September contracts for corn and August and September contracts for soybean due to low volume, as well as
January soybean contracts for a better maturity match with corn series.
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contract rollovers to account for possible jumps in volatility when one switches from one contract
to the next.

Descriptive statistics in Table 2 show that daily nearby futures returns and IV series are lep-
tokurtic; that is, they have fatter tails than a normal distribution. This is in line with the previous
literature on agricultural commodity markets (Hall, Brorsen, and Irwin, 1989; Koekebakker and
Lien, 2004). Further, Lagrange Multiplier tests confirm heteroskedasticity in both futures returns
and IV series; thus, making a case for a GARCH model.5

Futures contracts with different maturities can contribute to price discovery in a dissimilar way.
For instance, in the corn futures market, nearby contracts reflect information more quickly than
deferred contracts (Hu et al., 2020). Short-term price fluctuations—due to temporary shifts in
supply or demand—are less likely to persist for long periods of time before the prices return
to their fundamental values (Koekebakker and Lien, 2004). Further, Samuelson (1965) asserts that

Table 1. Futures and options contracts rollover

Corn nearby Soybean nearby Winter wheat nearby Spring wheat nearby

January 1–15 Mar Mar Mar Mar

January 16–31 Mar Mar Mar Mar

February 1–15 Mar Mar Mar Mar

February 16–28 May May May May

March 1–15 May May May May

March 16–31 May May May May

April 1–15 May May May May

April 16–30 Jul Jul Jul Jul

May 1–15 Jul Jul Jul Jul

May 16–31 Jul Jul Jul Jul

June 1–15 Jul Jul Jul Jul

June 16–30 Dec Nov Sep Sep

July 1–15 Dec Nov Sep Sep

July 16–31 Dec Nov Sep Sep

August 1–15 Dec Nov Sep Sep

August 16–31 Dec Nov Dec Dec

September 1–15 Dec Nov Dec Dec

September 16–30 Dec Nov Dec Dec

October 1–15 Dec Nov Dec Dec

October 16–31 Mar Mar Dec Dec

November 1–15 Mar Mar Dec Dec

November 16–30 Mar Mar Mar Mar

December 1–15 Mar Mar Mar Mar

December 16–31 Mar Mar Mar Mar

5These test results are available from the authors upon request.
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Table 2. Descriptive statistics

Mean Std. dev. Max. Min. Skewness Kurtosis

Corn

Nearby futures return (%) −0.029 1.622 8.662 −7.852 0.056 5.178

Nearby IV (%) 25.516 7.494 53.230 6.500 0.763 3.296

Net cost of carry:

Contango (%) 2.480 1.490 9.040 0.000 1.360 5.717

Backwardation (%) −5.864 8.670 −0.003 −39.602 −2.037 6.595

Stocks-to-use (STU) (ratio) 1.696 0.769 2.891 0.329 −0.183 1.700

Hedging Pressure Long (HPL) (%) 18.340 4.896 34.703 8.792 0.779 2.951

Hedging Pressure Short (HPS) (%) 13.784 2.552 23.170 8.496 0.879 3.962

Time to Maturity (TTM) for futures contract (days) 62.536 27.983 131 18

Time to Maturity (TTM) for options contract (days) 46.228 27.807 113 0

Soybean

Nearby futures return (%) 0.012 1.449 6.695 −7.411 −0.176 5.330

Nearby IV (%) 23.105 6.842 60.740 8.943 1.291 5.209

Net cost of carry:

Contango (%) 1.145 0.847 4.069 0.001 1.032 3.139

Backwardation (%) −3.759 5.776 −0.001 −30.959 −2.406 8.363

Stocks-to-use (STU) (ratio) 1.374 0.774 3.368 0.265 0.626 2.594

Hedging Pressure Long (HPL) (%) 14.106 3.142 23.355 6.413 0.193 2.566

Hedging Pressure Short (HPS) (%) 13.381 3.968 25.765 6.284 0.758 2.876

Time to Maturity (TTM)
for futures contract (days)

55.325 23.647 109 18

Time to Maturity (TTM) for options contract (days) 39.880 23.931 107 0

Observations 5,797

Winter wheat

Nearby futures return (%) −0.038 1.697 8.098 −8.995 0.096 4.727

Nearby IV (%) 27.306 7.052 86.890 10.400 1.317 6.301

Net cost of carry:

Contango (%) 2.011 1.121 6.123 0.004 0.601 3.218

Backwardation (%) −2.910 2.744 −0.002 −12.186 −1.241 3.824

Stocks-to-use (STU) (ratio) 2.780 1.097 7.212 0.665 0.762 4.640

Hedging Pressure Long (HPL) (%) 18.315 5.941 77.320 2.270 1.155 11.225

Hedging Pressure Short (HPS) (%) 11.909 5.056 41.044 0.000 0.535 3.502

Time to Maturity (TTM) for futures contract (days) 46.737 16.334 88 18

Time to Maturity (TTM) for options contract (days) 30.424 16.393 79 0

Spring wheat

Nearby futures return (%) −0.003 1.504 7.890 −7.972 0.139 5.328

(Continued)
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the variance of futures prices increases as the contracts approach delivery, suggesting that short-
dated contracts have higher volatility relative to long-dated contracts. This assertion has been
viewed as a hypothesis stating more information flows into the markets, and therefore, more
uncertainty gets resolved as delivery approaches (Anderson and Danthine, 1983; Samuelson,
1976). To investigate this hypothesis, we also perform our analysis for two deferred futures returns
and IV series for each commodity. On average, the first deferred IV series are approximately three
months out relative to the nearby contracts, while the second deferred IV series is about five
months out. The specific contracts in constructing these deferred series are presented in the
appendix Table A1 and their descriptive statistics in Table A2. Consistent with Samuelson’s asser-
tion, the standard deviations of futures returns and IV levels of deferred series are relatively lower
than those of nearby series for all commodities.

Commodity Fundamentals

We analyse the impact of commodity fundamentals, both in the own market and in the substitute
commodity market, on price variability using two measures of fundamentals. We represent inven-
tory conditions by the net cost of carry calculated using the futures prices. Specifically, we take the
difference between the log prices of deferred and nearby futures series less the appropriately
adjusted Libor rate and multiply the result by 100 to state the net cost of carry in percentage
terms.6 We then interact the net cost of carry with dummy variables indicating contango

Table 2. (Continued )

Mean Std. dev. Max. Min. Skewness Kurtosis

Nearby IV (%) 25.048 7.686 86.440 8.840 1.556 7.079

Net cost of carry:

Contango (%) 1.484 0.855 4.410 0.000 0.536 2.856

Backwardation (%) −2.530 3.482 −0.001 −24.455 −3.114 14.697

Stocks-to-use (STU) (ratio) 2.748 1.297 8.564 0.661 1.098 5.751

Hedging Pressure Long (HPL) (%) 23.291 9.654 128.253 0.000 1.652 16.288

Hedging Pressure Short (HPS) (%) 12.819 9.072 149.433 0.000 3.841 48.953

Time to Maturity (TTM) for futures contract (days) 46.864 16.358 88 18

Time to Maturity (TTM) (days)
for options contract

30.422 16.500 88 0

Observations 5,778

Other variables

CBOE Volatility Index (VIX) (%) 19.992 8.177 80.860 9.140 2.048 10.265

Hamilton Index (ratio) −0.066 0.735 1.771 −1.939 0.215 2.620

Note: Sample period is from 1996 to 2019. All variables, except for stock-to-use ratios and hedging pressures, are measured at the daily
frequency. Net cost of carry per bushel is calculated using the nearby and 1st deferred futures series to indicate the slope of the term
structure. The coefficient for skewness is m3m2

−3/2 and for kurtosis is m4m2
−2, where mr is the rth moment about the mean.

6We create two types of net cost of carry. One uses the nearby and first deferred futures series to calculate the slope of the
term structure, and the other uses the nearby and second deferred futures series. To ensure consistency in the analysis, the
former is used along with the three-month maturity Libor rate to determine the impact of storage on both nearby and the first
deferred series, while the latter along with the six-month maturity Libor rate is used for the analysis of second deferred series.
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(i.e., net cost of carry greater than or equal to zero) and backwardation (i.e., net cost of carry less
than zero) to distinguish carrying costs during these two storage regimes. The carrying cost of a
commodity during an episode of low inventories in the own market should heighten the volatility
levels, while an episode of plentiful inventories should reduce volatility given that the rather con-
stant storage supply satisfies the demand for commodity storage. Hence, we expect a negative sign
for the net cost of carry for a given commodity during both contango and backwardation in its
own market.7 Table 2 shows that, in absolute terms, the net cost of carry in contango is lower than
the net cost of carry in backwardation in all four commodity markets.

To study the impact of supply and demand-side factors, we use USDA’s quarterly estimates for
ending stocks and use (or disappearance).8 The ratio of ending stocks to use, our STU variable,
captures the impact of higher or lower levels of inventories relative to a given level of demand for
the current crop year on the two measures of price variability: futures return variance and IV.
Since options are written on underlying futures contracts, any discontinuities due to supply or
demand-side disruptions should affect both futures and options markets (Koekebakker and
Lien, 2004). We expect a negative relationship between the STU variable and price variability
measures for a given commodity as lower STU ratios indicate higher levels of demand relative
to stock levels, signalling a shortage and an upward pressure on prices and their variability.

Seasonality and Time-to-Maturity

Volatility in futures returns is a function of seasonal effects and maturity effects (Galloway and
Kolb, 1996; Koekebakker and Lien, 2004). To account for seasonality in our econometric
approach, we include dummy variables representing planning/planting and preharvest periods,
with the postharvest period taken as the base category. We determine these periods based on
the Crop Progress reports published weekly by NASS during the growing season (Karali,
Dorfman, and Thurman, 2010). Specifically, we define the planning/planting period dummy
as December through May for corn, December through June for soybean, September through
November for HRW wheat and October through May for HRS wheat. The preharvest dummy
covers the months of June through August for corn, July through August for soybean,
December through May for HRW wheat and June through July for HRS wheat. The remaining
calendar months for each commodity represent the postharvest period.

TTM, or the Samuelson hypothesis, has been shown in the literature to affect futures price
volatility, with volatility increasing as the time to contract expiration nears (Anderson and
Danthine, 1983; Anderson, 1985; Black and Tonks, 2000; Chatrath, Adrangi, and Dhanda,
2002; Leistikow, 1989; Milonas, 1986; Smith, 2005). We account for the Samuelson effect by
including TTM variables, measured as the number of trading days left to contract expiration,
in our empirical models.9

7Since the net-cost-of-carry variable takes negative values during backwardation, a negative coefficient estimate would
result in a positive change in volatility, and a positive coefficient estimate would lead to a reduction in volatility.

8Data on corn and wheat are available in theWorld Agricultural Supply and Demand Estimates (WASDE) Yearbook tables.
However, for soybean, Oilseed Yearbook tables only go back to the marketing year 2000/01. Therefore, for the years 1996–
2000, we combine the soybean production data from Quick Stats of the National Agricultural Statistics Service (NASS) and the
import data from the Foreign Agricultural Service (FAS) GATS database with the beginning stocks to derive total supply. We
then obtain total use by subtracting ending stocks from this total supply, and use it in our soybean stocks-to-use ratio
calculations.

9Without loss of generality, we define the last day available in the IV series from Barchart as the option contract’s expiration
date.
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Financial Indicators

The use of new generation grain contracts (NGGCs), which establish prescribed rules for pricing
grain that will be automatically executed, is slowly gaining traction in the grain markets as pro-
ducers opt for them as their preharvest strategy to reduce production risk (Elliott et al., 2020).10

The pricing of insurance in structured products, such as NGGC, relies heavily on the measures of
IV. In this context, determining the information content of the implied volatility functions (IVFs)
in the commodity markets is of importance to market participants.11 Goodwin (2015) points out
the prevalence of anomalies in the shape of corn IVs—termed as smiles or smirks. The presence of
these shapes goes against the assumptions of Black and Scholes (1973) model that warrants IVFs
to be flat over time. Given the importance of IVs as crucial benchmarks for various risk manage-
ment efforts—be it pricing of crop insurance by RMA or designing of structured products—
understanding the determinants of the anomalies such as smirks in IVs can provide insights valu-
able to both public and private insurance markets. Empirical evidence suggests in the case of S&P
500 options, hedging pressures derived from heterogeneous beliefs of market traders account for
smiles or smirks in options prices (Bollen and Whaley, 2004; Buraschi and Jiltsov, 2006).

In our study, we also control for these heterogeneous beliefs of market traders in the options
markets by following the approach in McKenzie, Thomsen, and Adjemian (2022). These authors
use short-term hedging pressure proxies, calculated using the Commodity Futures Trading
Commission (CFTC) reports, to account for the possibility of market-induced pressures impact-
ing the shape of IVFs in cattle and grain markets.12 We use both CFTC’s futures only and futures
and options combined legacy Commitment of Traders (COT) reports, which are publicly available
only on Tuesdays, to construct short-term hedging pressure proxies.

Specifically, we calculate options hedging open interest by taking the difference between the
short (long) commercial open interest in both futures and options combined, and the short (long)
commercial open interest in futures only. Similarly, we calculate the total options open interest as
the difference between the total open interest in the combined reports and the futures-only
report.13 Before making these calculations, following Kim (2015), Sanders, Irwin, and Merrin
(2010), and Bohl and Sulewski (2019), we assume that nonreporting traders exhibit the same dis-
tribution pattern as the reporting traders. Accordingly, we allocate nonreporting short and long
open interests to commercials and noncommercials contingent upon the ratio of short and long
positions held in the reported groups. Next, we calculate our hedging pressure proxies as short-
hedging pressure (HPS) and long-hedging pressure (HPL). HPS (or HPL) is taken as the ratio of
short (or long) options hedging open interest held by commercial hedgers divided by total options
open interest held by all trader groups. According to McKenzie, Thomsen, and Adjemian (2022), a
higher percentage of HPS suggests higher demand for long puts to manage expected downside
price risk, while a higher percentage of HPL suggests higher demand for long calls to manage
the upside price risk. In both scenarios, the hedging pressures can induce risk premium in options.
We include these two hedging pressure measures of a commodity as explanatory variables in our
IV regressions to study their effects in the own market. For all our commodities, we notice rela-
tively higher percentages of HPL in comparison to HPS (Table 2). This suggests a tendency of
traders to expect more of an upside price risk in these grain and oilseed markets.

10NGGSs have been classified into three categories depending on their features: (1) automated pricing contracts, which
follow predetermined and nondiscretionary pricing rules over a specific period; (2) managed hedging contracts, in which
pricing decisions are made by an analyst chosen by the producer; and (3) combination contracts, in which the producer fol-
lows automated pricing rules but is allowed to share in some of the gains, if any, of the pricing analyst (Alexander, Hurt, and
Patrick, 2004; Hagedorn et al., 2003).

11IVF is generally defined as the relationship between IV and option moneyness.
12By short-term hedging pressures, they refer to pressures arising from the need to hedge transitory price shocks.
13Legacy COT report categorises processors, merchants and swap dealers as commercials, while it includes money man-

agers and other reportable as noncommercials (Irwin and Sanders, 2012).
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We include the Chicago Board Options Exchange’s Volatility Index (VIX) obtained from
Bloomberg as an explanatory variable to study its impact on both measures of price volatility.
VIX captures both uncertainty and risk aversion in stock as well as oil markets (Bekaert,
Hoerova, and Duca, 2013; Robe and Wallen, 2016) and has been used in the literature (for both
stock markets and commodity futures/options) to serve as a ‘fear factor measure’ while accounting
for investor sentiments (Adjemian et al., 2017; Whaley, 2000). Based on the study of Adjemian
et al. (2017) on the IV determinants in commodity markets, we expect increases in daily VIX to
drive up the uncertainty in our selected markets.

Macroeconomic Indicators

We use a daily series of global economic activity index suggested by Hamilton (2021) to replicate
world business cycles, which is found to perform better than the Kilian index.14 Specifically, we
utilise the Baltic Dry Index (BDI) of shipping costs, acquired from Bloomberg, and construct the
Hamilton index using differencing instead of detrending. During our sample period, the Hamilton
index is negative on average (Table 2). We expect a negative sign for this variable’s coefficient as a
downward trend in world business cycles should boost futures return variances and IVs, whereas a
positive change should bring them down.15 In addition, we account for the global financial crisis of
2007–2008 by including a dummy variable.

Results
The results for corn, soybean, winter wheat and spring wheat nearby futures and IV series are
presented in Tables 3 through 6, respectively. To conserve space, we present the results for the
deferred series in appendix Tables A3–A10. In each of these tables, panel A shows the mean equa-
tion parameters,16 whereas panel B presents the variance equation parameters. In our discussion of
results, we consider a parameter statistically significant at the 1% level to have a strong impact, a
parameter significant at 5% to have a modest impact and a parameter significant at the 10% level
to have a weak impact.

Corn

The estimates of the CH model as well as that of the GARCH model for corn futures returns
confirm the impact of both corn and soybean fundamentals, indicating spillover effects from
the substitute commodity market (Table 3). We find strong negative impacts of corn market’s
contango on the mean return levels (−0.053 in the CH model) in contrast to its strong positive
impact on the variability of futures returns (0.154 in the GARCH model). The GARCH model for
the IV series also shows a modest positive impact (0.045) of a contango in the corn market on the
IV level. This suggests, in line with our expectations, the prospects of high corn inventories in the
future have a negative influence on futures returns, but contrary to our hypothesis, the possibility
of such a glut heightens the two measures of volatility in its own market. Contango’s significant
positive impact on volatility could indicate that under the pressure of excess demand for storage,
the corn market experiences higher uncertainty (given constant/limited storage space) as it expects
plentiful harvests. Spillovers from soybean backwardation have, on average, a weak to modest
impact on the corn futures return levels. A positive sign for soybean backwardation in the mean

14The Hamilton index shows higher correlation with the world GDP growth than the monthly index proposed by Kilian
(2009).

15From 2009 onward, the Hamilton index shows mostly a downward trend in world business cycles.
16As shown in the Empirical Model section, the mean equation in the CH model corresponds to the regression of futures

returns on explanatory variables, and the variance equation corresponds to a separate regression of the log-squared residuals
(obtained from the futures return regression) on the factors affecting the futures price variability.
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Table 3. Determinants of corn nearby volatility

Corn futures return
(CH model)

Corn futures return
(GARCH-X model)

Corn IV series
(GARCH model)

Panel A: Mean equation

Corn futures return 1st lag 0.039** (0.017) 0.021 (0.013)

Corn IV 1st lag 0.980*** (0.005)

Corn contango −0.053*** (0.015) −0.051*** (0.013) 0.045** (0.018)

Corn backwardation −0.003 (0.008) −0.012 (0.009) −0.009 (0.006)

Soybean contango −0.002 (0.030) 0.017 (0.025) 0.010 (0.028)

Soybean backwardation 0.011* (0.006) 0.014** (0.006) −0.008 (0.006)

Corn STU 0.067 (0.044) 0.080** (0.034) −0.210** (0.089)

Soybean STU −0.017 (0.043) −0.017 (0.033) −0.011 (0.032)

Corn HPL −0.005 (0.004)

Corn HPS −0.001 (0.007)

Corn planning/planting period 0.500*** (0.190)

Corn preharvest period 0.180** (0.080)

VIX 0.007*** (0.003)

Hamilton index −0.019 (0.027)

Corn IV TTM 0.003* (0.002)

Corn IV contract rollover 0.065 (0.062)

Economic crisis of 2007–2008 0.310*** (0.088)

Constant 0.014 (0.064) −0.054 (0.051) 0.250** (0.120)

Panel B: Variance equation

Exogenous variables

Log of squared residual 1st lag 0.026* (0.014)

Log of squared residual 2nd lag 0.044*** (0.013)

Corn contango 0.051** (0.023) 0.154*** (0.052)

Corn backwardation −0.029*** (0.009) −0.040*** (0.014)

Soybean contango 0.057 (0.043) 0.023 (0.096)

Soybean backwardation 0.005 (0.009) 0.008 (0.023)

Corn STU −0.590*** (0.160) −1.070*** (0.370)

Soybean STU −0.210*** (0.074) −0.160 (0.190)

Corn planning/planting period 1.260*** (0.270) 2.700*** (0.690)

Corn preharvest period 1.160*** (0.150) 2.200*** (0.460)

VIX 0.008* (0.004) 0.008 (0.012)

Hamilton index −0.190*** (0.049) −0.180* (0.110)

Corn futures TTM 0.000 (0.002) −0.005 (0.015)

Corn futures contract rollover dummy −0.070 (0.210) 1.010 (1.340)

Economic crisis of 2007–2008 1.060*** (0.120) 1.280*** (0.230)

(Continued)
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equations of CH and GARCH models suggests that in expectation of soybean shortage (and the
subsequent expected rise in soybean prices), the corn market is likely to witness a drop in the mean
return levels as selling soybean will be relatively more profitable.17 However, the magnitude of the
own-contango impact on mean futures returns (0.053 in the CH model and 0.051 in the GARCH
model) is higher than that of spillovers from backwardation in soybean (0.011 in the CH model
and 0.014 in the GARCH model). We also find that corn STU for the current crop year has a
modest positive impact on the mean futures returns (0.080 in the GARCH model). In line with
our expectations and with Goodwin and Schnepf (2000) results,18 we find a modest to strong neg-
ative impact of corn STU on the two measures of price variability (both the variance of futures
returns and the IV). This suggests higher levels of current stocks relative to current demand are
likely to reduce the variability in corn prices. There is some evidence for spillovers from soybean
STU to reduce the variability of corn prices, but the impact is lower in magnitude (0.210 in the CH
model) relative to the own STU effect (0.590 in the CH model and 1.070 in the GARCH model).

Among the financial indicators, hedging pressure variables do not show any significant impact
on the corn IV, consistent with the findings in McKenzie, Thomsen, and Adjemian (2022). On the
other hand, CBOE’s VIX has a weak positive impact on the variability of corn futures returns but a
strong positive impact on IV. This finding is consistent with Adjemian et al. (2017). The strong
impact of the Hamilton index is evident in the variance equations of futures return models, while
the 2007−2008 economic crisis consistently shows a strong positive impact on both futures return
variance and IV. We also confirm the seasonality in both measures of price variability associated
with the production cycle, with volatility being the highest during the planning/planting season
and the lowest during the postharvest season, in line with Karali and Thurman (2010) and Karali,
Dorfman, and Thurman (2010). Contrary to our expectations but in line with Goodwin and

Table 3. (Continued )

Corn futures return
(CH model)

Corn futures return
(GARCH-X model)

Corn IV series
(GARCH model)

Constant −0.670*** (0.180) −3.170*** (1.160)

GARCH components

ARCH parameter 0.049*** (0.010) 0.270*** (0.043)

GARCH parameter 0.930*** (0.017) 0.730*** (0.036)

Degrees of freedom 6.978*** (0.586)

Constant 0.098*** (0.025)

Model diagnostics

Observations 5,797 5,797 5,797

Log Likelihood −10,387.340 −9,084.079

AIC 26,099.040 20,824.680 18,208.160

BIC 26,205.680 20,991.300 18,341.460

Note: Robust standard errors are given in parentheses. The GARCH-X(1,1) model for futures returns assumes a Student’s t-distribution for the
error term and the associated degrees of freedom parameter is estimated along with the other parameters of the model. AIC stands for
Akaike’s Information Criteria and BIC stands for Bayesian Information Criteria. The asterisks *, ** and *** represent statistical
significance at the 10%, 5% and 1% level, respectively.

17Recall that a negative coefficient estimate for backwardation would result in a positive change in the dependent variable as
the net-cost-of-carry variable takes negative values during backwardation.

18Note that Goodwin and Schnepf (2000) utilise the ratio of use to stocks (i.e., the inverse of our STU variable), and there-
fore, they expect and find a positive relationship between use-to-stocks ratio and price variability.

Journal of Agricultural and Applied Economics 735

https://doi.org/10.1017/aae.2022.37 Published online by Cambridge University Press

https://doi.org/10.1017/aae.2022.37


Schnepf (2000), we do not find strong maturity effects or contract rollover effects on our volatility
measures.

For the deferred series in Tables A3 and A4, we find that contango in corn has a strong negative
influence on mean futures returns, which is consistent with our results for the nearby series.
Similarly, contango in corn shows a modest positive impact (in the GARCH model) and back-
wardation a strong negative impact (in both CH and GARCH models) on the price variability of
the first deferred series. In addition, both corn and soybean STUs affect the price variability in
corn. Strong seasonality in volatility is also evident in the deferred series.

Soybean

Results in Table 4 show that both corn and soybean fundamentals affect soybean nearby futures
returns to some degree. The expectation of a future glut in the soybean market (and the subse-
quent expectation of a decline in soybean prices), represented by contango, shows a strong nega-
tive influence on the soybean mean returns. We also find the soybean backwardation to strongly
spike the variance of futures returns in the CHmodel. Spillovers from corn contango have weak to
modest negative impacts on soybean futures returns, with expectations of a possible glut in the
corn market likely to drive up the demand for storage, and hence the storage price, in the over-
lapping production areas of corn and soybean. The magnitude of the spillover effect from corn
contango on soybean futures returns (0.021 in the CH model and 0.027 in the GARCH model) is
lower than the own-contango effect (0.085 in the CH model and 0.060 in the GARCHmodel). We
find weak evidence for soybean STU to impact futures returns in the GARCH model and for corn
STU to affect the IV.

Similar to corn results, hedging pressure variables do not have any significant impact on the
soybean IV. While VIX has a modest to strong impact on both futures return variances and the IV,
the Hamilton index shows modest to strong impacts only on the variances of futures returns. We
also find some evidence of significant impacts of seasonality, contract rollover and the 2007–2008
economic crisis. However, similar to corn, no significant maturity effect exists in the soybean
market.

For the deferred series in Tables A5 and A6, consistent with our nearby series results, contango
in soybean has a strong impact on futures returns as well as on both measures of price variability.
The spillovers from storage and STU in the corn market significantly impact the price variability
in the second deferred series, and seasonality is evident in the price variability of both deferred
series.

Winter Wheat

The results for winter wheat in Table 5 show that own-storage effects (both contango and back-
wardation) impact futures returns, while spillover from spring wheat contango moves both the
variance of futures returns (in the CH model) and the IV. In line with our expectations, contango
in its own market reduces the winter wheat futures returns but only modestly, as the prospects of
high demand for storage are likely to increase the price of storage while reducing the profits from
storing the grain. Likewise, we find a weak impact of backwardation in its own market, with
heightening futures returns, on average, as expectations of winter wheat shortages offer higher
profitability of grain storage. The impact of spring wheat contango on the volatility measures
ranges from strong to modest. This significant and negative impact of contango in the market
of a substitute-in-use commodity suggests that under the impression of higher spring wheat
inventories in the near future, the market participants such as producers or other traders see more
options and less uncertainty in terms of fulfilling the domestic millers’ demand for the U.S. hard
wheat class. We do not find evidence for either own or substitute commodity STU to affect the
winter wheat market.
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Table 4. Determinants of soybean nearby volatility

Soybean futures return
(CH model)

Soybean futures return
(GARCH-X model)

Soybean IV series
(GARCH model)

Panel A: Mean equation

Soybean futures returns
1st lag

−0.014 (0.016) −0.030** (0.013)

Soybean IV 1st lag 0.98*** (0.003)

Soybean contango −0.085*** (0.026) −0.060*** (0.023) −0.015 (0.016)

Soybean backwardation 0.000 (0.007) −0.004 (0.006) −0.004 (0.004)

Corn contango −0.021* (0.012) −0.027** (0.012) 0.004 (0.009)

Corn backwardation 0.006 (0.006) 0.004 (0.006) 0.003 (0.005)

Soybean STU −0.045 (0.038) −0.058* (0.034) 0.026 (0.024)

Corn STU 0.037 (0.039) 0.027 (0.034) −0.079* (0.042)

Soybean HPL 0.002 (0.004)

Soybean HPS −0.002 (0.003)

Soybean planning/planting
period

0.068 (0.065)

Soybean preharvest period 0.020 (0.045)

VIX 0.005*** (0.002)

Hamilton index 0.022 (0.017)

Soybean IV TTM −0.000 (0.001)

Soybean IV rollover 0.130** (0.061)

Economic crisis of
2007–2008

0.110* (0.063)

Constant 0.130** (0.056) 0.150*** (0.049) 0.260*** (0.087)

Panel B: Variance equation

Exogenous variables

Log of squared residual
1st lag

−0.003 (0.013)

Log of squared residual
2nd lag

0.035*** (0.013)

Soybean contango −0.010 (0.041) 0.066 (0.31)

Soybean backwardation −0.024*** (0.009) −0.039 (0.034)

Corn contango 0.006 (0.023) 0.053 (0.059)

Corn backwardation −0.004 (0.010) −0.011 (0.043)

Soybean STU −0.062 (0.073) −0.20 (0.23)

Corn STU −0.160 (0.11) −0.650 (1.030)

Soybean planning/planting
period

0.290* (0.17) 3.030* (1.690)

Soybean preharvest period 0.700*** (0.13) 1.210 (1.840)

VIX 0.021*** (0.004) 0.036** (0.015)

Hamilton index 0.140*** (0.047) 0.340** (0.150)

Soybean futures TTM 0.002 (0.002) 0.022 (0.031)

(Continued)
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Among the financial indicators, long-hedging pressure has a strong positive impact on the win-
ter wheat nearby IV. We do not find any evidence for VIX and seasonality to impact the variability
of winter wheat prices. On the other hand, we obtain modest to strong impacts of the Hamilton
index, weak to modest impacts of TTM and a strong positive impact of the 2007–2008 economic
crisis on the two measures of price variability in winter wheat.

For the deferred series in Tables A7 and A8, consistent with our nearby series’ results, contango
in winter wheat significantly impacts futures returns. The spillovers from contango in spring
wheat have a modest influence on the price variability in the first deferred series. For the second
deferred series, the spillovers from backwardation in spring wheat have a strong impact on the
price variability in CH and GARCH models for futures returns. Consistent with our nearby
results, we do not find any impact of STU.

Spring Wheat

In Table 6, results for spring wheat nearby series show that only own-storage conditions have a
significant impact on price variability. Contango has a stronger impact than that of backwardation
(both in terms of magnitude and significance levels) on the spring wheat futures returns. As per
our expectations, prospects of a glut lower the futures returns on average by putting downward
pressure on the nearby contract price, while a possible shortage heightens the returns by pushing
the nearby price up. Both contango and backwardation have significant impacts on price variabil-
ity in the spring wheat market. Contango lowers the volatility, while backwardation heightens it.

The short-hedging pressure variable shows a strong negative impact on the IV. We find evi-
dence of a modest impact of VIX on the price variability. Evidence also suggests some seasonality
and maturity effects and a strong positive impact of the 2007–2008 economic crisis on both vol-
atility measures.

Table 4. (Continued )

Soybean futures return
(CH model)

Soybean futures return
(GARCH-X model)

Soybean IV series
(GARCH model)

Soybean futures rollover −0.560* (0.300) −0.380 (6.68)

Economic crisis 2007–2008 0.470*** (0.130) 0.620 (0.480)

Constant −1.350*** (0.170) −6.80 (6.00)

GARCH components

ARCH parameter 0.035*** (0.011) 0.360*** (0.051)

GARCH parameter 0.950*** (0.018) 0.630*** (0.048)

Degrees of freedom 7.632*** (0.680)

Constant 0.160*** (0.035)

Model diagnostics

Observations 5,797 5,797 5,797

Log Likelihood −9,815.310 −8,272.614

AIC 26,033.120 19,680.620 16,587.230

BIC 26,139.750 19,847.250 16,727.200

Note: Robust standard errors are given in parentheses. The GARCH-X(1,1) model for futures returns assumes a Student’s t-distribution for the
error term and the associated degrees of freedom parameter is estimated along with the other parameters of the model. AIC stands for
Akaike’s Information Criteria and BIC stands for Bayesian Information Criteria. The asterisks *, ** and *** represent statistical
significance at the 10%, 5% and 1% level, respectively.
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Table 5. Determinants of winter wheat nearby volatility

Winter wheat futures
return (CH model)

Winter wheat futures return
(GARCH-X model)

Winter wheat IV series
(GARCH model)

Panel A: Mean equation

Winter wheat futures
returns 1st lag

0.033** (0.016) 0.029** (0.014)

Winter wheat IV 1st lag 0.940*** (0.014)

Winter wheat IV 2nd lag 0.047*** (0.014)

Winter wheat contango −0.058** (0.023) −0.049** (0.020) 0.000 (0.012)

Winter wheat
backwardation

−0.029* (0.016) −0.024* (0.014) 0.006 (0.006)

Spring wheat contango −0.020 (0.028) −0.014 (0.024) −0.026** (0.011)

Spring wheat
backwardation

0.016 (0.019) 0.011 (0.017) −0.001 (0.004)

Winter wheat STU 0.014 (0.024) 0.019 (0.021) −0.011 (0.015)

Spring wheat STU −0.015 (0.019) −0.019 (0.018) 0.007 (0.001)

Winter wheat HPL 0.005*** (0.002)

Winter wheat HPS −0.001 (0.002)

Winter wheat planning/
planting period

−0.015 (0.040)

Winter wheat preharvest
period

−0.000 (0.039)

VIX 0.002 (0.001)

Hamilton index −0.036*** (0.012)

Winter wheat IV TTM −0.001* (0.004)

Winter wheat IV rollover 0.060 (0.048)

Economic crisis of
2007–2008

0.110*** (0.036)

Constant 0.076 (0.077) 0.023 (0.068) 0.150* (0.090)

Panel B: Variance equation

Exogenous variables

Log of squared residual
1st lag

0.025* (0.013)

Log of squared residual
2nd lag

0.044*** (0.012)

Winter wheat contango 0.042 (0.037) 0.120 (0.120)

Winter wheat
backwardation

0.012 (0.024) 0.001 (0.045)

Spring wheat contango −0.110*** (0.040) −0.140 (0.110)

Spring wheat
backwardation

−0.026 (0.021) −0.048 (0.043)

Winter wheat STU 0.002 (0.045) −0.078 (0.150)

Spring wheat STU −0.021 (0.033) 0.100 (0.081)

(Continued)
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Consistent with our findings for the nearby series, the deferred series results in Tables A9 and
A10 showmodest to strong influences of contango in spring wheat on both futures returns and the
price variability. Further, backwardation in its own market also influences the volatility measures.
We find some evidence for spillover effects of contango and backwardation in winter wheat on the
spring wheat price volatility. Both own and substitute commodity STUs have weak to strong
impacts on futures returns as well as on the price variability. There is limited evidence that sea-
sonality and time to maturity influence the volatility measures.

We summarise our findings on the impact of the commodity fundamentals (own and substitute
market) on futures returns and price variability measures for the nearby series in Table 7. We use
the� and − signs to indicate the estimated signs of the coefficients that are statistically significant
at least at the 10% level, and × to denote the insignificant estimates. We can see in the table that
contango in the own market has a more pronounced effect on the futures returns than on the price
variability measures. In contrast, the impact of backwardation in the own market appears to affect
volatility measures more than the returns. Interestingly, while we find that backwardation in the
winter wheat market increases the returns on its futures contracts, it does not affect futures return
variability or the IV. The opposite holds for corn, with backwardation increasing the volatility
measures but not the futures returns. STU has an impact only on corn price variability measures,

Table 5. (Continued )

Winter wheat futures
return (CH model)

Winter wheat futures return
(GARCH-X model)

Winter wheat IV series
(GARCH model)

Winter wheat planning/
planting period

−0.093 (0.140) 0.051 (0.540)

Winter wheat preharvest
period

−0.100 (0.130) 0.390 (0.610)

VIX 0.003 (0.004) 0.002 (0.013)

Hamilton index −0.110** (0.049) −0.047 (0.170)

Winter wheat futures TTM −0.005** (0.002) −0.003 (0.009)

Winter wheat futures
rollover dummy

0.370* (0.220) 0.480 (3.770)

Economic crisis 2007–2008 0.710*** (0.130) 1.000*** (0.320)

Constant −0.160 (0.150) −3.590*** (0.690)

GARCH components

ARCH parameter 0.048*** (0.010) 0.560*** (0.120)

GARCH parameter 0.940*** (0.014) 0.650*** (0.045)

Degrees of freedom 11.884*** (1.570)

Constant 0.220*** (0.056)

Model diagnostics

Observations 5,778 5,778 5,778

Log Likelihood −10,829.910 −7,477.920

AIC 26,069.390 21,709.810 14,999.840

BIC 26,175.970 21,876.360 15,146.400

Note: Robust standard errors are given in parentheses. The GARCH-X(1,1) model for futures returns assumes a Student’s t-distribution for the
error term and the associated degrees of freedom parameter is estimated along with the other parameters of the model. AIC stands for
Akaike’s Information Criteria and BIC stands for Bayesian Information Criteria. The asterisks *, ** and *** represent statistical
significance at the 10%, 5% and 1% level, respectively.
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Table 6. Determinants of spring wheat nearby volatility

Spring wheat futures
return (CH model)

Spring wheat futures return
(GARCH-X model)

Spring wheat IV series
(GARCH model)

Panel A: Mean equation

Spring wheat futures
returns 1st lag

0.047*** (0.018) 0.028** (0.014)

Spring wheat IV 1st lag 0.850*** (0.026)

Spring wheat IV 2nd lag 0.130*** (0.025)

Spring wheat contango −0.110*** (0.025) −0.097*** (0.020) −0.029 (0.022)

Spring wheat
backwardation

−0.015 (0.020) −0.041** (0.019) −0.083** (0.035)

Winter wheat contango −0.006 (0.020) 0.006 (0.016) −0.029* (0.017)

Winter wheat
backwardation

0.013 (0.015) 0.015 (0.014) 0.073 (0.052)

Spring wheat STU −0.009 (0.017) −0.015 (0.015) 0.002 (0.011)

Winter wheat STU 0.021 (0.020) 0.024 (0.017) 0.008 (0.022)

Spring wheat HPL 0.003 (0.002)

Spring wheat HPS −0.005*** (0.002)

Spring wheat planning/
planting period

0.002 (0.047)

Spring wheat preharvest
period

0.065 (0.070)

VIX 0.002 (0.002)

Hamilton index −0.020 (0.028)

Spring wheat IV TTM 0.001 (0.001)

Spring wheat IV rollover
dummy

−0.038 (0.074)

Economic crisis of 2007–
2008

0.088 (0.150)

Constant 0.085 (0.070) 0.023 (0.058) 0.390*** (0.110)

Panel B: Variance equation

Exogenous variables

Log of squared residual 1st

lag
0.053*** (0.013)

Log of squared residual 2nd

lag
0.065*** (0.013)

Log of squared residual 3rd

lag
0.051*** (0.014)

Spring wheat contango −0.120*** (0.040) −0.160 (0.12)

Spring wheat
backwardation

−0.051*** (0.019) −0.100*** (0.037)

Winter wheat contango −0.021 (0.034) −0.040 (0.110)

Winter wheat
backwardation

−0.006 (0.020) 0.000 (0.047)

(Continued)
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and corn and soybean futures returns. The prospect of a contango (backwardation) in the substi-
tute market only has an impact on soybean (corn) futures returns but not on their price variability
measures. However, STU of the substitute commodity appears to affect their volatility. In the
wheat markets, the contango in the substitute market seems to affect price variability measures.

Impulse Response Functions

The IRFs obtained from the nonstructural VAR model estimation for each commodity IV series
are illustrated in Figures 1–4.19 Each figure shows the responses in implied volatility to one-stan-
dard-deviation shocks in the other variables along with 95% confidence intervals. While the
responses in corn nearby IV in Figure 1 are not affected by the shocks in soybean fundamentals
and corn hedging pressures, they are somewhat persistent to the fundamental shocks in the corn

Table 6. (Continued )

Spring wheat futures
return (CH model)

Spring wheat futures return
(GARCH-X model)

Spring wheat IV series
(GARCH model)

Spring wheat STU 0.001 (0.032) 0.140 (0.093)

Winter wheat STU −0.040 (0.038) −0.028 (0.130)

Spring wheat planning/
planting period

−0.310*** (0.100) −0.680** (0.320)

Spring wheat preharvest
period

−0.023 (0.110) −0.170 (0.480)

VIX 0.009** (0.004) 0.010 (0.011)

Hamilton index −0.039 (0.046) 0.003 (0.210)

Spring wheat futures TTM −0.006*** (0.002) −0.009 (0.011)

Spring wheat futures
rollover dummy

0.500*** (0.190) 0.780 (3.340)

Economic crisis 2007–2008 0.600*** (0.130) 0.950*** (0.370)

Constant −0.150 (0.180) −2.970*** (0.700)

GARCH components

ARCH parameter 0.063*** (0.010) 0.310*** (0.075)

GARCH parameter 0.920*** (0.015) 0.710*** (0.042)

Degrees of freedom 10.379*** (1.220)

Constant 0.110*** (0.026)

Model diagnostics

Observations 5,778 5,778 5,778

Log Likelihood −9,898.574 −9,136.208

AIC 25,734.53 19,847.150 18,314.420

BIC 25,847.78 20,013.690 18,454.310

Note: Robust standard errors are given in parentheses. The GARCH-X(1,1) model for futures returns assumes a Student’s t-distribution for the
error term and the associated degrees of freedom parameter is estimated along with the other parameters of the model. AIC stands for
Akaike’s Information Criteria and BIC stands for Bayesian Information Criteria. The asterisks *, ** and *** represent statistical
significance at the 10%, 5% and 1% level, respectively.

19The IRFs for deferred series are available in appendix Figures A1–A4.
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Table 7. Summary of results on commodity fundamentals

Own market Substitute market

Contango Backwardation STU Contango Backwardation STU

Futures return (CH, GARCH)

Corn −, − ×, × ×, � ×, × �, � ×, ×

Soybean −, − ×, × ×, − −, − ×, × ×, ×

Winter wheat −, − −, − ×, × ×, × ×, × ×, ×

Spring wheat −, − ×, − ×, × ×, × ×, × ×, ×

Price variability (CH, GARCH, IV)

Corn �, �, � −, −, × −,−, − ×, ×, × ×, ×, × −, ×, ×

Soybean ×, ×, × −, ×, × ×, ×, × ×, ×, × ×, ×, × ×, ×, −

Winter wheat ×, ×, × ×, ×, × ×, ×, × −, ×, − ×, ×, × ×, ×, ×

Spring wheat −, ×, × −, −, − ×, ×, × ×, ×, − ×, ×, × ×, ×, ×

Note: The signs� and − indicate the signs of the estimated coefficients that are statistically significant at least at the 10% level, and the signs
× indicate statistically insignificant estimates.

Figure 1. Impulse response analysis of corn nearby IV. Notes: Orthogonalised impulse response functions of nearby IV
series following a one-standard-deviation shock in each of the listed variables are presented along with 95% confidence
intervals.

Journal of Agricultural and Applied Economics 743

https://doi.org/10.1017/aae.2022.37 Published online by Cambridge University Press

https://doi.org/10.1017/aae.2022.37


market (days six through eight for contango, day eight for backwardation and days three to eight
for STU) and in the VIX (days six to eight). A one-standard-deviation shock to backwardation in
the corn market shows an immediate negative influence on the IV, suggesting a volatility spike.20

Positive shocks to corn STU lead to an initial drop in corn nearby IV. On the other hand, contango
shocks result in heightened IV, similar to our findings in Table 3. In Figure 2, we see a much more
modest response in the soybean nearby IV to shocks in soybean STU (days four through eight),
corn contango (day eight).

In the case of winter wheat in Figure 3, there is a statistically significant and noticeable response
to backwardation in its own market (days one through eight). Figure 4 reveals that spring wheat
nearby IV is significantly and negatively affected by the shocks to both contango (days one
through eight) and backwardation (days two to eight) in its own market. In addition, we see
shocks to winter wheat contango (days one to five) and backwardation (days two to six) to have
modest impacts on spring wheat nearby IV.21

In general, these IRFs are in line with the findings in Tables 3–6: commodity fundamentals
both in their own markets and in the markets of substitute commodities influence the grain
and oilseed IVs more than the VIX.

Figure 2. Impulse response analysis of soybean nearby IV. Notes: Orthogonalised impulse response functions of nearby IV
series following a one-standard-deviation shock in each of the listed variables are presented along with 95% confidence
intervals.

20Recall that the net-cost-of-carry variable during backwardation takes negative values, and therefore, a negative influence
together with the negative net-cost-of-carry variable indicates higher IV.

21When we use 90% confidence interval, the number of statistically significant estimates (out of a total of 72 estimates for
each commodity) increases from 13 to 21 for corn, from 10 to 15 for soybean, from 10 to 14 for winter wheat, and from 25 to
30 for spring wheat.
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Summary and Conclusions
Our study adds to existing empirical evidence on the link between the measures of volatility (both
backward- and forward-looking measures) and commodity fundamentals, such as storage, in the
grain and oilseed markets of the U.S. More importantly, we extend previous literature and econo-
metric approaches to account for the spillover effects of fundamentals in substitute commodity
markets on futures return levels and variances as well as implied volatilities. Using the Working
curve, devised from intertemporal price differences, as a measure of the future state of inventories,
we demonstrate the impact of contango and backwardation not only in a crop’s own market but
also in the substitute commodity market on futures returns and the two measures of volatility.
Shocks to own-market storage regimes have stronger impacts on both futures return variance
and IV, while storage shocks in the substitute commodity market show rather modest impacts.
Our findings of heightened IV levels in the corn market under both contango and backwardation
are in contrast with Adjemian et al. (2017), who argued that backwardation in corn boosts IV to a
larger extent than contango moderates it. However, unlike their model, our models distinguish the
net cost of carry under these two storage regimes explicitly and also control for STU. Our models
also reveal some spillover effects of STU across corn and soybean markets. We only find evidence
for hedging pressures to impact winter and spring wheat IVs. This is in line with the findings of
McKenzie, Thomsen, and Adjemian (2022), who find that even though hedging pressure proxies
have a significant negative impact on grain IVs, they cannot fully explain the shape of IVFs. While
seasonality effects are more prominent in corn and soybean markets, maturity effects exist only in
wheat markets.

Figure 3. Impulse response analysis of winter wheat nearby IV. Notes: Orthogonalised impulse response functions of
nearby IV series following a one-standard-deviation shock in each of the listed variables are presented along with 95%
confidence intervals.
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Our results are important in terms of revealing cross-commodity effects of commodity funda-
mentals on both futures return variances and IVs in grain and oilseed markets. Given the infor-
mation content of IV guides decisions regarding costs associated with placing/lifting hedges,
structuring new insurance products (such as NGGCs), cross-market hedging, crop insurance pol-
icies and agricultural subsidy programmes, disentangling impacts of key determinants of IV is
important to have better IV forecasts. Our results show that as futures markets become more
dependent on each other, cross-market effects should be considered while ascertaining levels
of both backward- and forward-looking volatilities. VIX cannot be considered a sole determinant
of futures return variance and IV, given that the storage regimes and STUs evidently affect their
levels in agricultural commodity markets.

Data availability statement. The data that support the findings of this study are available to purchase from Barchart and
Bloomberg. Some of the data that support the findings of this study are openly available on USDA and CFTC web sites.
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Figure 4. Impulse response analysis of spring wheat nearby IV. Notes: Orthogonalised impulse response functions of nearby
IV series following a one-standard-deviation shock in each of the listed variables are presented along with 95% confidence
intervals. Horizontal and vertical axes represent the days and percentage point changes in IV, respectively.
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Appendix A: Deferred Series Results

Table A1. Deferred futures and options contracts rollover

1st Deferred Series 2nd Deferred Series

Corn Soybean Winter wheat Spring wheat Corn Soybean Winter wheat Spring wheat

January 1–15 May May May May Jul Jul Jul Jul

January 16–31 May May May May Jul Jul Jul Jul

February 1–15 May May May May Jul Jul Jul Jul

February 16–28 Jul Jul Jul Jul Dec Nov Sep Sep

March 1–15 Jul Jul Jul Jul Dec Nov Sep Sep

March 16–31 Jul Jul Jul Jul Dec Nov Sep Sep

April 1–15 Jul Jul Jul Jul Dec Nov Sep Sep

April 16–30 Dec Nov Sep Sep Mar Mar Dec Dec

May 1–15 Dec Nov Sep Sep Mar Mar Dec Dec

May 16–31 Dec Nov Sep Sep Mar Mar Dec Dec

June 1–15 Dec Nov Sep Sep Mar Mar Dec Dec

June 16–30 Mar Mar Dec Dec May May Mar Mar

July 1–15 Mar Mar Dec Dec May May Mar Mar

July 16–31 Mar Mar Dec Dec May May Mar Mar

August 1–15 Mar Mar Dec Dec May May Mar Mar

August 16–31 Mar Mar Mar Mar May May May May

September 1–15 Mar Mar Mar Mar May May May May

September 16–30 Mar Mar Mar Mar May May May May

October 1–15 Mar Mar Mar Mar May May May May

October 16–31 May May Mar Mar Jul Jul May May

November 1–15 May May Mar Mar Jul Jul May May

November 16–30 May May May May Jul Jul Jul Jul

December 1–15 May May May May Jul Jul Jul Jul

December 16–31 May May May May Jul Jul Jul Jul
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Table A2. Summary statistics for deferred series futures returns and IV

Mean Std. dev. Max. Min. Skewness Kurtosis

Corn

1st Deferred futures return (%) −0.022 1.535 8.254 −7.757 0.063 5.441

1st Deferred IV (%) 25.28 6.861 49.46 11.545 0.878 3.457

Observations 5,743

2nd Deferred futures return (%) −0.014 1.467 8.038 −7.752 0.015 5.786

2nd Deferred IV (%) 25.44 6.13 47.34 14.35 0.965 3.649

Net cost of carry:

Contango (%) 4.202 2.31 13.017 0.006 0.728 3.619

Backwardation (%) −8.785 9.592 0 −39.427 −1.115 3.28

Observations 5,524

Soybean

1st Deferred futures return (%) 0.015 1.366 7.05 −7.186 −0.188 5.497

1st Deferred IV (%) 22.54 6.209 59.32 11.555 1.413 5.389

Observations 5,743

2nd Deferred futures return (%) 0.013 1.296 7.065 −7.111 −0.241 5.95

2nd Deferred IV (%) 22.41 5.896 48.92 12.315 1.254 4.48

Net cost of carry:

Contango (%) 1.526 1.019 5.624 0.003 0.812 3.128

Backwardation (%) −4.86 6.086 −0.002 −32.519 −2.055 7.093

Observations 5,524

Winter wheat

1st Deferred futures return (%) −0.032 1.631 8.01 −8.873 0.114 4.853

1st Deferred IV (%) 26.419 6.101 62.78 15.89 1.223 4.609

Observations 5,774

2nd Deferred futures return (%) −0.026 1.564 7.871 −8.732 0.117 5.005

2nd Deferred IV (%) 25.741 5.574 52.63 14.94 1.356 4.729

Net cost of carry:

Contango (%) 3.714 1.942 9.603 0.006 0.395 2.817

Backwardation (%) −5.544 5.127 −0.001 −23.811 −1.058 3.246

Observations 5,625

Spring wheat

1st Deferred futures return (%) −0.012 1.447 9.269 −8.552 0.137 6.171

1st Deferred IV (%) 24.684 6.987 103.62 13.81 1.746 9.056

Observations 5,774

2nd Deferred futures return (%) −0.012 1.377 8.289 −8.409 0.097 6.254

2nd Deferred IV (%) 24.08 6.44 104.03 4.18 2.065 13.189
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Table A2. (Continued )

Mean Std. dev. Max. Min. Skewness Kurtosis

Net cost of carry:

Contango (%) 2.507 1.525 7.589 0.001 0.417 2.516

Backwardation (%) −4.359 5.424 −0.003 −49.016 −3.176 17.985

Observations 5,625

Note: Net cost of carry per bushel is calculated using the nearby and 2nd deferred futures series to calculate the slope of the term structure.
The coefficient for skewness is m3m2

−3/2 and for kurtosis is m4m2
−2, where mr is the rth moment about the mean.

Table A3. Determinants of corn first deferred volatility

Corn futures return
(CH model)

Corn futures return
(GARCH-X model)

Corn IV series
(GARCH model)

Panel A: Mean equation

Corn futures returns 1st lag 0.031* (0.017) 0.017 (0.013)

Corn IV 1st lag 0.99*** (0.004)

Corn contango −0.046*** (0.014) −0.041*** (0.013) 0.017 (0.013)

Corn backwardation 0.001 (0.006) −0.004 (0.008) −0.001 (0.003)

Soybean contango −0.010 (0.029) 0.013 (0.023) −0.024 (0.030)

Soybean backwardation 0.009 (0.006) 0.011* (0.006) 0.002 (0.003)

Corn STU 0.058 (0.042) 0.074** (0.032) −0.11* (0.058)

Soybean STU −0.010 (0.041) −0.010 (0.032) −0.014 (0.015)

Corn HPL −0.004 (0.004)

Corn HPS −0.002 (0.005)

Corn planning/planting period 0.320*** (0.110)

Corn preharvest period 0.110* (0.058)

VIX 0.005* (0.003)

Hamilton index −0.003 (0.019)

Corn IV TTM 0.001 (0.000)

Corn IV rollover dummy 0.140 (0.097)

Economic crisis of 2007–2008 0.110 (0.110)

Constant 0.013 (0.061) −0.069 (0.048) 0.220 (0.130)

Panel B: Variance equation

Exogenous variables

Log of squared residual 1st lag 0.033** (0.013)

Log of squared residual 2nd lag 0.055*** (0.014)

Log of squared residual 3rd lag 0.032** (0.013)

Corn contango 0.031 (0.024) 0.170** (0.073)

Corn backwardation −0.028*** (0.009) −0.041*** (0.014)

(Continued)

Journal of Agricultural and Applied Economics 751

https://doi.org/10.1017/aae.2022.37 Published online by Cambridge University Press

https://doi.org/10.1017/aae.2022.37


Table A3. (Continued )

Corn futures return
(CH model)

Corn futures return
(GARCH-X model)

Corn IV series
(GARCH model)

Soybean contango 0.037 (0.044) −0.075 (0.100)

Soybean backwardation 0.003 (0.009) 0.004 (0.029)

Corn STU −0.420*** (0.160) −1.010*** (0.380)

Soybean STU −0.190*** (0.071) −0.120 (0.180)

Corn planning/planting period 0.900*** (0.270) 2.630*** (0.660)

Corn preharvest period 0.880*** (0.160) 2.140*** (0.440)

VIX 0.008* (0.004) 0.008 (0.012)

Hamilton index −0.190*** (0.049) −0.180 (0.110)

Corn futures TTM 0.001 (0.001) −0.001 (0.005)

Corn futures rollover dummy −0.240 (0.250) 0.650 (1.680)

Economic crisis 2007–2008 0.960*** (0.130) 1.320*** (0.240)

Constant −0.880*** (0.230) −3.480*** (0.910)

GARCH components

ARCH parameter 0.050*** (0.010) 0.160*** (0.030)

GARCH parameter 0.930*** (0.016) 0.790*** (0.042)

Degrees of freedom 6.746*** (0.551)

Constant 0.038*** (0.012)

Model diagnostics

Observations 5,743 5,743 5,743

Log Likelihood −9,952.870 −6,359.000

AIC 25,883.260 19,955.740 12,758.010

BIC 25,996.400 20,122.140 12,891.120

Note: Robust standard errors are given in parentheses. The GARCH-X(1,1) model for futures returns assumes a Student’s t-distribution for the
error term and the associated degrees of freedom parameter is estimated along with the other parameters of the model. AIC stands for
Akaike’s Information Criteria and BIC stands for Bayesian Information Criteria. The asterisks *, ** and *** represent statistical
significance at the 10%, 5% and 1% level, respectively.
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Table A4. Determinants of corn second deferred volatility

Corn futures return
(CH model)

Corn futures return
(GARCH-X model)

Corn IV series
(GARCH model)

Panel A: Mean equation

Corn futures returns 1st lag 0.022 (0.018) 0.010 (0.014)

Corn IV 1st lag 0.990*** (0.002)

Corn contango −0.032*** (0.009) −0.024*** (0.007) 0.001 (0.003)

Corn backwardation 0.004 (0.005) −0.001 (0.004) −0.001 (0.002)

Soybean contango −0.001 (0.021) 0.019 (0.017) −0.004 (0.007)

Soybean backwardation 0.002 (0.005) −0.000 (0.005) −0.002 (0.002)

Corn STU 0.075* (0.044) 0.083** (0.034) −0.032 (0.034)

Soybean STU −0.011 (0.042) −0.011 (0.032) 0.014 (0.012)

Corn HPL −0.010 (0.002)

Corn HPS 0.002 (0.002)

Corn planning/planting period 0.110* (0.062)

Corn preharvest period 0.028 (0.034)

VIX 0.003*** (0.001)

Hamilton index 0.001 (0.010)

Corn IV TTM 0.001* (0.000)

Corn IV rollover dummy 0.051 (0.038)

Economic crisis of 2007–2008 0.072* (0.043)

Constant 0.003 (0.059) −0.089** (0.045) 0.011 (0.066)

Panel B: Variance equation

Exogenous variables

Log of squared residual 1st lag 0.046*** (0.014)

Log of squared residual 2nd lag 0.055*** (0.014)

Corn contango2 0.006 (0.017) 0.075* (0.044)

Corn backwardation2 −0.008 (0.009) −0.021 (0.015)

Soybean contango2 0.066* (0.034) 0.041 (0.081)

Soybean backwardation2 −0.019* (0.0083) −0.039* (0.022)

Corn STU −0.480** (0.180) −0.790* (0.410)

Soybean STU −0.120 (0.071) −0.025 (0.210)

Corn planning/planting period 0.860** (0.320) 1.900*** (0.740)

Corn preharvest period 1.000*** (0.180) 1.710*** (0.410)

VIX 0.013** (0.004) 0.015 (0.011)

Hamilton index −0.170*** (0.048) −0.180* (0.110)

Corn futures TTM 0.000 (0.001) 0.006 (0.005)

Corn futures rollover dummy −0.310 (0.230) −6.230*** (1.710)

Economic crisis 2007–2008 0.970*** (0.130) 1.330*** (0.260)
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Table A4. (Continued )

Corn futures return
(CH model)

Corn futures return
(GARCH-X model)

Corn IV series
(GARCH model)

Constant −1.060*** (0.280) −4.930*** (1.210)

GARCH components

ARCH parameter 0.0520*** (0.010) 0.140** (0.058)

GARCH parameter 0.920*** (0.014) 0.880*** (0.051)

Degrees of freedom 6.527*** (0.528)

Constant 0.018* (0.010)

Model diagnostics

Observations 5,524 5,524 5,524

Log Likelihood −9,238.111 −4,658.508

AIC 24,988.720 18,526.220 9,359.016

BIC 25,094.580 18,691.640 9,497.970

Note: Robust standard errors are given in parentheses. The GARCH-X(1,1) model for futures returns assumes a Student’s t-distribution for the
error term and the associated degrees of freedom parameter is estimated along with the other parameters of the model. AIC stands for
Akaike’s Information Criteria and BIC stands for Bayesian Information Criteria. The asterisks *, ** and *** represent statistical
significance at the 10%, 5% and 1% level, respectively.

Table A5. Determinants of soybean first deferred volatility

Soybean futures return
(CH model)

Soybean futures return
(GARCH-X model)

Soybean IV series
(GARCH model)

Panel A: Mean equation

Soybean futures returns 1st lag −0.016 (0.016) −0.028** (0.013)

Soybean IV 1st lag 0.99*** (0.002)

Soybean contango −0.076*** (0.024) −0.047** (0.021) −0.019** (0.009)

Soybean backwardation 0.005 (0.006) 0.001 (0.005) −0.004* (0.002)

Corn contango −0.027** (0.012) −0.033*** (0.011) 0.008 (0.006)

Corn backwardation 0.007 (0.005) 0.006 (0.005) 0.000 (0.003)

Soybean STU −0.044 (0.038) −0.052 (0.033) −0.001 (0.015)

Corn STU 0.039 (0.038) 0.022 (0.033) −0.021 (0.027)

Soybean HPL −0.002 (0.002)

Soybean HPS −0.001 (0.002)

Soybean planning/planting
period

0.069 (0.043)

Soybean preharvest period −0.008 (0.031)

VIX 0.005*** (0.001)

Hamilton index 0.027** (0.012)

Soybean IV TTM 0.001* (0.000)
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Table A5. (Continued )

Soybean futures return
(CH model)

Soybean futures return
(GARCH-X model)

Soybean IV series
(GARCH model)

Soybean IV rollover dummy 0.065 (0.046)

Economic crisis of 2007–2008 0.120** (0.049)

Constant 0.140** (0.053) 0.170*** (0.045) 0.080 (0.063)

Panel B: Variance equation

Exogenous variables

Log of squared residual 1st lag 0.000 (0.013)

Log of squared residual 2nd lag 0.033** (0.014)

Log of squared residual 3rd lag 0.026* (0.014)

Soybean contango −0.051 (0.044) −0.053 (0.130)

Soybean backwardation −0.014* (0.008) −0.009 (0.030)

Corn contango 0.022 (0.023) 0.072 (0.065)

Corn backwardation 0.002 (0.009) 0.005 (0.023)

Soybean STU 0.035 (0.065) 0.065 (0.220)

Corn STU −0.310*** (0.120) −1.070*** (0.390)

Soybean planning/planting
period

0.390** (0.170) 2.450*** (0.630)

Soybean preharvest period 0.590*** (0.150) 0.720 (0.700)

VIX 0.023*** (0.004) 0.039*** (0.013)

Hamilton index 0.120*** (0.047) 0.350** (0.150)

Soybean futures TTM 0.001 (0.002) 0.007 (0.007)

Soybean futures rollover dummy −0.320 (0.270) −4.840 (8.890)

Economic crisis 2007–2008 0.480*** (0.130) 0.530** (0.260)

Constant −1.360*** (0.230) −5.420*** (1.230)

GARCH components

ARCH parameter 0.033*** (0.006) 0.150*** (0.029)

GARCH parameter 0.950*** (0.009) 0.850*** (0.030)

Degrees of freedom 7.354*** (0.638)

Constant 0.012*** (0.004)

Model diagnostics

Observations 5,743 5,743 5,743

Log Likelihood −9,396.740 −5,380.366

AIC 25,908.620 18,843.480 10,802.730

BIC 26,021.760 19,009.870 10,942.500

Note: Robust standard errors are given in parentheses. The GARCH-X(1,1) model for futures returns assumes a Student’s t-distribution for the
error term and the associated degrees of freedom parameter is estimated along with the other parameters of the model. AIC stands for
Akaike’s Information Criteria and BIC stands for Bayesian Information Criteria. The asterisks *, ** and *** represent statistical
significance at the 10%, 5% and 1% level, respectively.
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Table A6. Determinants of soybean second deferred volatility

Soybean futures return
(CH model)

Soybean futures return
(GARCH-X model)

Soybean IV series
(GARCH model)

Panel A: Mean equation

Soybean futures returns 1st lag −0.021 (0.017) −0.030** (0.013)

Soybean IV 1st lag 0.710*** (0.110)

Soybean IV 2nd lag 0.260*** (0.100)

Soybean contango −0.042** (0.017) −0.025 (0.015) −0.110*** (0.035)

Soybean backwardation 0.001 (0.005) −0.002 (0.004) 0.003 (0.003)

Corn contango −0.020** (0.008) −0.021*** (0.007) −0.013 (0.010)

Corn backwardation 0.005 (0.004) 0.005 (0.003) 0.001 (0.002)

Soybean STU −0.027 (0.037) −0.029 (0.032) −0.011 (0.027)

Corn STU 0.044 (0.038) 0.021 (0.033) 0.019 (0.048)

Soybean HPL −0.023** (0.009)

Soybean HPS −0.017* (0.010)

Soybean planning/planting period −0.067 (0.090)

Soybean preharvest period −0.100 (0.097)

VIX 0.0100*** (0.004)

Hamilton index 0.100*** (0.028)

Soybean IV TTM 0.000 (0.001)

Soybean IV rollover dummy −0.091 (0.069)

Economic crisis of 2007–2008 0.300*** (0.099)

Constant 0.091* (0.052) 0.120*** (0.044) 1.040*** (0.32)

Panel B: Variance equation

Exogenous variables

Log of squared residual 1st lag 0.027** (0.014)

Log of squared residual 2nd lag 0.029** (0.013)

Soybean contango −0.073** (0.034) −0.004 (0.110)

Soybean backwardation −0.018** (0.008) −0.033 (0.031)

Corn contango 0.044*** (0.016) 0.100* (0.057)

Corn backwardation 0.002 (0.007) 0.014 (0.025)

Soybean STU 0.058 (0.070) 0.250 (0.200)

Corn STU −0.410*** (0.130) −1.160*** (0.360)

Soybean planning/planting period 0.390* (0.210) 1.850*** (0.630)

Soybean preharvest period 0.660*** (0.150) 0.740 (0.540)

VIX 0.022*** (0.005) 0.041*** (0.012)

Hamilton index 0.073 (0.048) 0.260* (0.140)

Soybean futures TTM −0.002 (0.001) 0.007 (0.005)

Soybean futures rollover dummy −0.220 (0.250) −4.760 (3.440)
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Table A6. (Continued )

Soybean futures return
(CH model)

Soybean futures return
(GARCH-X model)

Soybean IV series
(GARCH model)

Economic crisis 2007–2008 0.630*** (0.130) 0.590** (0.290)

Constant −1.000*** (0.290) −5.940*** (1.240)

GARCH components

ARCH parameter 0.033*** (0.005) 0.110 (0.073)

GARCH parameter 0.950*** (0.007) 0.910*** (0.053)

Degrees of freedom 6.902*** (0.583)

Constant 0.001 (0.002)

Model diagnostics

Observations 5,524 5,524 5,524

Log Likelihood −8,686.864 −5,749.163

AIC 25,007.770 17,423.730 11,540.330

BIC 25,113.640 17,589.15 11,679.280

Note: Robust standard errors are given in parentheses. The GARCH-X(1,1) model for futures returns assumes a Student’s t-distribution for the
error term and the associated degrees of freedom parameter is estimated along with the other parameters of the model. AIC stands for
Akaike’s Information Criteria and BIC stands for Bayesian Information Criteria. The asterisks *, ** and *** represent statistical
significance at the 10%, 5% and 1% level, respectively.

Table A7. Determinants of winter wheat first deferred volatility

Winter wheat futures
return (CH model)

Winter wheat futures return
(GARCH-X model)

Winter wheat IV series
(GARCH model)

Panel A: Mean equation

Winter wheat futures returns
1st lag

0.033** (0.016) 0.028** (0.014)

Winter wheat IV 1st lag 0.940*** (0.013)

Winter wheat IV 2nd lag 0.065*** (0.017)

Winter wheat IV 3rd lag −0.009 (0.012)

Winter wheat contango −0.044** (0.022) −0.033* (0.019) −0.006 (0.008)

Winter wheat backwardation −0.021 (0.015) −0.016 (0.013) −0.002 (0.004)

Spring wheat contango −0.035 (0.027) −0.031 (0.022) −0.016** (0.007)

Spring wheat backwardation 0.016 (0.018) 0.012 (0.016) −0.001 (0.003)

Winter wheat STU 0.009 (0.023) 0.015 (0.021) 0.001 (0.010)

Spring wheat STU −0.012 (0.019) −0.014 (0.017) 0.006 (0.008)

Winter wheat HPL 0.002** (0.001)
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Table A7. (Continued )

Winter wheat futures
return (CH model)

Winter wheat futures return
(GARCH-X model)

Winter wheat IV series
(GARCH model)

Winter wheat HPS −0.001 (0.001)

Winter wheat planning/planting
period

−0.023 (0.028)

Winter wheat preharvest period 0.010 (0.027)

VIX 0.002** (0.001)

Hamilton index −0.018** (0.009)

Winter wheat IV TTM 0.000 (0.000)

Winter wheat IV rollover dummy 0.024 (0.037)

Economic crisis of 2007–2008 0.064** (0.028)

Constant 0.084 (0.075) 0.026 (0.066) 0.097 (0.063)

Panel B: Variance equation

Exogenous variables

Log of squared residual 1st lag 0.014 (0.012)

Log of squared residual 2nd lag 0.034** (0.013)

Log of squared residual 3rd lag 0.039*** (0.013)

Winter wheat contango 0.057 (0.036) 0.110 (0.140)

Winter wheat backwardation 0.036 (0.022) −0.012 (0.054)

Spring wheat contango −0.120*** (0.040) −0.160 (0.130)

Spring wheat backwardation −0.037* (0.019) −0.046 (0.050)

Winter wheat STU −0.018 (0.044) −0.038 (0.160)

Spring wheat STU −0.035 (0.035) 0.150* (0.088)

Winter wheat planning/planting
period

−0.051 (0.130) −0.210 (0.630)

Winter wheat preharvest period −0.150 (0.130) 0.300 (0.810)

VIX 0.004 (0.004) 0.003 (0.018)

Hamilton index −0.099** (0.047) −0.011 (0.200)

Winter wheat futures TTM −0.004** (0.002) −0.005 (0.016)

Winter wheat futures rollover
dummy

0.200 (0.240) 2.080 (1.680)

Economic crisis 2007–2008 0.610*** (0.140) 1.050*** (0.360)

Constant 0.083 (0.220) −3.840** (1.920)

GARCH components

ARCH parameter 0.040*** (0.010) 0.380** (0.150)

GARCH parameter 0.950*** (0.014) 0.680*** (0.140)

Degrees of freedom 10.505*** (1.223)

Constant 0.100 (0.063)
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Table A7. (Continued )

Winter wheat futures
return (CH model)

Winter wheat futures return
(GARCH-X model)

Winter wheat IV series
(GARCH model)

Model diagnostics

Observations 5,774 5,774 5,774

Log Likelihood −10,573.390 −52,23.260

AIC 26,046.220 21,196.780 10,492.520

BIC 26,159.450 21,363.310 10,645.730

Note: Robust standard errors are given in parentheses. The GARCH-X(1,1) model for futures returns assumes a Student’s t-distribution for the
error term and the associated degrees of freedom parameter is estimated along with the other parameters of the model. AIC stands for
Akaike’s Information Criteria and BIC stands for Bayesian Information Criteria. The asterisks *, ** and *** represent statistical
significance at the 10%, 5% and 1% level, respectively.

Table A8. Determinants of winter wheat second deferred volatility

Winter wheat futures
return (CH model)

Winter wheat futures return
(GARCH-X model)

Winter wheat IV series
(GARCH model)

Panel A: Mean equation

Winter wheat futures returns
1st lag

0.026 (0.017) 0.024* (0.014)

Winter wheat IV 1st lag 0.900*** (0.025)

Winter wheat IV 2nd lag 0.092*** (0.028)

Winter wheat contango −0.027** (0.012) −0.021** (0.010) −0.003 (0.013)

Winter wheat backwardation −0.009 (0.009) −0.001 (0.008) −0.005 (0.006)

Spring wheat contango −0.021 (0.015) −0.024* (0.013) −0.005 (0.014)

Spring wheat backwardation 0.005 (0.013) −0.003 (0.012) 0.008 (0.008)

Winter wheat STU 0.020 (0.023) 0.017 (0.020) 0.013 (0.041)

Spring wheat STU −0.021 (0.019) −0.022 (0.016) 0.015 (0.018)

Winter wheat HPL 0.004 (0.003)

Winter wheat HPS 0.003 (0.003)

Winter wheat planning/planting
period

−0.048 (0.068)

Winter wheat preharvest period −0.052 (0.061)

VIX 0.003 (0.003)

Hamilton index −0.007 (0.058)

Winter wheat IV TTM 0.000 (0.000)

Winter wheat IV rollover
dummy

−0.011 (0.050)

Economic crisis of 2007–2008 0.160* (0.093)

Constant 0.084 (0.073) 0.057 (0.063) 0.089 (0.280)
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Table A8. (Continued )

Winter wheat futures
return (CH model)

Winter wheat futures return
(GARCH-X model)

Winter wheat IV series
(GARCH model)

Panel B: Variance equation

Exogenous variables

Log of squared residual 1st lag 0.034** (0.013)

Log of squared residual 2nd lag 0.059*** (0.014)

Log of squared residual 3rd lag 0.033** (0.014)

Winter wheat contango 0.041** (0.020) 0.110 (0.076)

Winter wheat backwardation 0.017 (0.011) −0.013 (0.029)

Spring wheat contango −0.032 (0.022) −0.052 (0.077)

Spring wheat backwardation −0.032*** (0.011) −0.050** (0.025)

Winter wheat STU −0.070 (0.046) −0.088 (0.190)

Spring wheat STU −0.029 (0.033) 0.170* (0.091)

Winter wheat planning/planting
period

−0.019 (0.140) −0.150 (0.860)

Winter wheat preharvest period 0.005 (0.120) 0.720 (0.920)

VIX 0.005 (0.004) 0.001 (0.023)

Hamilton index −0.140*** (0.046) −0.026 (0.230)

Winter wheat futures TTM −0.002 (0.002) 0.001 (0.014)

Winter wheat futures rollover
dummy

0.140 (0.240) 2.200 (1.370)

Economic crisis 2007–2008 0.610*** (0.130) 1.070** (0.460)

Constant −0.170 (0.290) −5.130* (2.800)

GARCH components

ARCH parameter 0.037*** (0.008) 0.350 (0.430)

GARCH parameter 0.950*** (0.011) 0.300 (1.300)

Degrees of freedom 10.649*** (1.257)

Constant 0.180 (0.440)

Model diagnostics

Observations 5,625 5,625 5,625

Log Likelihood −10,025.67 −5,303.633

AIC 25,076.190 20,101.350 10,649.270

BIC 25,188.970 20,267.220 10,788.600

Note: Robust standard errors are given in parentheses. The GARCH-X(1,1) model for futures returns assumes a Student’s t-distribution for the
error term and the associated degrees of freedom parameter is estimated along with the other parameters of the model. AIC stands for
Akaike’s Information Criteria and BIC stands for Bayesian Information Criteria. The asterisks *, ** and *** represent statistical
significance at the 10%, 5% and 1% level, respectively.
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Table A9. Determinants of spring wheat first deferred volatility

Spring wheat futures
return (CH model)

Spring wheat futures return
(GARCH-X model)

Spring wheat IV series
(GARCH model)

Panel A: Mean equation

Spring wheat futures returns
1st lag

0.034* (0.020) 0.015 (0.014)

Spring wheat IV 1st lag 0.790*** (0.020)

Spring wheat IV 2nd lag 0.140*** (0.022)

Spring wheat IV 3rd lag 0.034** (0.017)

Spring wheat contango −0.077*** (0.025) −0.072*** (0.018) −0.088** (0.041)

Spring wheat backwardation 0.0035 (0.022) −0.011 (0.015) 0.020 (0.044)

Winter wheat contango −0.019 (0.019) −0.001 (0.015) −0.160*** (0.059)

Winter wheat backwardation 0.000 (0.014) 0.003 (0.012) 0.048 (0.045)

Spring wheat STU −0.019 (0.016) −0.017 (0.014) −0.051** (0.024)

Winter wheat STU 0.025 (0.019) 0.026 (0.016) 0.290*** (0.110)

Spring wheat HPL 0.002 (0.003)

Spring wheat HPS −0.011** (0.005)

Spring wheat planning/planting
period

−0.330*** (0.120)

Spring wheat preharvest period 0.083 (0.087)

VIX −0.005 (0.003)

Hamilton index −0.210*** (0.068)

Spring wheat IV TTM −0.008*** (0.003)

Spring wheat IV rollover
dummy

0.370*** (0.140)

Economic crisis of 2007–2008 0.320** (0.150)

Constant 0.085 (0.069) −0.002 (0.056) 1.540*** (0.370)

Panel B: Variance equation

Exogenous variables

Log of squared residual 1st lag 0.046*** (0.013)

Log of squared residual 2nd lag 0.043*** (0.013)

Log of squared residual 3rd lag 0.049*** (0.014)

Spring wheat contango −0.130*** (0.040) −0.120 (0.140)

Spring wheat backwardation −0.062*** (0.017) −0.082* (0.042)

Winter wheat contango 0.000 (0.034) −0.029 (0.130)

Winter wheat backwardation 0.016 (0.021) −0.028 (0.046)

Spring wheat STU −0.017 (0.030) 0.190* (0.100)

Winter wheat STU −0.050 (0.037) −0.074 (0.150)

Spring wheat planning/planting
period

−0.310*** (0.110) −1.110** (0.460)

(Continued)
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Table A9. (Continued )

Spring wheat futures
return (CH model)

Spring wheat futures return
(GARCH-X model)

Spring wheat IV series
(GARCH model)

Spring wheat preharvest period −0.056 (0.110) −0.500 (0.550)

VIX 0.006 (0.004) 0.015 (0.012)

Hamilton index −0.087* (0.047) −0.059 (0.240)

Spring wheat futures TTM −0.003 (0.002) −0.024* (0.014)

Spring wheat futures rollover
dummy

0.160 (0.250) 2.990** (1.280)

Economic crisis 2007–2008 0.640*** (0.140) 1.150*** (0.380)

Constant −0.170 (0.250) −1.450 (1.300)

GARCH components

ARCH parameter 0.059*** (0.010) 0.220*** (0.072)

GARCH parameter 0.930*** (0.014) 0.850*** (0.029)

Degrees of freedom 9.094*** (0.957)

Constant 0.012 (0.0099)

Model diagnostics

Observations 5,774 5,774 5,774

Log Likelihood −9,593.997 −8,357.989

AIC 25,922.080 19,237.990 16,759.980

BIC 26,035.310 19,404.520 16,906.520

Note: Robust standard errors are given in parentheses. The GARCH-X(1,1) model for futures returns assumes a Student’s t-distribution for the
error term and the associated degrees of freedom parameter is estimated along with the other parameters of the model. AIC stands for
Akaike’s Information Criteria and BIC stands for Bayesian Information Criteria. The asterisks *, ** and *** represent statistical
significance at the 10%, 5% and 1% level, respectively.

Table A10. Determinants of spring wheat second deferred volatility

Spring wheat futures
return (CH model)

Spring wheat futures return
(GARCH-X model)

Spring wheat IV series
(GARCH model)

Panel A: Mean equation

Spring wheat futures returns
1st lag

0.028 (0.020) 0.0083 (0.014)

Spring wheat IV 1st lag 0.760*** (0.038)

Spring wheat IV 2nd lag 0.150*** (0.033)

Spring wheat IV 3rd lag 0.077*** (0.028)

Spring wheat contango −0.035*** (0.013) −0.043*** (0.010) −0.017 (0.011)

Spring wheat backwardation 0.003 (0.014) −0.004 (0.009) 0.036** (0.015)

(Continued)
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Table A10. (Continued )

Spring wheat futures
return (CH model)

Spring wheat futures return
(GARCH-X model)

Spring wheat IV series
(GARCH model)

Winter wheat contango −0.013 (0.010) −0.002 (0.008) −0.004 (0.009)

Winter wheat backwardation −0.009 (0.009) −0.001 (0.007) −0.022* (0.012)

Spring wheat STU −0.027* (0.016) −0.020 (0.0130) −0.006 (0.010)

Winter wheat STU 0.032* (0.019) 0.024 (0.016) −0.010 (0.017)

Spring wheat HPL −0.000 (0.002)

Spring wheat HPS −0.000 (0.003)

Spring wheat planning/planting
period

0.000 (0.044)

Spring wheat preharvest period −0.054 (0.062)

VIX 0.008*** (0.003)

Hamilton index 0.023 (0.026)

Spring wheat IV TTM −0.001 (0.001)

Spring wheat IV rollover dummy −2.420*** (0.590)

Economic crisis of 2007–2008 0.170* (0.100)

Constant 0.064 (0.067) 0.014 (0.054) 0.360** (0.160)

Panel B: Variance equation

Exogenous variables

Log of squared residual 1st lag 0.072*** (0.014)

Log of squared residual 2nd lag 0.054*** (0.014)

Log of squared residual 3rd lag 0.046*** (0.014)

Spring wheat contango −0.049** (0.022) −0.074 (0.073)

Spring wheat backwardation −0.040*** (0.011) −0.063*** (0.022)

Winter wheat contango −0.011 (0.018) 0.042 (0.069)

Winter wheat backwardation 0.023** (0.011) −0.003 (0.024)

Spring wheat STU −0.024 (0.029) 0.160 (0.099)

Winter wheat STU −0.042 (0.038) −0.160 (0.160)

Spring wheat planning/planting
period

−0.220** (0.098) −0.630* (0.36)

Spring wheat preharvest period 0.013 (0.110) −0.060 (0.510)

VIX 0.007* (0.004) 0.011 (0.012)

Hamilton index −0.120*** (0.047) −0.150 (0.220)

(Continued)
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Table A10. (Continued )

Spring wheat futures
return (CH model)

Spring wheat futures return
(GARCH-X model)

Spring wheat IV series
(GARCH model)

Spring wheat futures TTM −0.000 (0.002) −0.013** (0.006)

Spring wheat futures rollover
dummy

0.180 (0.230) 2.260** (1.010)

Economic crisis 2007–2008 0.720*** (0.130) 1.240*** (0.380)

Constant −0.550* (0.320) −1.950* (1.120)

GARCH components

ARCH parameter 0.063*** (0.009) 0.470*** (0.160)

GARCH parameter 0.920*** (0.012) 0.430*** (0.100)

Degrees of freedom 8.389*** (0.859)

Constant 0.150*** (0.037)

Model diagnostics

Observations 5,625 5,625 5,625

Log Likelihood −9,038.931 −3,944.915

AIC 25,139.650 18,127.860 7,933.831

BIC 25,252.430 18,293.740 8,068.937

Note: Robust standard errors are given in parentheses. The GARCH-X(1,1) model for futures returns assumes a Student’s t-distribution for the
error term and the associated degrees of freedom parameter is estimated along with the other parameters of the model. AIC stands for
Akaike’s Information Criteria and BIC stands for Bayesian Information Criteria. The asterisks *, ** and *** represent statistical
significance at the 10%, 5% and 1% level, respectively.
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Figure A1. Impulse response analysis of corn deferred IV. Notes: Orthogonalised impulse response functions of deferred IV
series following a one-standard-deviation shock in each of the listed variables are presented along with 95% confidence
intervals.
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Figure A2. Impulse response analysis of soybean deferred IV. Notes: Orthogonalised impulse response functions of deferred
IV series following a one-standard-deviation shock in each of the listed variables are presented along with 95% confidence
intervals.
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Figure A3. Impulse response analysis of winter wheat deferred IV. Notes: Orthogonalised impulse response functions of
deferred IV series following a one-standard-deviation shock in each of the listed variables are presented along with
95% confidence intervals.
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Figure A4. Impulse response analysis of spring wheat deferred IV. Notes: Orthogonalised impulse response functions of
deferred IV series following a one-standard-deviation shock in each of the listed variables are presented along with
95% confidence intervals.
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