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A CHARACTERIZATION OF THE 
LEBESGUE INTEGRAL 

B Y 

B. S. THOMSON 

The first general integrability criterion is due to Riemann. He observed that 
a necessary and sufficient condition for a function f(x) on [a, b] to be integrable 
in his sense is that for each s > 0 there exists a 8 > 0 so that 

n 

Z (o(f,[xi-uxi])(xi-xi-1)<s 
i = \ 

where {x0, xu..., xn} is a partition of [a, 6] with diameter less than 8 (and 
o)(f, I) denotes the oscillation of / on the interval I). 

This conveniently relates integrability to continuity (if only on sets that are 
large in some sense). The same observation holds for Lebesgue's integral, that 
integrability is equivalent to a type of continuity, but no direct parallel with the 
Riemann criterion has been available. In this paper we show that the concept 
of absolute integrability, introduced by E. J. McShane [3] in 1969, provides this 
link. Moreover this shows that McShane's concept characterizes Lebesgue 
integration, a fact which has been well-known but not apparently ever directly 
established. 

0. Preliminaries. In this section we collect some of the basic definitions, 
notations and results needed in the paper. 

0.1. A partition of an interval [a, b] is a collection 

P = {(Ik,xk):k = l,2,...,n} 

where {Ik} is a collection of non-overlapping closed intervals whose union 
is [a, b] and each xk e Ik. 

0.2. By a 8-fine partition, where 8 is a positive function on [a, b], is meant a 
partition P satisfying J c (x - 8(x), x + 8(x)) for each (I, x) e P. If 8(x) = 80> 0 is 
a constant function on [a, b] we can refer to this as a 50-fine partition without 
introducing confusion. 

0.3. m(I) denotes the length of the closed interval I. 
0.4. #(x, E) denotes the characteristic function of the set E. 
0.5. For a given positive function 8, an arbitrary function g on [a, b] and a 

set E c [a, b], we define 

gm8(£) = sup I {|g(x)|*(x, E)m(I):(I, x)eP} 
p 

Received by the editors December 5, 1975 and, in revised form, July 24, 1976. 

353 

https://doi.org/10.4153/CMB-1977-053-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1977-053-3


354 B. S. THOMSON [September 

where the supremum is with regard to all 8-fine partitions P of [a, b]. (Note 
that for any 8 a compactness argument shows that such partitions always exist. 
Also we will abbreviate the summation notation £ { :(I, x)eP} to £P.) 

0.6. As in 0.5 we define 

gm*(E) = inf gm8(E) 
s 

where the infimum is with regard to all positive functions 5 on [a, b]. 
0.7. It can be shown (cf. [6]) that gm* is always a regular outer measure and 

that m* is Lebesgue outer measure on [a, b]. If g is summable then in fact 
gm*(E) = JE |g(x)| dx for measurable E. 

0.8. A function g on [a, b] is said to be integrable if there is a number a so 
that for every e > 0 there exists a positive function 8 such that |Z p g(x)m( / ) -
a\<e for every 8-fine partition P of [a, b]. We can write jb

a g(x) dm = a. 

1. The Riemann integral. The integral outlined in the preliminary section is 
equivalent to the Denjoy-Perron integral; this formulation and the relation to 
the classical integrals is due to R. Henstock [1]. If we follow the details in the 
case where 8(x) is restricted to be a constant function then the resulting 
integral is very obviously the usual Riemann integral. The details on the 
measure m* similarly shift to show that it is equivalent to the Peano-Jordan 
content. 

We show that McShane's concept of absolute integrability in this context 
characterizes the Riemann integral and directly corresponds to the Riemann 
criterion. 

DEFINITION (MCSHANE [3]). A function / defined everywhere on [a, b] is said 
to be absolutely integrable (Riemann sense) if for every e > 0 there is a positive 
number 80 such that 

I 1 \f(x)-f(y)\m(inj)<e 
(I,x)eP(/,y)eP' 

for every pair P, P' of £0-fine partitions of [a, b]. 

It is easy to show that such a function is necessarily Riemann integrable 
(since a Cauchy criterion for the Riemann sums is obtained); it is less obvious 
that this apparently restrictive condition characterizes the Riemann integral. 

THEOREM. A function f defined on [a, b] is absolutely integrable (Riemann 
sense) if and only if it satisfies the Riemann criterion. 

The proof is elementary and is omitted. This establishes that for the 
Riemann case integrability is equivalent to absolute integrability. 
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2. The Lebesgue integral. The notion of absolute integrability in the 
Riemann setting does not serve to restrict the integral. In the more general 
setting it is much more interesting: while the integral itself is the Denjoy-
Perron integral, the absolute integrability concept serves to characterize the 
less encompassing Lebesgue integral. We prove this by a direct assault on the 
definition which clearly shows its measure-theoretic associations. 

DEFINITION. A function / defined everywhere on [a, b] is said to be absolutely 
integrable if for every e > 0 there is a positive function 8 such that 

I X \f(x)-f(y)\m(MJ)<s 
(I,x)eP(J,y)eP' 

for every pair (P, P') of S-fine partitions of [a, b\ 

THEOREM. A function defined everywhere on [a, b] is absolutely integrable if 
and only if f is measurable and fm* is finite. 

Proof. Let us prove the sufficiency part firstly on the assumption that 
|/(x)|<M everywhere. Then using Lusin's criterion for measurability we may 
choose an open set G with m*(G)<e/8M(fc-a) and so that / is continuous 
restricted to F = [a9b]\G. Choose 8t(x) so that if x e G then 
(x-81(x),x + 81(x))c:G and if x e F then | /(x)-/(y) |<e/2(b-a) if |x —y|< 
8i(x) with yeF. Let Ô(x)<ôi(x) so that ms(G)<2m*(G)<e/4M(fc-a). 

Then if P and P' are arbitrary 8-fine partitions of [a, b] it is a routine matter 
to compute that 

Z Z | / W - / ( y ) | m ( i n J ) < — ^ — Z Z m ( i n J ) + 2Mms(G)<s 
(I,x)eP(J,y)eP' L\D ~ a) 

by considering separately sums with both x and y in F and sums with one at 
least of x or y in G. 

Suppose now that / is measurable and (fm)* is finite: if we construct 
/N(*) = / (* ) if |/(*)l —N and zero otherwise then it is possible to show that 
( / - / N ) W * - » 0 . (Indeed this is equivalent to /m*(X„)-»0 where Xn = 
{x:|/(x)|>n} and so follows from standard arguments in measure theory.) 
Hence given e > 0 choose an N so that ( / ~ / N ) ^ * [ « , b]<e/4 and since /N is 
bounded and measurable we may, by the preceeding, choose 8X so that 

I I l /N(x ) - / N (y ) |m( in J )<6 /2 
p p' 

for any ôi-fine partitions P and P'. We choose a 8 < ôi so that 

(f-fN)ms[a, fc]<2(/-/„)m*[a, b]< ell 
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and then we have for any S-fine partitions P and P' 

I I \f(x)~f(y)\ m( in / )<Z I \f(x)-fN(x)\ m(If)J) 
p p' 

+ IIl/N(x)-/N(y)|m(/nj) 

+ IIl/N(y)-/(y)|m(inj) 
<2(/-/N)m6[a,fc] + 6/2<£ 

as required and so / is absolutely integrable. 
To establish the necessity of the conditions it is easy firstly to show that /m* 

is finite by fixing P in the definition and letting P' vary. To obtain that / is 
measurable we use another famous characterization of measurability, namely 
that it is equivalent to a.e. approximate continuity (see for example Saks [5]). 

Let Fn(y) = {x: |/(jc)-/(y)|^l/n} and En={x:x is a point of density for 
Fn(x)}. It is enough to prove that each En is a set of measure zero to complete 
the proof of the theorem. Given e>0 choose 81 so that for any Si-fine 
partitions P and P'; 

IIl/W-/(y)|m(inJ)<e/8» 
p p' 

and 82 so that 

m«(F.(x)ni) 1 
m*(I) 2 

for all x e En and intervals I with x e / c ( x - 82(x), x + 82(x)). 
If S = min(5i, S2) then there exists a S-fine partition ? = {(!*, xk)} with 

I ArUfc,ÊJmak)>èm8(EJ>|m*(E„). 

But as 8 £ S2 we have 

m*(En) < 4 I x(xk, En)m*(Fn(xk) D 4) . 

We can choose a S-fine partition P' = {(Jh y;)} so that for each k 

m*(Fn(xk) D Ifc) < 2 I x{y» Fn(xk))m(Ik D J,). 
i 

Combining we have 

m*(En) < 8 Z X Xteo £n)^(y» Fn(xfc))m(Ik H /,) 
i k 

https://doi.org/10.4153/CMB-1977-053-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1977-053-3


1977] LEBESGUE INTEGRAL 357 

but whenever xkeEn and yieFn(xk) we have |/(xk)-/(yi)|^ 1/n so that 

m*(E n )<8nXI | / (x k ) - / (y i ) |m( / k nJ i )<£ 
i k 

by choice of S < Si. Since e > 0 was arbitrary m*(En) = 0 completing the proof. 
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