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ABSTRACT. Theoretical calculations show that the detailed pattern of 
frequencies from stellar oscillations can in principal produce data that 
can determine stellar masses independent of other input data. 

The determination of stellar properties through the analysis of stellar 
oscillations analogous to the solar 5-minute oscillations relies on the 
comparison of various aspects of the oscillation spectrum to theory. The 
spectral features which can be used will naturally depend on the quality 
of the data. Each of the modes of oscillation observed in the 
integrated starlight can be classified according to the degree A of the 
spherical harmonic Υ™(θ,φ) which describes the pattern of the motion over 
the stellar surface and the radial order η which gives the number of 
nodes in the radial direction. I denote the frequencies by . 
At the crudest level the data will only contain an indication or the 
regular spacing between modes. Each spectral peak will consist 
alternately of the nearly degenerate pairs: ( V P N + - , V2 n ) and 
(v 1 n + ^ >

v 3 η)· The primary measurement from tnis data is 
Δν = +£ - R . As is known from pulsation theory, this« 
spacing'depends on the average density of the star p=3M/(4nR ). 

- - 1/2 
Quantitatively, Ulrich (1986) has shown that Δν = q (p/p0) 
where p @ is the average solar density and the constant q can be chosen 
equal to 133.8 μΗζ to accurately represent the calculations for a 
reasonable range of mass and age. F o r t u n a t e l y q i s n o t s e n s i t i v e t o 
Α/Β, X o r Z; i n c r e a s e s o f 0 . 1 , 0 . 0 1 and 0 . 0 0 1 i n Α/Ε, X and Ζ l e a d 
t o c h a n g e s i n q o f - 0 . 0 5 , + 0 . 4 4 and - 0 . 0 8 μΗζ r e s p e c t i v e l y . 

If either the mass or radius are known from some other data then 
the q relation can be used to get the other quantity. Variants of this 
technique have been used by Guenther and Démarque (1985) and Démarque, 
Guenther and Van Altena (1985) in comparing their models to the 
observations of oscillations in ε Eri by Noyés et al (1984) and 
observations of α Cen and Procyon by Gelly et al (1986). If for 
example the mass of the star is known then the radius can be derived 
with a relative uncertainty equal to one third the relative uncertainty 
in the mass. Radii derived this way may be more accurate than could be 
found from other means. Ages can be estimated from this method if the 
composition is known since a given evolutionary track will pass through 
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the correct radius at only one age. Unfortunately, a critical parameter 
-the helium abundance - is poorly known and its uncertainty renders the 
comparison imprecise. 

The age determination method described by Ulrich ( 1 9 8 6 ) is 
independent of the match to the stellar radius and largely independent 
of the uncertainties in the helium abundance. This method requires 
better frequency resolution than the methods based on q since it depends 
on the resolution of the degeneracy between the A = 0 and 2 and the 
A = 1 and 3 . In addition, the stellar mass enters the determination 
weakly. For example if the quantity = (v^ . - v~ η)/Δ^ has the 
value 0 . 1 3 then one interpretation has the stellar mass*equal to 0 . 8 M Q 
and an age equal to 1 . 8 χ 1 0 yr while another interpretation has the* 
mass equal to 1 · 2 Μ Θ and an age equal to 6 . 6 χ 1 0 yr. Although these 
extreme interpretations require distinctly differing spectral 
characteristics, at a reduced level some ambiguity will remain. 

One of the remarkable features of the Asteroseismology method is 
the potential richness of the data. Although the quantities Δν, 
and a r e useable in a direct fashion and can be interpreted in a 
straightforward manner by using the asymptotic theory by Tassoul ( 1 9 8 0 ) , 
the data clearly contains additional information about the star. This 
additional information will have to be found in deviations from the 
asympototic theory such as the curvature observed in échelle diagrams 
like those published by Grec, Fossat and Pomerantz ( 1 9 8 0 ) , Harvey and 
Duvall ( 1 9 8 4 ) and Henning and Scherrer ( 1 9 8 6 ) . Unfortunately, the task 
of interpreting the deviations is complicated by the fact that current 
solar models do not agree with the observations. 

In spite of the uncertainty due to the discrepancy between the 
models and the observations, it is worthwhile to determine what 
properties of the frequency spectrum might be sensitive to the stellar 
masses and ages. The asteroseismic problem is more restricted than the 
helioseismic problem since the data are limited to just the A = 0 to 3 
modes. Consequently, the ν dependence in the asteroseismic problem 
becomes the primary source of information. Using a simple power series 
representation of the frequencies similar to that adopted by Ulrich 
( 1 9 8 6 ) I write 

2 3 
ν = v Q + Δν(η - n Q) + b 2(n - n Q) + b 3(n - n Q) ( 1 ) 

where n^ is an arbitrary zero point that I have taken as 1 8 for A = 0 
and 1 and as 1 7 for A = 2 and 3 . The subscript A has been suppressed 
in equation ( 1 ) . A representation like that in equation ( 1 ) is 
advantageous since application to observed spectra should be possible by 
means of a simple least square fit to the data. A key issue is the 
range in η that should be included in the least square fit. Another 
question is the number of terms to be included beyond b~ and whether 
b~ itself should be retained. Tradeoffs over these issues are 
obviously necessary since a wider range in η will possibly require more 
terms and better data. The higher values of η cause a theoretical 
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problem because the chromospheric mode can interact with the interior 
mode and perturb the interior frequencies. In fact this effect may be 
present in the observations which show that for the sun the higher η 
modes have a broader eigenfrequencies than the lover η modes. The S 
shaped curve noted in the observations by Henning and Scherrer (1986) 
and predicted theoretically may be a function of the detailed stellar 
structure. In order to study that property of the models and avoid the 
chromospheric perturbations, I have taken the range in η to be from 11 
to 22 and have used just the four terms shown in equation (1). 

The coefficients b2 and resulting from the least square fits 
to the theoretical frequencies computed for the models discussed by 
Ulrich (1986) are shown in figure 1. The value of A used for the 
figure was 0 although a very similar pattern was found for all A 
values. These coefficients are divided by Δν in order to make the 
results dimensionless. The pattern shown in figure 1 especially for 
b 2/Av is quite encouraging. If theory and observation could be 
adequately developed, this type of result could easily remove the 
ambiguity in stellar mass. Unfortunately when the procedure is applied 
to the solar data from Henning and Scherrer (1986) the resulting value 
of 10 b 2/Av is -0.5 to - 0.6 instead of the value of +1.2 required 
by figure 1. It is unclear whether this substantial discrepancy is a 
result of a deficiency in the model or an observational problem with 
identifying frequencies when they become weak. 

In summary, it appears possible for asteroseismic data to provide 
adequate information to permit the determination of stellar masses 
without reference to other sources of data. Unfortunately, the method 
also appears to be sensitive to details of the model calculation so that 
calibration with primary mass determinations will almost certainly be 
required. 
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Figure 1 Fitting coefficients for the dependence of Λ = 0 modes of 
oscillation on time for three different evolutionary sequences of mass 
0.8, 1.0 and 1.2 M 0. Only those modes with 11 < η < 22 were included 
in the least square fit. The time scales for the three models were 
adjusted so that the initial change of central hydrogen abundance with 
position along the χ axis of the plot is the same. Actual times for the 
three models are shown along the top and bottom axes. 
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