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ABSTRACT

This paper develops a discrete time model for valuing treasury bills and either
forward or futures contracts written against them. It provides formulae for bill
prices, forward prices, futures prices, and their conditional variances and risk
premiums. The interest rate process is described by a multiplicative binomial
random walk whose features conform to some principal characteristics of
observed processes. Initial forward rates are constrained to match initially
observed term structure data.

1. INTRODUCTION

This paper uses a discrete time multiplicative binomial model of the spot
interest rate process to derive pricing formulae for treasury bills, and forward
and futures contracts written against them. All results are developed under
assumptions of zero arbitrage profits. The model is constrained to match the
initial term structure of interest rates, and uses an empirically plausible interest
rate process.

The model explicitly states the theoretical and empirical importance of
initially estimated forward rates, bond maturity dates, and forward and futures
contract delivery dates. We find pricing formulae and time dependent expres-
sions for the conditional variance and conditional risk premiums of bill prices,
forward prices and futures prices. Finally, we use a property of binomial
processes to relate conditional variances and risk premiums, and hence provide
theoretical support for relations used in the empirical literature (ENGLE [1982];
ENGLE, LILIEN and ROBINS [1987]).

1.1. Organization of paper

The paper is organized as follows. The rest of this section reviews relevant
literature. The model and its underlying assumptions are described in Section 2,
which also specifies how the spot rate and the term structure evolve. Section 3

* Earlier versions of this paper were presented to the Inaugural Meetings of the Northern Finance
Association, Ottawa, Canada, September 23-24, 1989, and to the First AFIR International
Colloquium of the International Actuarial Association, Paris, April 23-27, 1990. We thank the
editor and referees for constructive suggestions.
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4 I.G. MORGAN AND E.H. NEAVE

develops formulae for treasury bill prices and shows how the conditional
martingale probabilities are restricted by initial assumptions regarding the term
structure. Section 4 develops formulae for consistently calculating forward
prices, their conditional variances, and conditional risk premiums. Section 5
does the same for futures contracts, and Section 6 concludes.

1.2. Theoretical literature

BLACK [1976] prepares the groundwork for the theory of commodities futures
pricing. Cox, INGERSOLL and Ross [1981], FRENCH [1981], JARROW and
OLDFIELD [1981] and RICHARD and SUNDARESAN [1981], all develop impor-
tant properties of forward and futures contracts and prices. Our discrete time
model is based on the approaches to options pricing used by Cox, Ross and
RUBINSTEIN [1979] and by Cox and RUBINSTEIN [1985].

Our approach is analytically more tractable than Ho and LEE [1986],
RITCHKEN and BOENAWAN [1990], or RITCHKEN and SANKARASUBRAMANIAN
[1990]. In addition, we specify empirically plausible interest rate processes
rather than specifying convenient processes and then constraining them, as do
both Ho and Lee and Ritchken and Sankarasubramanian. Like PEDERSEN,
SHIU and THORLACIUS [1989] we induce shifting yield curve shapes, but also
provide more explicit results than theirs. Our model, like that of TURNBULL
and MILNE [1991], can be expanded to find bill and futures pricing formulae
for interest rate processes with varying degrees of mean reversion (cf. MORGAN
and NEAVE [1992]). While both models can derive prices for many different
kinds of derivative securities, Turnbull and Milne price options, while we price
forward and futures contracts.

We also obtain more explicit results than the more distantly related works of
BLISS and RONN [1989] and of KISHIMOTO [1989]. Bliss and Ronn offer a
trinomial version of the Ho and Lee model, while Kishimoto models both
interest rate and asset price uncertainty.

In some senses, our model is also more tractable than the continuous time
models of HEATH, JARROW and MORTON [1990, 1992] (hereafter HJM) and of
JAMSHIDIAN [1989]. In contrast to HJM and in common with Jamshidian, our
forward interest rate process can be extended to incorporate mean reversion;
cf. MORGAN and NEAVE [1992]. In contrast to both HJM and JAMSHIDIAN
[1989], we find formulae for the martingale probabilities that are consistent
both with the data we use and with the form of stochastic process modelled.
Our model also bears similarities to HJM [1990a] discrete time model, but
HJM focus mainly on the existence of the martingale while we focus mainly on
interpretive issues. Moreover, we find conditions for uniqueness of the
martingale which HJM [1990a] do not. Finally, we establish analytical relations
between instruments' risk premiums and their prices' conditional variance that
have not previously been obtained in any of the other models mentioned
above.

JACOBS and JONES [1980] report one of the first empirical studies of treasury
bill futures prices. Their approach of comparing model predicted with observed
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prices has since become standard and is discussed in such works as BLACK,

DERMAN and TOY [1990], HULL and WHITE [1990], RITCHKEN and SANKA-

RASUBRAMANIAN [1990] and JAMSHIDIAN [1991]. Our model can be used in
this way as well, but it has another advantage. It uses binomial model relations
between risk premiums and conditional variances in conducting tests, and thus
need not estimate many of the parameters used in the standard approach; cf.
MORGAN and NEAVE [1992]. As HJM [1990a, p. 420] observe, estimates based
on martingale probabilities, as in Ho and Lee, can lead to instabilities.

Our pricing theory does not incorporate delivery options, the effects of
which are considered in GAY and MANASTER [1984], HEMLER [1990], KANE

and MARCUS [1986] and BOYLE [1989]. We could incorporate delivery options
quite readily in expanded versions of our model, but the data we have tested so
far (cf. MORGAN and NEAVE [1992]) are for contracts without important
delivery options.

2. ANALYTICAL MODEL

Our model is based on a discrete time approach to options pricing originally
proposed by Sharpe. We follow the development in Cox and RUBINSTEIN

[1985].

2.1. Useful mode properties

We use spot interest rates as a state variable, allowing the term structure to
evolve under the same potential set of constraints as do other who follow Ho
and LEE [1986]. However as shown below, we choose martingale probabilities
which: retain the originally assumed interest rate process, maintain consistency
with the data, and ensure the absence of arbitrage opportunities.

In contrast, Ho and Lee first model the interest rate process and then assume
constant martingale probabilities, thus altering their original mode of interest
rate evolution to ensure consistency with the data; cf. Ho and LEE [1986,
eqn. (A.6)]. In further contrast to Ho-Lee and others, our model does not
permit negative spot interest factors (where an interest factor is one plus an
interest rate), a useful feature which also suggests a way to eliminate negative
interest rates'.

2.2. The interest factor process

Let R, be the riskless spot factor; i.e., one plus the one-period riskless rate. Let
Ro be the initial spot factor, and {R,}, te l[={l, 2,..., T), a (deterministic)
series of one period forward factors given by data available at time 0.
Throughout the paper, it will be supposed that the time horizon T is greater
than the longest bond maturity M which we wish to study explicitly.

1 To eliminate the possibility of negative interest rates, an interest factor R, can be modelled to
evolve as (i?,)"(I> in the event of an interest rate increase, and as (i?,)1/u(<) in the event of an interest
rate decrease, where u(t) is a suitably chosen function (whose values are greater than unity).
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The forward factors can be determined from government treasury bill data at
time zero. For example, if B0(l) and B0(2) are the time zero prices of the one
and two period zero coupon bonds respectively 2, then by the term structure of
interest rates

and
B0(2)=\/(R0-Rl),

so that

The remaining values of the {Rt} can be determined similarly.
The forward factors become spot factors as they are realized. Using the

perspective of time zero, we assume the future spot factors will evolve
stochastically about the {R,} according to a multiplicative factor u > 1. If the
time t spot factor is uJ R,,

(2.2.1) jeJt = {t,t-2,t-4,...,-t + 2, -t};

teli, the /+1 spot factor will be either uJ+lRt+l or uj~lR,+ i, the possible
realizations occurring with probabilities p and \—p = q respectively. Between
times t and t+l the spot factor must move either up or down, but it can return
to the same level every two periods. The successive spot factors thus evolve
according to:

(2.2.2) St+l = Rt+lS,U/Rt,

where St is the spot factor at time t, and U is a random variable which assumes
the values u > 1 with probability p and u ~' with probability q. Since S0 = R0, it
follows immediately from (2.2.2) that

(2.2.3) Sl+l = Rt+lUl+l,

where Ut+X is the random variable3 generated by t+l successive realizations
of U.

The mean and variance of U are respectively given by

(2.2.4) E(U)=pu + q/u and

(2.2.5) V(U)=pq[(u2~\)/u]2.

The drift of the process (2.2.2) is determined4 by E(U). If E(U) = 1, the
process has a constant mean5, apart from any changes in R,. The spot factor

2 The effect of changing interest rates is left implicit in the notation of this section and in that of
the Appendix. In the rest of the paper, it is helpful to recognize interest rate effects explicitly.

3 For example, C/3 has the outcomes u3, w, w ', and w~3, with probabilities/)3, 3p2q, ^pq1, and q
respectively.

4 Apart from the influence of the parameters R,.
5 We are grateful to a referee for pointing out that if E(U) < 1 (and uj= 1), then U, -»0 with

probability 1 by the supermartingale convergence theorem. If in addition R, is bounded, then S, < 1
from some random point onwards, and from that point spot rates are negative. Thus to have a
sensible model we want E(U) > 1.
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process has a lower bound of zero and 6, for finite values of u, t and R,, a finite
upper bound of u' R,.

Finally, the conditional variance of the spot factor process is determined as
follows. Recalling (2.2.3), let Z be a binomial random variable assuming the
values x and y with probabilities p and q = 1 — p respectively, and suppose
y > x. Then since

Z* = (Z-x)/(y-x)

is a standardized random variable whose outcomes 0 and 1 occur with
probabilities p and q respectively,

(2.2.6) V(Z) = V(Z*) {y-xf ^pq(y-x)2.

Applying (2.2.6) to (2.2.2),

(2.2.7) V, (uj) = pq [{ui+ x-uj~') Rt+ , ] 2 .

For any fixed value of t, V, is an increasing function of j .

3. BILL PRICES AND INTEREST RATES

We use martingale methods to derive bill prices from the interest rate process7.
We ensure consistency with observed data by finding martingale probabilities
such that the time zero bill prices calculated under the martingale equal their
time zero observed values, a procedure that involves as many restrictions on
the martingale probabilities as there are bond maturities8.

The foregoing restrictions also ensure the absence of arbitrage profits for
trading in any combination of bonds. For, assuming the originally observed
bill prices reflect an equilibrium, they offer no arbitrage opportunities at time
zero. Moreover, no combination of outstanding bonds can offer arbitrage
opportunities at any time strictly between zero and their maturity, because
those prices are all calculated using exactly the same interest rate process and
martingale probabilities9. Indeed, the conditions derived below correspond to
condition (15) in HEATH, JARROW and MORTON [1990a], who focus on how
the forward rate process must be restricted if the martingale is to exist.

6 If R, is constant, the process converges to the lognormal; see for example Cox and RUBINSTEIN
[1985].

7 It should be noted that while it is customary to refer to conditional martingale probabilities,
these numbers are neither martingales nor probabilities. The number p,, which is defined to be the
conditional martingale probability denoting an upward move in the spot rate, is not the same as the
actual probability p of an upward move in the spot rate. Rather, the p,, are numbers which add to
unity like probabilities. They can be used in risk neutral valuation procedures because their existence
is equivalent to the assumption of no arbitrage profit opportunities. Finally, the martingale itself is
the constant mean stochastic process describing bond prices, after they have been normalized to
remove the effects of the risk free interest rate. For a full discussion, see HUANG and LITZENBERGER
[1988, chapter 8].

8 However, since as will be shown the r + 2 ' n d condition is just that pT+i + 9r+i - 1. there are
really only T+ 1 nontrivial conditions.

9 The assumption of zero arbitrage profits is both necessary and sufficient for existence of a
martingale permitting prices to be found using expected value calculations; cf. HUANG and
LITZENBERGER [1988, 196-203; 242-244].
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The rest of this section shows how our term structure evolves, as in Ho and
Lee, from initially specified values, and how that affects bill prices. However,
as summarized in Section 3.5, Ho and Lee can use constant martingale
probabilities because they restrict their initially specified interest rate process.
In so doing, they do not analyze the implications for their orginally chosen
interest rate process. In contrast, we use time dependent martingale probabili-
ties in order not to alter the initially specified process. Rather, we state directly
the spot interest rate process used in our model and find martingale probabil-
ities which conform to it and the data.

3.1. Interest rates, bill prices, and the martingale

Given the time zero estimates of the forward factors {R,\, t e if, all bills have a
time zero value determined by 10 the geometric mean of Ro and the {R,}. Let
B,(j, M) represent the market price at time t, when the spot rate is uJR,,jeJ,,
16 70

M~1; of a bill with maturity M. Finally, let all bills have a value of unity at
maturity. A one period bill's value is then related to the prevailing risk free
(spot) rate by

(3.1.1) BM.l(j,M)=l/uJRM-l.

We denote the (conditional) martingale probabilities associated with an
interest factor increase by p,, and by qt=\—pt with a decrease. Under the
martingale, for t < M— 1,

(3.1.2) Bt(j, M) = [p,Bt+l(j, M) + q,B,+ i(j+2, M)]/uJR,.

In Section 3.3, we find formulae for bill prices of any maturity. However,
before doing so we wish to explore, through an example, the implied
restrictions on the martingale probabilities when the model builder seeks
consistency between time zero observed values and the model itself11.

3.2. Exemple

The martingale probabilities may exhibit state dependency, time dependency,
or both. If the model builder wishes the martingale probabilities to have certain
properties, then only certain interest rate processes can be consistent with both
the initial data and the absence of arbitrage opportunities; cf. HJM [1990a].
To see this, consider the prices of the three bills with maturities up to M = 3.
For consistency with the initial term structure, the time zero prices of bills must
satisfy

,M-\

(3.2.2) B0(0,M)=l M l Rn Me {1,2,3}.
/ ( = 0

10 The continuous time literature usually establishes the existence of the martingale but does not
discuss its exact relation to the model and the data; HJM [1992] is an exception. Indeed, HJM
search for methods that eliminate the need to calculate or to estimate the martingale probabilities.
The discrete time literature usually assumes constant martingale probabilities; again HJM [1990a] is
an exception.

11 DYBVIG [1989] notes that several authors in effect force the term structure to fit the model.
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Under the martingale, the one period bill price must also satisfy

(3.2.3) Bo(O,l)

since the maturity value of the bill is unity whichever interest rate obtains at
time 1.

The value of the one period bill does not restrict p0, but the two period bill
price must satisfy both

(3.2.4) B0(0, 2) =

and (3.2.2). Since Po + Qo = U the solutions are

(3.2.5) po = u/[u+\], qo=l/[u+l].

Finally, consider finding the time zero price of the bill maturing at M — 3.
At time 3 its value is unity, and at time 2 it can assume any one of the three
values

B2(j,3)=l/R2u
2-J; je {0,2, 4}.

To recognize possible state dependence of the martingale probabilities
p,, t> 0, denote the martingale probability for an upward move from state j at
time t by p,(j). Continuing the calculation by backward induction, at time 1
the bill's two possible values are then

(3.2.6) Bx (0, 3) = ^ ^ B2 (0, 3) + ^ - ^ B2 (2, 3)
uRx uRx

and

uiRxR2

(3.2.7) Bx (2, 3) = 1^- B2 (2, 3) + -^L B2 (4, 3)
u Rx u Rx

Px(2) + u2qx{2)
= u .

Finally at time zero,

(3.2.8) BQ (0, 3) = [p0 IR0] Bx (0, 3) + [q0 /Ro] Bx (2, 3) ,

and the same bill price must also satisfy (3.2.2). Substituting (3.2.2) and (3.2.5)
in (3.2.8) gives

u2(u+l)
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10 I.G. MORGAN AND E.H. NEAVE

which simplies to

(3.2.9) Pl(0) = u2g1(2).

Given u, Ro, R{, R2, the valuation problem consists of five equations;
namely, (3.2.4), (3.2.9) and

po+go= i;

P\U) + qxU)=U ye {0,2}.

Two of the five equations are used to solve for p0 and q0. Since there are two
unknown binomial probabilities at time 1, we need one of the following three
equivalent conditions to resolve the indeterminacy illustrated by (3.2.9):

(3.2.10) /»i(0)=Jp,(2),

(3.2.11) Bx{2, 3)/5,(0, 3) = w\

(3.2.12) Pi(0) = u3/[l + u'].

If as below we use (3.2.10) and assume the martingale probabilities at time 1
are state independent, the same choice implies both (3.2.11) and (3.2.12). Note
finally that with bonds maturing at dates 1, 2 and 3 our martingale probabil-
ities must satisfy two constraints, expressed in the form of bond valuation
equations. This property extends to T+ 1 conditions in the next section, where
there are T+2 bonds.

3.3. Bill prices for longer maturities

The bill market is dynamically complete for a time horizon of T if at time zero
bills with maturities of T+ 1 and T+ 2 are available (HUANG and LITZEN-

BERGER [1988]). As in Section 3.2, we assume either of the following two
equivalent conditions to eliminate remaining indeterminacies:

(3.3.1) Pt{j)=P,\ jeJ,; /e/, r + 1,

or

(3.3.2) = vtM=
Bt{j,M) *Ji

Then for t > 2, backward induction procedures exactly like those of
Section 3.2 show that

We next simplify notation by suppressing the maturity M unless clarity
requires otherwise. In particular, we write vt< M as v,, and we also define
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Then in analogy to (3.1.2), the bill prices can be written recursively as12

(3.3.5) B,(j) = l

Then (3.3.5) and

(3.3.6) Bt,

jeJ,, tel^~x, can be used in the backward induction arguments of
Section 3.2 to obtain

M' -~ 1

(3.3.7) 5,(0)= [ ] [Pk + Vk+iqk];
k=, ukRk

for j = / and t e iff'1. While equation (3.3.7) expresses the bill price in terms of
the maximum possible interest rate one period prior to the bill's maturity, it
can be used in conjunction with (3.3.6) to express the bill price in terms of any
interest rate realization.

Since at time t and in state j the term structure is defined by the bill price
formulae (3.3.7), the derivation of the bill prices implies the term structure
evolves in a particular manner. For example, the interest factor terms for two
bills maturing in successive periods are given by l/B,(j, t+l) and
[l/B,(j, t + 2)]1/2. Moreover, the one period forward factor between times t+ 1
and t + 2, conditional on reaching time t and state j , is13

3.4. Conditional risk premium and variance

If the process is in state j at time t, Bl+l(j) occurs with probability p and
Bl+l(j+2) with probability q. Then by (3.3.6) the conditional risk premium of
the bill price is

PBttU) = EtBt+l(J)-BtU)uRt,

which under the martingale becomes

(3.4.1) PB,l(J) = (^t+l+p)Bl+l(j)-(qtvt

= (?-?«) ("/+!-!)£/+1 (7) •
Similarly, taking

y = vt+lBl+l(j) and x = Bt+1(j),
12 Rewriting (3.3.5) to express the martingale in terms of bond prices shows how the price

evolution would be constrained by assuming the martingale probability is constant. That is, (3.3.5)
says that a constant martingale probability p* must satisfy

for all t and for all j . In effect, HO-LEE [1986] impose this constraint; cf. their Appendix
eqn. (A6).

13 Since by (3.3.2) v, depends on M, the forward rate formulae for individual bonds are also
maturity dependent.
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12 I.G. MORGAN AND E.H. NEAVE

and applying (2.2.6) to (3.3.7), shows that the conditional variance of the bill
price is

(3A2) VBfl(j)=pg(vt+1-l)
2-[Bl+1U)]2.

But then combining (3.4.1) and (3.4.2),

(3.4.3) Kl , = Pl,(j)/[Vl, (j)]1'2 = (Pt-p)Kpq)112.

The risk premium in (3.4.1) is positive if and only if14 p, > p. Moreover,
(3.4.3) shows that the conditional risk premium and the conditional standard
deviation are strictly proportional at any time t, offering theoretical support for
the ARCH-M model used by ENGE, LILIEN and ROBINS [1987]. Finally it is
evident from the derivation that (3.4.3) is a general feature of binomial models,
rather than being specific to the model of this paper15.

3.5. Relation to Ho-Lee type models

It is instructive to interpret the formulae of Section 3.2 using the perturbation
functions of Ho and LEE [1986]. In our notation, equations (1) and (2) of
BLISS and RONN [1989] summarize the relations between the perturbation
functions

h{M-t), h*(M-t)

as

(3.5.1) Bt+1(j) = BtU)u'Rlh(M-t),

(3.5.2) B,+l(j+2) = B,(j)uJRlh*(M-t).

Using (3.3.6) to rewrite (3.5.1) gives

h(M-t)=l/[p, + vl+lql],

and with further use of (3.4.1), (3.5.2) gives

Comparison with BLISS and RONN [1989, eqn. (3)] shows that/?, plays a role
analogous to n while vt+i plays a role analogous to 8M~'. Ho and LEE [1986],
BLISS and RONN [1989], KISHIMOTO [1989], RITCHKEN and BOENAWAN [1990]
and RITCHKEN and SANKARASUBRAMANIAN [1990] all treat n as constant, and
independent of 3, basing their argument on Ho, LEE [1986, eqn. (A6)]. But
none of these authors explicitly considers the implication of the constant n
assumption for the originally chosen interest rate process 16, and for this reason

14 We cannot specify the relationship between p and p, without a general equilibrium analysis, but
if agents are risk averse we know that p, > p.

15 We are grateful both to an unnamed referee and to David Laughton for pointing this out to us.
Note also that using this condition we can avoid the need to estimate martingale (pseudo)
probabilities. This is advantageous since as HJM [1990a, p. 420] point out, estimating the pseudo
probabilities can lead to instabilities.

16 The implications are for the process as distinct from its time zero values. Ho-Lee's orginal term
structure is consistent with the data, but the stochastic process describing its evolution is not
considered explicitly after assuming n to be constant. See aso note 10 above.
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it is difficult to assess how the form of interest rate evolution they use
compares with estimated processes.

4. FORWARD PRICES

This section values develops expressions for forward prices, their conditional
variances, and risk premiums. A forward contract is a commitment to buy or
to sell an asset at some fixed future time, for an initially specified price called
the forward price. A forward commitment to buy is called a long position, a
forward commitment to sell a short position. Typically, a forward contract is
written at a forward price which makes its present value equal to zero. A long
position in a forward contract leads to a capital gain if on the contract
maturity date (in futures market parlance, the delivery date) the underlying
asset has a spot price in excess of the forward price, and to a capital loss if the
reverse is true.

4.1. Recursive calculation of forward prices

Let G,(j, T, M) be the forward price at time t, when the spot factor is ujRt, on
a contract written at time /, with delivery date T, against a bill maturing at time
M > T. On the delivery date, the forward price equals the value of the
underlying instrument; cf. Cox, INGERSOLL, ROSS [1981]. Therefore,

(4.1.1) GT(j,T,M) = BT(j,T,M).

As before, the arguments T and M will be suppressed whenever no
ambiguity results, and the forward price will usually be written G,(j); te /o

r;
JtJf

Next, let the value at time t of a forward contract written at time 0, with
exercise (delivery) price XT, and when the spot factor is uJR,, be defined as
F,(j,XT, T, M). As before, arguments will be suppressed unless needed for
clarity, and the value of the forward contract will normally be written17

Consider first the problem of valuing a forward contract with an arbitrary
delivery price; it will then be easy to calculate the forward price for that
contract. Proceeding by backward induction, on the delivery date the contract
value is the difference between the bond price and XT, the delivery price. Thus,
if the interest factor is uTRT:

(4.1.2) FT(T, XT) = BT(T)-XT=[l/[uTRt]
M-T]-XT.

17 We shall show below how the notation can accommodate forward contracts written at
arbitrary times t. It is convenient to define the value of the forward contract as well as the forward
price so that bond prices, forward prices, and futures prices can all be related using the same
methodology. The notation for forward and futures prices (G,{j) and H,(j) respectively) is
consistent with Cox, INGERSOLL, ROSS [1981], and G,(j) is the special value of XT such that the
value of the forward contract is zero when it is written; cf. JARROW and OLDFIELD [1981].
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14 I.G. MORGAN AND E.H. NEAVE

Then noting that (4.1.2) can be written

(4.1.3) FT(T, XT) = BAT, T, M)-BAT, T, T)XT

it follows immediately from the results of Section 3.2 that

(4.1.4) F, (t, A» = Bt (t, T, M) - B, (t, T, T) XT,

and in particular

(4.1.5) Fo (0, XT) = Bo (0, T, M) - Bo (0, T, T) XT.

Next, equation (4.1.5) implicitly defines G0(0) by the condition

F0(0,G0(0)) = 0.

That is,

(4.1.6) Go (0) = Bo (0, T, M)/Bo (0, T, T);

cf. JARROW and OLDFIELD [1981, p. 381, eqn. (13)].

4.2. Conditional variance of forward prices

The forward price on a contract written at time t does not change before the
contract delivery date, time T. However, new contracts can be written at times
s > t, and the conditional variance of forward prices refers to the possible
variations in the prices on these new contracts, which will be written to reflect
the newly prevailing time and interest factor environment.

For theoretical purposes, assume a new contract is written at each point in
time s, and that all contracts have the same delivery date T. Given the forward
price Gt(j), the forward price at time t+\ is either G,+ l(j+l), with
probability p, or Gl+i (j— 1) with probability q. Then using methods similar to
those of Section 3 and using (4.1.7), (4.2.1) can be rewritten as

(4 2 2) vt.il)

Denoting the conditional variance of the rate of change of the forward price
by V*,t(j) = VG,I(J)I[G,(J)]2, it follows immediately from (4.2.2) that

,4.2.3, VS,U) - * ^ ^ ^ ^ M ,
iPl+u»"—»qy

independent of/

4.3. Conditional risk premiums in forward prices

Define the conditional risk premium in a forward price by

(4-3.1) PG,(j) = Et{G,
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where E, denotes the time t conditional expectation of the time t +1 forward
price.

Condition (4.3.1) can be rewritten

An expression for the risk premium in rate of return form can also be found
using

(4.3.3) PS.tU) = PG.tU)/GtU)-

4.4. Conditional risk premium and standard deviation

As with bill prices, a proportional relationship between P*,t(j) a nd
[VG, t(J)Y12 by using (4.3.3) and (4.2.2) to define an appropriate proportionality
constant:

(4.4.1) P8

After simplification

• (P1)V2 ( w ) 1 / 2 ( w
2 ( t f - M ) - l ) ( l + « 2 ( r - M )

? , )

The standardized risk premium for the forward price is a more complex
expression than for the bond because the forward price is the ratio of two bond
prices, and this ratio reflects the influence of both bonds' prices.

5. FUTURES PRICES

This section develops expressions for futures prices, their conditional variances,
and risk premiums. A futures contract can be thought of as a series of forward
contracts, so designed that any capital gains or losses are realized on a day to
day basis. To see this, consider the value of a long forward contract, as
described at the beginning of Section 4, after one day of its life has elapsed. If
the asset has risen in value over the day, the value of the forward contract will
have increased from zero. With a forward contract any such capital gain (or
loss) goes unrealized until its delivery date, when any capital gains or losses are
realized in a single transaction.

However if the contract is a futures contract written on exactly the same
terms, then at the end of day one the holder of the long position is paid the
capital gain, or pays the capital loss. The futures price (the delivery price under
the contract) is then adjusted, in a process called marking to market, so that
the amended contract again has a value of zero at the end of day one. The
same process of paying capital gains, or collecting capital losses, occurs each
trading day with a futures contract, as does the marking to market process
needed to compensate for the payments. Thus in essence a futures contract is a
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16 I.G. MORGAN AND E.H. NEAVE

series of forward contracts on which capital gains or losses are realized daily as
they occur, rather than remaining unrealized until the delivery date.

5.1. Recursive calculation of futures prices

Let Ht(j, T, M) be the futures price at time t, when the spot factor is ujRt, on
a contract with delivery date t written against a bill maturing at time M. On the
delivery date, the futures price equals the value of the underlying instrument;
cf. Cox, INGERSOL, ROSS [1981]. Therefore,

(5.1.1) HT(j, T, M) = BT(j, T, M).

In periods t e I0
T~\ the futures price is defined as H,(j, T, M). However, as

with the underlying bills, the arguments T and M wil be suppressed whenever
no ambiguity results, and the futures price will usually be written H,(j)',
tell

Under the perfect markets, zero arbitrage opportunities assumptions of this
paper, futures prices satisfy the condition

(5.1.2) HtU)=P,Ht+lU [ l

and

(5.1.3) HT(j) = BTU)

Then it follows immediately that

(5.1.4) HT{T

where v = v(T,M) = uM~T, and k e 70
r.

Taking (5.1.3) with / = T— 1 and using (5.1.4) gives

(5.1.5) HT.l(j)=[ 2

Similarly,

(5.1.6) HT-2U) = [PT-2 + v2qT-2\-[PT-i + v2qT-

for all admissible / It follows that

(5.1.7) H,(j) = v2H,U+2), and

for j e Jt and for / e {0, 1, . . . , T- 1}.
Finally, setting j = t and applying (5.1.7) recursively gives an explicit formula

for the futures price at time zero:
T-\

(5.1.9)
1 = 0

The futures price depends on M, T, BT(T), and w, but not on {R,},
teir1-

It is also interesting to examine how the futures price behaves as a function
of time to maturity. To discuss the maturity effect on its own, it is necessary to
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isolate it from the effect of interest rate change 18. This is most easily achieved
by first establishing how the futures price behaves at the maximum interest
rate. Then it is easy to use this result to see how the futures price behaves at a
given spot rate.

Proposition 5.1.1: The futures price Ht(t) is a decreasing function of t.
Inspection of (5.1.7) and (5.1.8) shows that

(5.1.10) H,(t) >Hl+l(t+l)>Ht+2(t + 2).

The next proposition uses (5.1.10) to determine the effect of a shortened
maturity on the futures price when j is held constant.

Proposition 5.1.2: Let the spot factor remain unchanged between periods. Then
the ratio of futures prices decreases with time if and only if M > M*, where

(5.1.11) M* =

Proof: Use (5.1.7) and (5.1.8) to write

(5.1.12) 2

The behaviour of the ratio on the right hand side of (5.1.12) is revealed by
defining

x=v2, a=pt-2-Pi-\, b=Pt-2-<lt-i+Pt-i-<lt-2, c = qt-2-qt-\,

and considering the equation

x = a + bx + cx2.

Noting that a + b + c = 1, rewrite the quadratic as

(5.1.13) [x-a/c][x-l] = 0.

Given the values of /?,_[, p,~2, q,-i and q,-2 as assumed in (3.3.4), it follows
that a > c. Thus when v2 lies between unity and a/c, the ratio (5.1.12) is greater
than unity, and for values of v2 > a/c, (5.1.12) is less than unity. Since v2 is an
increasing function of M, there is a critical value M* which determines whether
(5.1.12) is increasing or decreasing in t. •

Straightforward calculation shows M* is defined by (5.1.11). Note that M*
is not necessarily an integer, as are M and T.

18 Of course, it is possible to assess maturity and interest rate effects in combination. But for most
empirical purposes one is interested in ceteris paribus predictions of the type next established.
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5.2. Conditional variance of futures prices

Conditional on a realization Ht(j), the futures price at time t+l is either

H,+i(j+ 1), with probability p, or

Hl+i(j—l), with probability q.

Using methods similar to those of Sections 3 and 4, the conditional variance
of the futures prices is found to be

(5-2.1) VH,t(j)=pq{[v2-l]-[Hl+lU+m2-

Then, using (5.1.8), (5.2.1) can be rewritten as

(5.2.2) VH>lU)=pq-{[v2-l]-[2 2 2

To see the effect on VHt{j) when t increases while interest rates are held
constant, recall from (5.1.7) that

Hl+2(j) = v2Hl+2(j+2).

Then by (5.1.3) and (5.2.2)

(5.2.3) VHi ,{j)=pq-{(v2~ 1) [P, + v2q,] Ht+2(j)/v
2}2.

Then, whether (5.2.3) increases or decreases in t depends on the behaviour of
both p, + v2q, and Ht+2{j), as well as on their relative sizes. Thus the change
in VHt{j) is in general ambiguous; cf. Propositon 5.1.2.

Defining the conditional variance of the rate of change of the futures price
by

it follows immediately from (5.2.2) that

(5-2.4) Vl,U)=pq{(v2-

independent of / Also, Vfi ,(j) increases in t if and only if

pt + v2qt >p,+ x + v2qt+i,

as established in (3.3.5). In addition, considering successive terms in (5.2.4)
shows that V£ ,(j) is a convex function of /.

5.3. Conditional risk premiums in futures prices

Define the conditional risk premium in a futures price by

(5-3.1) PHtt(j) = Et{Ht

where Et denotes the time / conditional expectation of the time t+l futures
price, and Je {j+ l,j— 1}.

Condition (5.3.1) can be rewritten

(5.3.2) PH,,U)
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The risk premium can also be expressed in terms of the rate of change of
futures prices,

(5-3.3) Pt,tU) = PH

The risk premiums are positive in any period t for which p < p,, as shown in
(3.5.4).

5.4. Relations between conditional risk premiums and variance

From (5.3.2) and (5.3.3)

where

After simplifying,

(5.4.1) K&., = (p,

That is, the proportionality constant K% , is the same for futures prices as
for bond prices; cf. (3.6.2). The result is not surprising since a futures contract
has the same rate of return behaviour as a series of investments in short term
bonds, and since the rate of return behaviour on long bonds is related to the
rate of return behaviour on short bonds by an absence of arbitrage profit
opportunities.

5.5. Relations between forward and futures prices

The formulae for futures and forward prices permit explicit comparisons.
Recall (4.1.6) and (5.1.9), from which the ratio Go (0)/i70 (0) can readily be
calculated. In addition, by using (3.2.3), forming the ratio
H0(0, T, M)/B0(0, T, M), recalling that u > 1, and that

B0(0, T, T) = l/R0 • uR, •... • uT~x RT-,,

it is easy to see that

Go (0, T, M) = Bo (0, T, M)/Bo (0, T, T) > Ho (0, T, M).

The last condition is a special case of Cox - INGERSOLL - Ross Propostion 9
[1986, pp. 331-332].

6. CONCLUSIONS

This paper has presented a discrete time model for consistently pricing treasury
bills as well as the futures and forward contracts written against them. For
each instrument, the paper also finds formulae the conditional variance of
return, the risk premium, and the ratio of conditional variance to conditional
risk premium. The formulae are consistent with observed time zero data, and
the evolution of future interest rates is less restricted than in other, similar
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models. The paper also shows that single factor models imply relationships
between the different factors affecting the term structure's evolution, and that
other similar models have not recognized the dependencies created by these
restrictions. Finally, we resolve a problem left open in HJM [1990a] by finding
conditions under which the martingale probabilities will be unique.

APPENDIX I

THE INDUCTIVE FORMULA 19

Let Bt(T) be a random variable reflecting the time t price of a zero coupon
bond maturing at time T > t. In this notation, unlike that of the body of the
paper, the dependence of the bond price on the interest rate is left implicit.
Also, let

_ uU,; with probability p

u U,; with probability (1—/>).

Theorem: The value of a zero coupon bond is given by:

n( n
B0(t) ,-

Proof: Fix T and proceed using backward induction on t. Equation (A.I) is
trivially true for t = T, using the usual convention that an empty product
equals unity. For t < T, the definition of the martingale probability pt means
the expected return factor S, on a bill is given by

(A.2) E*{Bt+l(T)} = E*{S,Bt(T)},

where S, is defined in (2.2.2) and the asterisk denotes expectation under the
martingale. But

(A.3) S, = U,Rt = U,{B0(,t)/B0(t + 1)}.

Then assuming under the induction hypothesis that (A.I) holds for t,

(A.4) E*{Bt+l(T)} = ^ ± -
B0(t+l) , i

from which it follows that, since the last term on the right hand side is an

19 We are indebted to a referee for providing the derivation and interpretation given in this
Appendix.
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expectation given information at time t:
(A.5) ( r 1 ) ^ T l ) T 1

Equation (A.I) then follows. •

In addition, the martingale probabilities can be obtained by equating the
induction based prices to the known prices at time 0, producing the following
specialized version of (A.I):

.5=0

from which p, = u2l+l/(l + u2t+l) can be derived.
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