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ON WAVE MOTION IN A TWO-LAYERED LIQUID OF
INFINITE DEPTH IN THE PRESENCE OF SURFACE AND

INTERFACIAL TENSION
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Abstract

In this paper various two-dimensional motions are determined for waves in a stratified
region of infinite total depth with a free surface containing two superposed liquids,
allowing for the effects of surface and interfacial tension. The fundamental set
of wave-source potentials for the two layers is used to construct the set of slope
potentials that produce discontinuous free-surface and interface slopes. The latter
potentials are then utilized to obtain the potentials for waves due to both heaving
vertical plates and incident progressive waves against a vertical wall. The underlying
assumption of small time-harmonic motion pertains, described by a pair of velocity
potentials for the two layers satisfying coupled linearized boundary-value problems,
and all solutions are obtained in terms of their matching basic solutions. The
technique for applying Green's theorem in the two layers is developed for use
with the wave-source potentials, which themselves are found to obey a generalised
reciprocity principle. Familiar results for a single liquid of infinite depth are hereby
extended, but the new feature emerges of there being two types of progressive waves
in all solutions. For ease of presentation the solutions are obtained for a particular
relationship between surface and interfacial tension.

1. Introduction

Following the extensive study of small wave motion in a single liquid, con-
siderable interest has now developed in extending the theory to multi-layered
or stratified liquids; see for example the papers of Gorgui [3], Gorgui and
Kassem [4], Rhodes-Robinson [11], Mandal [8], Kassem [6], Chakrabarti and
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[2] Wave motion in a two-layered liquid 303

Mandal [2], Chakrabarti [1], and Mandal and Chakrabarti [9, 10] in their order
of appearance. Most of these investigations involve two superposed liquids
with an interface and possibly a free surface undergoing time-harmonic motion
that is described by a pair of velocity potentials satisfying coupled linearized
boundary-value problems in the two layers. Interest has centred on the determ-
ination of the potentials for two-dimensional wave sources or multipoles and
axisymmetric multipoles, which are all fairly tedious to obtain (particularly if the
effects of surface and interfacial tension are included). Their forms have been
determined from trial solutions, although in one special case for two symmetric
liquids another technique relates the potentials to others for a single liquid that
are known; see Rhodes-Robinson [11]. These fundamental singularities have
the same importance as those for a single liquid, so any that can be found are
candidates for use in practical problems.

In this paper we consider various time-harmonic problems for two dimen-
sional motion in a two-layered liquid of infinite total depth with a free surface,
allowing for the effects of surface and interfacial tension. First we determined
the two pairs of potentials for wave sources at internal points of each layer
in terms of basic solutions for progressive and non-propagating waves; these
potentials have already been determined in [9] but only in complicated forms
involving contour integrals that are unsuitable for most practical applications
and must be transformed to alternative useful forms, just as for a single liquid.
The now more complicated calculation requiring deformations of contour and
integral representation of the singular term is made to obtain the potential in the
upper layer for a source in the same layer; this is sufficient as the other three po-
tentials may then be deduced easily from this by matching the basic solutions at
the interface and using a new generalized reciprocity principle that is established
in and between the layers by a double application of Green's theorem. Next
we determine the two pairs of slope potentials at the free surface and interface,
which produce a symmetric slope discontinuity at the relevant boundary. These
potentials may be constructed in terms of basic solutions using formal relation-
ships involving the previous wave-source potentials, also established by Green's
theorem; again by matching at the interface the calculation can be minimized,
however.

Two applications are then made to problems involving the radiation and
reflexion of waves in the presence of immersed boundaries, which have known
solutions for a single liquid. The problems both have solutions expressible
in terms of the pairs of slope potentials. The first involves the symmetric
capillarity-dependent motion produced by various heaving vertical plates that
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intersect one or both of the free surface and interface at pairs of opposite edges,
for which there are three possible configurations with plates partially immersed
in the upper or both liquids and a plate completely submerged in both liquids; this
problem was solved in Rhodes-Robinson [13] for a single liquid in similar form
and involves just a partially immersed plate, after being considered originally by
Hocking [5] to illustrate the use of a dynamical edge condition that pertains in the
presence of surface tension. The other application involves reflexion of incident
waves by a vertical wall, and is treated similarly; this problem was solved in
Rhodes-Robinson [12] for single liquid in similar form. The solutions obtained
in both these problems involve edge-slope constants, which are evaluated using
the same dynamical edge condition; this procedure was used in [12, 13] in order
to quickly identify the form of the solutions in terms of the known slope potential
for a single liquid.

For practical reasons of presentation all calculations herein are done only for
the case when the ratios of surface and interfacial tension to the density change
across the free surface and interface respectively are equal; in principle the more
complicated results are obtainable in any situation, however. In this case the
basic solutions involve progressive waves of two types, which appear in all
solutions and must be taken into account in the use of Green's theorem.

2. Basic formulation and solutions

Consider a region of infinite total depth containing two superposed immiscible
liquids in horizontal layers with equilibrium free surface y = 0 and interface
y = h. The upper liquid ('layer 1') has finite depth h and the lower liquid ('layer
2') has infinite depth; the liquids have densities pu p2 respectively, where 0 <
Px < p2. The stratified liquid is undergoing small time-harmonic wave motion of
angular frequency o under the action of gravity with acceleration g and surface
and interfacial tensions Tt, T2 respectively. The motion is described by a pair of
velocity potentials of the form R[</>me~'CT'] in layer m, where <\>m (m = 1, 2) are
complex-valued potential functions of position and t is time. The motion is two-
dimensional and Cartesian coordinates x, y are used in directions horizontally
along and vertically down from the free surface. The basic requirements giving
the differential equations and boundary conditions for (f>u(f>2(x, y) may then be
taken as

= 0 in 0 < v < h, V*02 = 0 in y > h, (2.1)
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[4] Wave motion in a two-layered liquid 305

K<t>\ + <P\y + Mi4>\yyy = 0 on y = 0, (2.2)

on v = h (2 3)
y W 02, + Af202,,

4>2 ->• 0 as y -> oo, (2.4)

where tf = cr2/g and Mi = T\l P\g, M2 = T2/{fh — P\)g- In specific problems
other boundary conditions are needed to complete the specification of a pair
of coupled boundary-value problems, from which solutions for <p\, <p2 are to be
determined and known results for a single liquid of infinite depth extended. In
the problems considered herein it is found to be a lot simpler to now suppose
that Mi = M2 = M, say; it will be noted later how the results may vary for
Mi 7̂  M2 but due to their extremely complicated forms no details will be given.
Simpler results in the absence of surface and interfacial tension correspond to
M = 0, provided they remain valid.

Note that the depression of the free surface and interface at (JC, 0) and (x, h)
are given by R[r)r(x)e~'al] (r = 0, 1) respectively for the two-dimensional
motion, where

r?o = (-iayl<f>ly(x,0)

and
J?I = (-/o-rViyC*. h) = (-i(j)-l(f>2y(x, h);

these relations allow the shapes of these nearly horizontal boundaries to be
determined after (pi, (f>2 are obtained. Note also that their slopes depend on
r)'r (r = 0, 1), which therefore involve 01^(JC, 0) and <f>}Xy(,x, h) = 4>2xy{x, h)\
these relations are needed to formulate other boundary conditions used below.

Relevant basic solutions of (2. l)-(2.4) for Mi = M2 = M only are now noted,
on which other solutions depend. For convenience let s = P\/Pi (0 < s < 1)
and put t = 1 - s, n = (1 - s)/( l + s).

There are two types of solution for progressive waves in the positive or
negative x directions with wave numbers K, K *. The faster solutions satisfy
K<l>m + <t>my + M<\>myyy = 0 (ffi = 1, 2) identically in respect of (2.2), (2.3) for
Mi = M2 = M and are continuous across the interface. These are given by
identical constant multiples of

0 « = e - ' y ± " x (m = l, 2) (2.5)

respectively in both layers, where K satisfies the equation K{\ + MK2) — K.
Likewise the slower solutions are given by

4>m = Fm(y)e±iK'x (m = 1, 2 ) , (2.6)
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where

Fi(y) = t [*r*(l + MK*2)coshic*y - K sinh *:*>>],

F2(y) = -sKeK'(U-y)

in layers 1, 2 and K* satisfies [tK*{\ + MK*2) - sK] tanh*r*/i = K. (Note that
K* > K//x > K > K.) There is an interesting discussion of these waves in
Lamb [7, Section 231 (note also Section 233)] for M - 0.

Other non-propagating waves are given by identical linear integral superpos-
itions for k : 0 —• oo of the solutions

<t>m=e±kxfm(y,k) (w = l, 2) (2.7)

respectively, where

fi(y;k) = K[k(l - Mk2)cosky - K sinky],

My; k) = My, *) + ' |>2(1 - Mk2)2 + K2] sinkhcosk(y - h)

(k > 0) in layers 1,2.
In general for pairs of solutions satisfying (2.1)-(2.4) for Mi = M2 = M

expressed in terms of (2.5)-(2.7) there will be matching at the interface; and
if the solution for one layer is known, the solution for the other layer is easily
deduced. This matching principle is used to advantage herein.

3. Green's theorem

Double applications are to be made for the superposed liquid of Green's
theorem for harmonic functions, used often for a single liquid. The modified
procedure for this is now determined, and a special result established for pro-
gressive waves. Apply Green's theorem to the potential pairs </>m = <J>m, *m

satisfying (2.1)-(2.4) for M\ — M2 — M around matching rectangular contours
Cm determined by the horizontal boundaries of each of the layers m (m = 1, 2)
and any two fixed vertical lines x = a, b {a < b) in the region, indented if
necessary about any singularity in the usual way; then

^ = 0 (m = 1, 2), (3.1)
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where the unit normal n is inward for each layer (say). To formally evaluate
contributions to I* in (3.1) define the Green's integrals

f"
= /

Ja
*m<i>my)dx (m = 1,2) (3.2)

Ja

and
Ch

Kco ' ' (3.3)
I

J h

where x or y as appropriate are fixed during integration. The contributions Rm

to (3.1) from the rectangular boundaries (only) of Cm (m = 1, 2) are then

- /2(oo) - /2(*)|» (3"4)

in layers 1, 2 respectively.
Now if we let

f{x, y) = *,,<D,X, - <D|,*U, (3.5)

in layer 1, then it is found readily by integration from (2.2)-(2.4) for Mi =
M2 = M (or else is obvious) that

- P I ) / ^ ] / ( J C , A ) | S , (3.6)

/2(oo) = 0.

Hence on forming a suitable linear combination we have

= F(x)\b
a (3.7a)

from (3.4), (3.6), where

F{x) = (M/K)[Plf(x, 0) + (P2 - px) f(x, h)] - p,/,(jc) - P2/2W. (3.8)

Note that in obtaining (3.6), (3.7a) it is assumed that <$>ixy, ^\xy and therefore
fix,y) in (3.5) are continuous on y = 0, h for a < x < b; however, if amongst
these there is a jump discontinuity at x = c (say) representing a discontinuous
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free-surface or interface slope then the corresponding evaluation in (3.6) needs
to be split so that (3.7a) is replaced by

piRi+p2R2 = F(x)[\b
a-C]. (3.7b)

The results (3.7) for the superposed liquids give the contribution from the
rectangular boundaries to the now significant linear combination

p,/,* + p2/2* = 0 (3.9)

from (3.1), although there may be others from indentations in either layer to
evaluate; they represent the extension of a similar result for a single liquid.

To obtain a special result involving the two types of progressive waves in
(2.5), (2.6) now take

<tffl = Ae-"+lKX + BFm(y)e*'x, * m = Ce-Ky+iKX + DFm(y)eiK'x

(m = 1, 2) in the above, where A, B, C, D are constants. Then

Jm{x) = BmG(x) (m = 1, 2) and f{x,y) = Ke-"F[(y)G(x)

from (3.3), (3.5), where

G(x) = i(K* - K){AD - BC)eiiK+K')x

and

Bl= f e-OF^dy, ft= f°°V"F2(y)dy;
J0 Jh

thus F(,x) = aG(x) from (3.8) so that

plRl + p2R2=aG(x)\b
a (3.10)

from (3.7a), where

a = MK [PlF[(0) + {P2- px)e-KhF[{h)] IK - prfx - p2p2 (3.11)

is a constant. There are no further contributions to (3.9) so that by inserting
(3.10) we obtain the result aG(jt)|* = 0 which holds for any a, b; thus

a = 0 (3.12)

in (3.11), since G(a) # G(b) in general. [Then F(x) = 0.]
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It now follows for potential pairs Q>m, *I>m (m. = 1,2) that represent outgoing
waves as x ->• oo (described as above) that F{b) ~ aG(b) and therefore by
(3.12)

> 0 (3.13a)

in the contribution to (3.9) in (3.7) on letting b -*• oo; similarly if there are
outgoing waves as x —> —oo then

F(a) - • 0 (3.13b)

on letting a -*• —oo. The results (3.13) represent the extension of a similar
but immediately obvious result for a single liquid, which possesses progressive
waves of only one type.

To conclude, note that the result (3.12) may be verified directly using the
[(0)/K = -tic*, F[calculated values F[(0)/K = -tic*, F[{h)/K = sK*eK'h and

= t [(1 + MK2 + MK*2) sinhK*h + MKK* cosh/c*fc] e~Kh - IMKK\

= -st(l + MK2 - MKK* + MK*2)e'Kh

in (3.11), taken in the form a/fh = MK [SF[(0) + te-KhF[(h)} /K - sfa - #,.

4. Slope and wave-source potentials

Two symmetric singular potentials familiar in the theory of a single liquid have
analogues </>m (m = 1, 2) for the stratified liquid, satisfying certain additional
boundary conditions in unbounded horizontal layers that include outgoing waves
at infinity as in (2.5), (2.6).

Slope potentials exist only for M > 0 and produce a symmetric slope dis-
continuity at a point of either the free surface or interface: for fixed r = 0, 1
the two pairs cf>m = Gr-m(x, y) at x = 0 on y = 0 (r = 0) and y — h (r = 1)
satisfy the conditions

4>lxy(0±, 0) = ±rt/M (r = 0), (4.1)

<Plxy(Q±, h) = <hxy(0±, h) = ±n/M (r = 1) (4.2)

—whereas

y(0, h) = fc,,(0, h) = 0 (r = 0), (4.3)

0,,y(0,0) = 0 (r = 1); (4.4)
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also, for both pairs,

<t>m -+ linear combination of e-"
+ilcM, Fm(y)eilc'M as | x | - • oo (4.5)

and <pm is symmetrical in x {m = 1, 2).
Wave-source potentials have the usual logarithmic singularity at an internal

point of one layer: for fixed n = 1, 2 the two pairs <pm — G „,,„(*, y; S) for a
source at S(X, Y) in layer n satisfy the conditions

4>n ~ I n p a s p = [(x - X)2 + ( y - Y)2]1/2 - + 0 ; (4.6)

also for both pairs

0m -+ linear combination of e-»y+"i*-*if Fm{y)eiK'u-x^ as \x - X\ - • oo
(4.7)

and </>m depends symmetrically on the single horizontal coordinate x — X; (m =
1, 2). Note that 0 < Y < h (n = 1) or Y > h (n = 2).

5. Reciprocity principle

There is a generalized reciprocity principle for wave-source potentials, ex-
tending that for a single liquid. To determine this now apply Green's theorem
as in Section 3 to the potential pairs

<&m = Gm,r(x, y, S'), * m = Gm,n(x, y; S)

for fixed r, n = 1, 2 (S, 5' distinct) around the infinite rectangular boundary of
each of the layers m (m = 1, 2); then a —• —oo, b ->• oo and F(a), F(6) —>• 0
by (3.13) because of (4.7) so that

Pi/?i+p2fl2 = 0 (5.1)

from (3.7a). Here there are contributions to (3.9) from indentations about both
5, S' given by

2n[pnGnAS; S') - prGr,n(S'\ S)] (5.2)

from (4.6) in the usual way, so that by inserting (5.1), (5.2) in (3.9) we obtain
the result

pnGn,r(S; S') - PrGr,n(S'; S) (5.3)

(r, n = 1,2), which is the reciprocity principle either in or between the layers
for wave-source potentials in the stratified liquid.

https://doi.org/10.1017/S0334270000009310 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000009310


[10] Wave motion in a two-layered liquid 311

6. Construction of slope potentials

There is also a formal construction for the slope potentials from the wave-
source potentials, analogous to that for a single liquid. To determine this now
apply Green's theorem as in Section 3 to the potential pairs

* m = Gnm(x, y), * m = Gm,n(x, y; S)

for fixed r = 0, 1 and n = 1, 2 around the same infinite rectangular boundary
of each of the layers m (m = 1, 2); then again a -> —oo, b -*• oo and
F(a), F(b) -* 0 by (3.13) because of (4.5) so that

p2R2 = -F(x)\°0+ = -(2M/K)[plf(0+, 0) + (fi2
(6.1)

from (3.7b) with c = 0 and (3.8), allowing for a symmetric discontinuity in
f(x, 0) or f(x, h) at x = 0 and noting that J\, Jj(x) are continuous. Now from
(3.5)

/(0+, 0) = (7r/Af )G,.B,(0, 0; S),
/ (0+, h) = / (0, h) = 0

(r = 0) by (4.1), (4.3) and

/(0+, 0) = /(0, 0) = 0,
, h) = (n/M)GUny(0, h; S)

(r = 1) by (4.2), (4.4); thus (6.1) becomes

PlRl + p2R2 = -2n(Pl/K)GUHy(0, 0; 5) (6.4)

= -2n[(p2 - Pi)/K]GUny(0, h; S) (6.5)

for r = 0, 1 respectively. Here again there is a contribution to (3.9) from the
indentation about S given by

2nPnGnn{S) (6.6)

from (4.6) so that by inserting (6.4)-(6.6) in (3.9) we obtain the results

GoAS) = (px/KPn)G^j{0, 0; 5) (6.7)

and
GUn(S) = [fa - Px)/Kpn\Gi<ny(0, h; S) (6.8)

(n= 1, 2), which are the relationships for determining the slope potentials from
the wave-source potentials for the stratified liquid.
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7. Determination of G u

Specific forms in terms of the basic solutions (2.5)-(2.7) are now obtained
for the sets of wave-source potentials Gmn (m,n = 1,2) and slope potentials
Gnm (r = 0, 1 and m = 1, 2). For the wave-source potentials it is sufficient to
calculate G u only, since G2j and Gmi2 (m = 1,2) can then be deduced from
it by using the matching and reciprocity principles. The slope potentials that
depend on these are then easily calculated using (6.7), (6.8); but note that use of
Gi i alone is again sufficient, since Gr;i can be calculated from it and then Gr2

deduced using the matching principle (r = 0, 1). The form for the wave-source
potential Gi,i is now determined by our only long calculation.

Detailed results for the wave-source potentials have been derived for general
values of M\, M2 in largely unsimplified forms involving contour integrals
by Mandal and Chakrabarti [9], similar to the results for M\ = M2 = 0 of
Chakrabarti and Mandal [2]. These forms are not of practical usefulness but
do provide a basis for obtaining useful forms in terms of basic solutions by
transformation, as for a single liquid. Taking X = 0, 0 < Y < h their first
result for the symmetric Gi,i in terms of s, t, \x (see Section 2) can be simplified
and for M\ = M2 = M is

_ i y \ - v x2 + (y~Y- W2

-(y-Y + 2jh)2

:-u)J In

—It I/)
(1 + Mk2)q(y, Y; k)

:
(cosh kn + s smhkh)A(k)

- 2jh)2

cos kx dk

where A (it) = [tk{\ + Mk1) — sK] sinhkh — K coshkh and as indicated the
contours are indented below the poles k = K,K* (see Section 2); also

q(y, Y;k) = cos\\k{h -y)cos\ik(h -Y)+ssmhkhcoshk(y + Y-h).

Some further manipulation then allows the integral terms in (7.1) to be taken as

. (1+Mfc2)sinh*ysinh*y , Jt

2t \b -———i . / . cos kx dkJo (cosh kh +ssinh&/i)A(&)
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[12] Wave motion in a two-layered liquid 313

p(y,Y;k)
-2 if

Jo
coskxdk (7.2)

[k(\ + Mk2) - K]A(k)

(0 < y < h), where

p(j, Y; k) = [tk(l + Mk2) - K]coshk(y + Y - h)+sKsinhk(y + Y - h),

and these are now ready for transformation.
The alternative form for x > 0, say, is now found by first putting 2 cos kx =

eikx _|_ e-ikx m (72) and rotating the contours in the integrals so formed to
contours along the positive and negative imaginary axes respectively so that
we must include residue terms at & = K, K * for the first (all other poles have
negative real part so are not crossed). The integral terms obtained are

(1 - Mk2)e~kx sif
Jo

sinkhA2(k)dk
/„ (cos2 kh + s2 sin2 kh)D(k)

[ / f Zr- (1 __ A^ Z^2\ 1 » J( 1 /\ ,(]f\ I

«/0 L^ \ iV-i i\, j \^ 11v j ^ . ^ | ^/v^ I

where

A,(/t) = -A(iifc) = rifc(l - M£2) sin£/! + /<: cos£/J + /.S/S: sin£/i

and

D(k) = |A,(A:)|2 = \tk(\ - Mk2) sinkh + K coskh]2 + s2K2 sin2 kh;

also A2(k) = tk(l - Mk2) sinkh +2Kcoskh and

= [tk(l -

(k > 0).
An integral representation of similar form for the series of logarithmic terms

in (7.1) containing the singularity is determined as

e~kx sin ky sin k Yr
-2s

Jo
&(cos2 kh + s2 sin2 A:/i)

in the Appendix; thus combining (7.3), (7.4) the non-propagating part of G i i is
found to be

• K s i n £ v s i n * r (1 - Mk2)My + Y;"Mf^[-
, 0

= -2s
Jo

k2(l - Mk2)2 + K2

dk, (7.5)
k[k2(l - Mk2)2 + K2]D(k)
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in terms of the basic solutions (2.7) for m = 1.
The remaining residue terms referred to above give the outgoing waves of

Gii as x —• oo: those with wave number K are given by

- 2nis{\ + MK2)Aoe-K(y+Y-h)+iKX (7.6)

in terms of the basic solutions (2.5) for m = 1, where

Ao = 1/(1 + 3MK2)[(S - t) sinh/*:/i + cosh Kh];

and those with wave number K* by

1 + M*2 r t sinhK*ysinhK*Y _ p(y,Y;*) 1 ^K.x
Z?i [cosh/t*/z +ssinhK*h K*{\ + M*2) - K]

^ e~K'hF,(y + Y) 1 . . ,
- e

*h K*(1 + M*2) - K J

2,jti

D, l

= -2niAlFl(y)Fi(Y)e-K'h+iK'* (7.7)

in terms of the basic solutions (2.6) for m = 1, where

Ax = \/tK*[K\\ + MK*2) - K]Di

and

A = [/(I + 3M/c*2) - Kh]sinhK*h + [tic*(l + MK*2) - sK]hcoshic*h.

This completes the calculation for the first wave-source potential. Hence on
adding the contributions (7.5H7.7) the required form for 0 < Y < h is

lA(x,y,0,Y) = -2s f
Jo k[k2(l - Mk2)2 + K2]D(k)

-2ni[s(\ + MK2)Aoe~Kiy+Y-h)+Ux

+AlFl(y)Fl(Y)e-K'h+iK'x] (7.8)

(0 < y < h) in terms of the basic solutions (2.5)-(2.7) for m = 1.

8. Determination of CJ2,I and Gm 2 (m = 1, 2)

The corresponding forms for the three remaining wave-source potentials are
now easily deduced in succession; thus by matching at the interface using (2.5)-
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(2.7) we find for 0 < Y < h that

e~kx f2(y; k)f,{Y; k) ^

} (8.1)

(y > h) from (7.8) in terms of the basic solutions (2.5M2.7) for m = 2.
Further, by reciprocity between the layers and the simpler properties we have

sGU2(x, y; 0, Y) = G2,,(0, Y; x, y) = G2,,(-x, Y; 0, y) = G2A(x, Y; 0, y)

from (5.3) so that for Y > h

Gu(x,y;O,Y) = -2jo k m i _ m2)2 + K2]D(k)dk

K'h+u'x] (8.2)

(0 < y < h) from (8.1) in terms of the basic solutions (2.5)-(2.7) for m = 1;
thus by matching again

-2TT/[(1

' '1+ '^] (8.3)

(y > /i) from (8.2) in terms of the basic solutions (2.5M2.7) for m = 2.
This completes the determination of the required forms for the wave-source

potentials Gm,n (w, n = 1, 2) in x > 0 when X = 0, from which those for any
source position are easily deduced. Note that G i, i, G2t2 then exhibit the required
reciprocity in their layers. The results for M = 0, also new, are obtainable as a
special case.

9. Determination of Gnm{r = 0 , 1 and m = 1, 2)

The corresponding forms for the slope potentials can now be calculated.
Hence

, y) = jo mi_Mk2)2 + K2mk)

[ ( h ^ " ' x + tK*AiFl(y)e-K'h+iK'x] (9.1)
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(0 < y < h) from (6.7), (7.8); thus by matching at the interface

r°° e-kxf2(y; k)
G0;2(*, y) = 2sKJ^ [k2{l_Mk2)2 + K2]D(k)

dk

+2ni[sAoe
l<ih-^iKX+tK*AiF2(y)e-K'h+iK'x] (9.2)

(y > h) from (9.1).
Likewise

p-kx

\-.\(x,y) =

+2nit[A0e-Ky+iKX - K*AxFx(y)eiK'x] (9.3)

(0 < y < h) from (6.8), (7.8), where &*{k) = k{\ - Mk2) sinkh + K coskh
(k > 0); thus by matching again

C i a f c y) -
+2nit[A0e-Ky+iKX - K*A1F2(y)eiK'x] (9.4)

(y > A) from (9.3).
This completes the determination of the required forms for the slope potentials

Gr-m (r = 0, 1 and m = 1, 2) in* > 0 in terms of the basic solutions (2.5)-(2.7)
for m = 1,2; as noted earlier, these only exist for M > 0.

10. Heaving-plate problems

An application of the preceding results is now made in the problem to determ-
ine the various motions in unbounded horizontal layers of a stratified liquid with
outgoing waves at infinity due to the vertical oscillations (heaving) of a vertical
plate along part of x = 0. To produce this motion for M > 0 (none eventuates
if M = 0) the plate must have at least one point in the free surface or interface,
and we suppose that it actually intersects that boundary (so has a pair of opposite
'edges'); otherwise, the plate may terminate at any internal point of a layer. The
three possible configurations shown in Figure 1 that produce different motions
therefore involve plates partially immersed in the upper or both liquids (plates
A, C) and a plate completely submerged in both liquids (plate B). The plates are
assumed to be uniform and the motion symmetrical about any gap on x = 0 not
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layer 1

free surface

• interface

layer 2

FIGURE 1. The heaving plates A, B, C with edges, as marked. The zero plate thicknesses are
exaggerated for clarity.

occupied by the plate. Then the potentials 4>m {m = 1, 2) respectively satisfy
the additional boundary conditions

(f>lXy(O±, 0) = ±7Tl>o, (10.1)

(pixy(0±, h) = (t>2xy(0±, h) = ±TTV1 (10.2)

formally specifying the free-surface and interface slopes at the plate if there is a
relevant edge, where v0, v{ are appropriate edge-slope constants, whereas

4>\xy(0, h) = 4>2jcy(O, h) = 0

if there is no free-surface or interface edge; also for both pairs

<t>m -+ linear combination of e-
Ky+"M, Fm(y)eiic'w as |JC|

(10.3)

(10.4)

oo (10.5)

and (f>m is symmetrical in x (m = 1,2).
The constants v0, vt in (10.1), (10.2) are evaluated after obtaining formal

solutions by applying the dynamical edge conditions

,,(O, 0)-V = iCovo/(T,

- V = <fc,(0, h) - V = iClVl/a

(10.6)

(10.7)

for the relative motion (slipping) at free-surface or interface edges if the plate
has downward heave velocity R[Ve~ia'], where V is a complex-valued constant
and Co, Cx are material constants at pairs of opposite edges that are regarded

https://doi.org/10.1017/S0334270000009310 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000009310


318 P. F. Rhodes-Robinson [17]

i

layer 1

V

layer 2

B' C C" C

interface

FIGURE 2. The heaving plates A', B', C with tips and C", C" with tips and edges, as marked.
The zero plate thicknesses are exaggerated for clarity.

as known. This procedure to render a formal solution involving edge-slope
constants realistic has been used for a single liquid of infinite depth, in particular
for a partially immersed heaving vertical plate as described in Rhodes-Robinson
[13, Section 4]; the problem is generalized here and was first considered by
Hocking [5], who gave a comprehensive discussion of dynamical edge condi-
tions including the type used here that expresses the specific linear relationship
between relative velocity of the contact line and free-surface or interface slope
at an edge (suitable for time-harmonic motion).

Note that if a plate terminates at the free surface or interface (so has a 'tip')
we must instead apply the respective simpler dynamical tip conditions

0i,(O,O) = V,

0i,(O, h) = 02,(0, h) = V

(10.8)

(10.9)

(| V\/a small) for no relative motion (sticking); it is then obvious from (10.6),
(10.7) that solutions for the five possible limiting configurations shown in Fig-
ure 2 (plates A', B', C , C", C") can be deduced from the previous solutions by
formally putting Co = 0 or C\ = 0 as appropriate for any pair of opposite edges
that become a tip.

The main heaving-plate problems involving (10.1M10.5) above all have
obvious formal solutions in terms of the slope potentials (9.1)-(9.4), which
satisfy (4.1M4.5); these are now listed.

For plate A partially immersed in the upper liquid the solutions are

0m = (m = 1, 2) (10.10a)
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in terms of v0; this is evaluated from a linear equation obtained by applying the
condition (10.6) for m = 1 as

v0 = K/(MAOiO - /Co/a), (10.10b)

where AOtO = G0-iy(0, 0).
For plate B completely submerged in both liquids the solutions are

0m = Mv,G1;m {m = 1,2) (10.11a)

in terms of Vu this is evaluated from a linear equation obtained by applying the
condition (10.7) for m = 1 or m = 2 as

v, = V/(MAU - iC , /a ) , (10.11b)

where Au = Guly(0, h) = GU2y(0, h).
For plate C partially immersed in both liquids the solutions are

4>m = M(voGo-m + vxGUm) (m = 1, 2) (10.12a)

in terms of v0, V\; these are evaluated from the linear equations

(AMo,o - iC0/a)v0 + MAuov{ = V,
MAOJVO + (MA,,, - iC,/a)v, = V l J

obtained by applying both the conditions (10.6), (10.7) for m - 1,2, where
A,j0 = GUiy(0,0) and AOJ = G0-iy(0, h) = G0.i2y(Q, h). The results (10.10)-
(10.12) extend those for the partially immersed plate in a single liquid of infinite
depth as obtained in [ 13]. Integral expressions for the set of constants Ars(r,s —
0, 1) are obtained from (9.1M9.4) but are difficult to evaluate analytically. The
limiting heaving-plate solutions may be deduced as noted; thus for plate A' in the
upper liquid terminating at the free surface the solutions are 4>m = (V/AOiO)GO;m

{m = 1,2) from (10.10) on putting Co = 0, etc.

11. Reflexion at a wall

Another application is made in the problem to determine the motions in
semi-infinite horizontal layers of a stratified liquid occupying x > 0 due to
progressive waves of one or both types normally incident upon a fixed vertical
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wall x = 0 with two edges, at which reflexion is incomplete in the presence of
surface and interfacial tension. Then for incident waves with potentials e~Ky~ilcx

(say) as x —>• oo the potentials <pm (m = 1, 2) satisfy the additional boundary
conditions

0u,(O±, 0) =
0,X,(O±, h) = 02x,(O±, h) = 7Tku

where A.o, A.i are edge-slope constants; also for both potentials

§mx —0 on x = 0,

0m — e~Ky~iKX —> linear combination of e~
Ky+iKX, Fm{y)e'K'x as x —>• oo

(m = 1,2). The constants Xo, A-i are evaluated using the dynamical edge
conditions

0,,(O, 0) = iCoko/a,

where Co, Ci are as before.
The solutions are

+ A.1G1:)B) (m = 1, 2)

and Xo, A.) are evaluated from the equations

- iC0/<j)X0 + MAh0Xy = 2ic,

0 + {MAUi - iCx/a)kx = 2Ke~Kh.

These results (and others like them) extend those for a wall in a single liquid
of infinite depth obtained in Rhodes-Robinson [12]. Note that both types of
outgoing waves are usually reflected even if only one type is incident. For
M = 0 there is complete reflexion to give simple standing waves (no edge
conditions are now needed).

A familiar problem in the same region of the stratified liquid that involves both
slope and wave-source potentials in its solutions is that for the classical vertical
wave-maker along x = 0. These have the form of a distribution throughout the
two layers of wave-source potentials on the wave-maker boundary and discrete
slope potentials at the two edges. The edge-slope constants are now a little
harder to evaluate in the easily obtained formal solutions. For M = 0 there are
only wave-source potentials in the solutions.
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12. Conclusion

In principle the results obtained herein for M\ = M2 can be extended to
the general situation M\ ^ M2 but the forms are extremely complicated in
the specific calculations. The wave numbers for the two types of progressive
waves no longer satisfy explicit separate equations and their nature is not readily
apparent. The procedure for Green's theorem still applies. The slope potentials
in the free surface and interface are constructed from the wave-source potentials
using the same relationships if the slope terms in the boundary conditions are
taken as -im/Mi, ±n/M2 respectively. The reciprocity principle for wave-
source potentials continues to hold.
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Appendix
Integral representation

F o r x > 0 t h e s e r i e s o f l o g a r i t h m i c t e r m s i n G i i a r e

5 Jt + ( , + r + 2 W

e kx sinky sink{Y + 2jh)
dk

• • I . t

j=o
^ />oo<r'rjtsin)fc;ysin&(y-2./7i)

- 2 ^ ( - / * V / 7 dk
j=\ •'O K

on using a familiar integral representation in each term

e~kx sin ky sin kY

Jo k

oo ~-kxe x sin ky sin & 7

1

2fj,(cos2kh

/o *

= -2 (1 - yf) / -—— ——•—-dk

= -25 f
Jo

\ k(l+2ncos2kh
00 e~kx sinky sin kY

k(cos2 kh + s2 sin2 kh)

on simplification, recalling that fi = (1 — J ) / ( 1 + 5).

(A.1)
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