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EXACT ESTIMATION FOR MARKOV CHAIN EQUILIBRIUM
EXPECTATIONS

BY PETER W. GLYNN AND CHANG-HAN RHEE

Abstract

We introduce a new class of Monte Carlo methods, which we call exact estimation
algorithms. Such algorithms provide unbiased estimators for equilibrium expectations
associated with real-valued functionals defined on a Markov chain. We provide easily
implemented algorithms for the class of positive Harris recurrent Markov chains, and
for chains that are contracting on average. We further argue that exact estimation in
the Markov chain setting provides a significant theoretical relaxation relative to exact
simulation methods.
Keywords: Unbiased estimation; Markov chain equilibrium expectation; Markov chain
stationary expectation; exact estimation; exact sampling; exact simulation; perfect
sampling; perfect simulation
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1. Introduction

A key advance in the development of Monte Carlo algorithms for Markov chains has been
the introduction of what are known as exact simulation or perfect simulation algorithms for
equilibrium distributions of such stochastic processes. By assuming a suitable structure for the
underlying Markov chain, one can construct an algorithm that draws samples perfectly from
the equilibrium distribution of the Markov chain, based only on an ability to generate sample
paths of the chain starting from an arbitrary state. In particular, such algorithms have been
developed for finite-state Markov chains (see Propp and Wilson (1996)), uniformly recurrent
Markov chains (see Asmussen et al. (1992)), certain stochastically monotone Markov chains
(see Propp and Wilson (1996), and Corcoran and Tweedie (2001)), some queueing models (see
Ensor and Glynn (2000), and Blanchet and Wallwater (2014)), and various subclasses of Harris
recurrent Markov chains (see Kendall (2004), and Connor and Kendall (2007)). While the
idea is powerful, it apparently requires exploiting significant structure within the Markov chain
itself. In particular, no universal and practically implementable such perfect sampler has been
constructed for Harris recurrent Markov chains, or even for countable state positive recurrent
Markov chains. In fact, we shall argue below in Section 2 that exact simulation is inherently
restrictive, in the sense that such algorithms can typically be constructed only for Markov chains
that are φ-irreducible.

In this paper we relax the algorithmic formulation so as to require only that the algorithm
should produce unbiased estimators for equilibrium expectations, rather than to demand (as
in exact simulation) that such an unbiased estimator is necessarily constructed from an exact
sample from the equilibrium distribution. To differentiate this new class of algorithms from
exact simulation algorithms, we shall refer to them as exact estimation algorithms. Our
exact estimation algorithms exploit a recent idea of Rhee and Glynn (2013) that showed how
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378 P. W. GLYNN AND C.-H. RHEE

unbiased estimators can often be constructed from a sequence of biased approximations; see
also McLeish (2011), and Rhee and Glynn (2012). As we shall see below, this new class
of algorithms can provide unbiased estimators for equilibrium expectations for any positive
recurrent Harris chain. In fact, we shall see that exact estimation algorithms can even be
developed for non-φ-irreducible Markov chains, provided that the Markov chain is ‘contractive’
in a certain sense and that the equilibrium expectation involves a suitably Lipschitz functional
(Theorem 2.1). This makes clear that exact estimation is indeed a significant relaxation of
exact simulation.

One key additional feature of our exact estimation algorithms is that unlike most existing
exact simulation methods, our algorithms do not involve explicitly simulating paths from
multiple initial conditions, nor do they require monotonicity. Furthermore, our exact estimation
procedures can easily be implemented with a minimal need to store sample paths. Consequently,
our proposed exact estimation methods are relatively straightforward to implement.

Our paper is organized as follows. In Section 2 we illustrate exact estimation in the setting of
contractive Markov chains, and exploit the fact that Markov chains can, in great generality, be
viewed as a sequence of random iterated functions. In Section 3 we develop exact estimation
algorithms in the context of Harris recurrent Markov chains, thereby establishing that our
proposed relaxation is indeed a generalization of exact simulation. In Section 4 we prove a
variant of the Glivenko–Cantelli theorem for our newly developed estimator, and in Section 5
we provide a brief computational discussion.

2. Exact estimation for contracting Markov chains

Given an S-valued Markov chain X = {Xn : n ≥ 0}, we wish to develop exact estimation
algorithms for computing Ef (X∞), where f is real valued and X∞ has the equilibrium
distribution π of X (assumed to exist uniquely). We start by briefly describing and (slightly)
generalizing the algorithms and analysis presented in Rhee and Glynn (2012, 2013), and
McLeish (2011), following related earlier work by Rychlik (1990, 1995).

Suppose that we wish to compute EY . We assume that we have available to us a sequence
(Yk : k ≥ 0) of approximations for which

EYk → EY as k → ∞. (2.1)

If {�k : k ≥ 0} is a sequence of random variables (RVs) for which E�k = E(Yk − Yk−1) for
k ≥ 0 (with Y−1 := 0) and

E

∞∑
k=0

|�k| < ∞, (2.2)

then it is easy to verify that

Z :=
N∑
k=0

�k

P{N ≥ k}
is an unbiased estimate of EY , provided thatN is a Z+-valued RV independent of {�k : k ≥ 0}.
Of course, one implication of (2.2) is that �k ⇒ 0 as k → ∞, where ‘⇒’ denotes weak
convergence. Note that in our Markov chain setting, the most natural choice of approximating
sequence {Yk : k ≥ 0} is to choose Yk = f (Xk) (with Y = f (X∞)). However, the obvious
choice for �k , namely, �k = f (Xk) − f (Xk−1), then fails to satisfy �k ⇒ 0 as k → ∞.
Thus, the key to the development of an exact estimation algorithm for X is the construction of
a computationally implementable coupling between Xk−1 and Xk that forces �k to converge
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to 0 (hopefully rapidly); see Giles (2008) for the development of a closely related (biased)
estimator.

We now illustrate one potential coupling that can be applied in the setting of contractive
Markov chains. Assume (for the purpose of this section) that S is a complete separable metric
space with metric ρ : S×S → R+. In this setting,X can be represented in terms of a sequence
of independent and identically distributed (i.i.d.) random functions {ϕi : i ≥ 1} mapping S into
S, independent of X0, so that

Xi = ϕi(Xi−1)

for i ≥ 1; see, e.g. Borovkov and Foss (1992). For example, a standard representation of such
Markov chains is in terms of a stochastic recursion in which Xi = ψ(Xi−1, βi) for some i.i.d.
sequence {βi : i ≥ 1} and deterministic function ψ , so that ϕi(x) may be taken as ψ(x, βi).
In any case, given this random function representation, Xn = (ϕn ◦ ϕn−1 ◦ · · · ◦ ϕ1)(X0),
conditional on X0. An obvious means of coupling Xn−1 and Xn is then to set

X̃n−1 = (ϕn ◦ ϕn−1 ◦ · · · ◦ ϕ2)(x)

for n ≥ 2, with X̃0 := x. Clearly, X̃n−1
D= Xn−1 for n ≥ 1, where ‘

D=’ denotes equality in
distribution.

For y, z ∈ S, set r(y, z) = Eρ2(ϕ1(y), ϕ1(z)) and assume that there exists b < 1 for which

r(y, z) ≤ bρ2(y, z) (2.3)

for y, z ∈ S, so that X is ‘contractive on average’. Suppose further that f is Lipschitz with
respect to the metric ρ, so that there exists κ < ∞ for which

|f (y)− f (z)| ≤ κρ(y, z) (2.4)

for y, z ∈ S. Evidently,
E�2

k ≤ κ2
Eρ2(Xk, X̃k−1)

= κ2
Eρ2(ϕk(Xk−1), ϕk(X̃k−2))

≤ κ2bEρ2(Xk−1, X̃k−2)

≤ · · ·
≤ κ2bk−1

Eρ2(X1, x).

Hence, if
Eρ2(ϕ1(x), x) < ∞ (2.5)

for x ∈ S, it follows that E�2
k → 0 geometrically fast, so that (2.2) holds. Also, Theorem 2.1

of Diaconis and Freedman (1999) applies, in the presence of (2.3) and (2.5), so that X has a
unique stationary distribution π . In fact, their proof makes clear that Ef (Xn) → Ef (X∞)
geometrically fast (where X∞ has distribution π ) when f is Lipschitz. Consequently, (2.1) is
valid, thereby proving that Z is an unbiased estimate of Ef (X∞).

But more can be said. Note that

EZ2 =
∞∑
k=0

E�2
k + 2

∑∞
j=k+1 E�k�j

P{N ≥ k} . (2.6)

By virtue of the Cauchy–Schwarz inequality, it follows that varZ < ∞, provided that we
choose the distribution for N so that

∞∑
k=0

bk

P{N ≥ k} < ∞. (2.7)
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Under condition (2.7), the central limit theorem asserts that if we generate i.i.d. copiesZ1,Z2, . . .

ofZ and form the sample mean Z̄n = (Z1+· · ·+Zn)/n, then Z̄n converges weakly to Ef (X∞)
at rate n−1/2 in the number n of samples that are generated.

Of course, the amount of computer time needed to generate each Zi could be excessive. To
take this effect into account, we let ξi be the computer time needed to generate Zi . In view
of the fact that computing Z requires us to generate ϕ1, . . . , ϕN , it seems natural to assess the
computer time as being equal to N . Hence, we put ξi = Ni , where Ni is the corresponding
randomization RV N associated with Zi . If �(c) is the number of Zi generated in c units of
computer time, �(c) = max{k ≥ 0 : ξ1 +· · ·+ξk ≤ c} and the estimator for Ef (X∞) available
after expending c units of computer time is Z̄�(c). If

Eξi = EN =
∞∑
k=0

P{N ≥ k} < ∞ (2.8)

and varZ < ∞, it is well known (see, for example, Glynn and Whitt (1992)) that

c1/2(Z̄�(c) − Ef (X∞)) ⇒ √
EN · varZ N(0, 1) as c → ∞,

where N(0, 1) denotes a normal RV with mean 0 and variance 1.
We summarize our discussion with the following result, which establishes that the exact

estimation algorithm exhibiting ‘square root’convergence rates can be obtained for any suitably
contractive chain and Lipschitz function f .

Theorem 2.1. Assume that (2.3)–(2.5) hold. If the distribution ofN is chosen so that (2.7) and
(2.8) hold (e.g. P{N ≥ k} = ck−α for α > 1), then

c1/2(Z̄�(c) − Ef (X∞)) ⇒ √
EN · varZ N(0, 1) as c → ∞.

In view of Theorem 2.1, a natural question arises as to the optimal choice for the distribution
of N . According to Proposition 1 of Rhee and Glynn (2013), the optimal choice is to set

P{N ≥ k} =
(

E�2
k + 2

∑∞
j=k+1 E�k�j

E�2
0 + 2

∑∞
j=1 E�0�j

)1/2

(2.9)

for k ≥ 0, provided that the right-hand side is nonincreasing; see Theorem 3 of Rhee and
Glynn (2013) for details of the form of the optimal distribution when the right-hand side fails
to be nonincreasing. Given this result and the geometric decay of the E�2

k , it therefore seems
reasonable to expect that requiring the tail of N to be geometric will often be a good choice in
this setting.

We turn next to a slightly different implementation of our coupling idea in the S-valued
metric space contractive setting. Given the independence of N from the ϕi , an alternative
coupling for (Xi−1, Xi) is to set

X∗
j = (ϕN ◦ ϕN−1 ◦ · · · ◦ ϕN−j+1)(x)

for 0 ≤ j ≤ N . Clearly, conditional on N , X∗
j

D= Xj and �∗
j := X∗

j −X∗
j−1

D= �j for j ≥ 0.
Because E(�∗

j )
2 = E�2

j for j ≥ 0, the same argument as for Z shows that

Z∗ =
N∑
j=0

�∗
j

P{N ≥ j}
is unbiased for Ef (X∞). Furthermore, the estimator for Ef (X∞) corresponding to computing
a sample average of i.i.d. copies of Z∗ satisfies Theorem 2.1, under conditions (2.3)–(2.8).
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The estimator based onZ∗ is slightly more complicated to implement, becauseX∗
i cannot be

computed recursively fromX∗
i−1 in this setting (whereas (Xi, X̃i) can be computed recursively

from (Xi−1, X̃i−1)). Of course, the estimator based on Z∗ will have a different variance than
does Z, because E�k�j �= E�∗

k�
∗
j for k < j . In particular, while all four of the quantities

f (X∗
k ), f (X

∗
k−1), f (X

∗
j ), f (X

∗
j−1) appearing in E�∗

k�
∗
j will be close to one another when k

is large, f (Xj )− f (Xk) will exhibit significant variability, regardless of the magnitude of k.
We close this section by noting that the construction of an exact simulation algorithm typically

requires the underlying Markov chain to be φ-irreducible. Since contractive chains need not
be φ-irreducible, this discussion serves to illustrate the fact that exact estimation does indeed
cover Markov chains to which the theory of exact simulation does not apply.

Recall that an S-valued Markov chain X = {Xn : n ≥ 0} is φ-irreducible if there exists a
σ -finite (nonnegative) measure φ such that whenever φ(A) > 0 for some (measurable) A,

R(x,A) :=
∞∑
n=0

2−n
Px{Xn ∈ A} > 0

for all x ∈ S, where Px{·} := P{· | X0 = x}. Equivalently,

φ(·) � R(x, ·)
for each x ∈ S, where ‘�’ denotes ‘is absolutely continuous with respect to’.

A typical exact simulation algorithm involves simulating X from multiple initial states
x1, x2, . . . , thereby yielding a family of RVs {Xij : i ≥ 1, j ≥ 0} such that

P{{Xij : j ≥ 0} ∈ ·} = P{{Xj : j ≥ 0} ∈ · | X0 = xi}
for i ≥ 1; the exact simulation algorithm then outputs XIJ for some appropriately chosen pair
of RVs (I, J ). Exact simulation demands that if X has an equilibrium distribution π(·) then

P{XIJ ∈ ·} = π(·).
The probability P{XIJ ∈ ·} is mutually absolutely continuous with respect to

E[2−I−J 1{XIJ ∈ ·}].
But

E[2−I−J 1{XIJ ∈ ·}] =
∞∑
i=1

∞∑
j=0

2−i−j
P{Xij ∈ ·, I = i, J = j}

≤
∞∑
i=1

∞∑
j=0

2−i−j
P{Xij ∈ ·}

=
∞∑
i=1

2−iR(xi, ·).

Hence, it follows that

π(·) �
∞∑
i=1

2−iR(xi, ·). (2.10)

Thus, the existence of an exact simulation algorithm requires one to have a priori knowledge of
a set of states x1, x2, . . . satisfying (2.10). Without additional structure on the chain, the only
way to guarantee this is to require that

π(·) � R(x, ·) for each x ∈ S.
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382 P. W. GLYNN AND C.-H. RHEE

In other words, X must be φ-irreducible, with φ = π . (Note that when a φ-irreducible
Markov chain has a stationary distribution, one choice for φ is always φ = π .) Consequently,
φ-irreducibility and exact simulation are tightly connected concepts.

3. Exact estimation for Harris recurrent Markov chains

In this section we prove that exact estimation algorithms can be constructed for any positive
recurrent Harris chain, under the assumption that S is a separable metric space. In the presence
of such separability, it is well known that there exists a so-called small set A, i.e. there exists
m ≥ 1, a probability ν, and λ > 0, for which

P{Xm ∈ · | X0 = x} ≥ λν(·) (3.1)

for all x ∈ A. Given (3.1), we can express them-step transition probability onA via the mixture
representation

P{Xm ∈ · | X0 = x} = λν(·)+ (1 − λ)Q(x, ·), (3.2)

where Q(x, ·) is a probability on S for each x ∈ A. In view of (3.2), we can construct
regeneration times T (1), T (2), . . . for X by first running the chain until it hits A. Once it hits
A, at time T say, we distribute the chain at time T +m according to ν with probability λ and
according to Q(XT , ·) with probability 1 − λ; we then ‘condition in’ the values of XT+1, …,
XT+m−1, conditional on XT and XT+m. Then if we succeed in distributing X according to
ν at time T + m, set T (1) = T + m; otherwise, continue simulating X forward from time
T +m, and continue attempting to distributeX according to ν at successive visits toA until we
are successful, thereby defining the first regeneration time T (1). We then successively follow
the same procedure from time T (1) forward to construct T (2), T (3), . . . . The Markov chain
X is wide-sense regenerative with respect to the sequence of random times T (1), T (2), . . . . In
particular, the random element ((XT (i)+j , T (i+j+1)−T (i)) : j ≥ 0) is identically distributed
and independent of T (i) for i ≥ 1; see Meyn and Tweedie (2009) and Thorisson (2000) for
details. As noted in Asmussen and Glynn (2007), one can implement the above algorithm using
acceptance/rejection so that explicit generation from the conditional distribution (givenXT and
XT+m) can be avoided.

We now explain our exact estimation algorithm in the special case that X is aperiodic; later
we generalize to the periodic case. As in Section 2, the key is to construct a coupling of
(Xn−1, Xn) that makes �n small. Specifically, alongside {Xn : n ≥ 0} we construct another
sequence {X′

n : n ≥ 0} and a random time τ such that {X′
n : n ≥ 0} D= {Xn : n ≥ 0}, and then

attempt to (distributionally) couple the X′
n to the Xn+1 in such a way that Xτ

D= X′
τ−1.

Start by drawing X0 from the distribution ν and set X′
0 = X0. We have already discussed

the simulation of X and the construction of the associated T (n). Conditional on X0, simulate
{X′

n : n ≥ 1} independently of {Xn : n ≥ 1}, thereby producing an associated sequence of
regeneration times 0 = T ′(0) < T ′(1) < T ′(2) < · · · . Now let the (distributional) coupling
time τ be the first time at which one of the (T (j)−1) coincides with one of theT ′(i), specifically,

τ = inf{T (n) : n ≥ 1, there exists m ≥ 0 such that T ′(m) = T (n)− 1}.
With this definition of τ ,

(a) {Xτ+j : j ≥ 0} D= {X′
τ+j−1 : j ≥ 0}; and

(b) {(Xτ+j , X′
τ+j−1) : j ≥ 0} is independent of τ .
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Consequently, setting �k = [f (Xk)− f (X′
k−1)] 1{τ > k} (with f bounded), it follows that

E�k = E[(f (Xk)− f (X′
k−1)) 1{τ > k}]

= E[(f (Xk)− f (X′
k−1)) 1{τ > k}] +

k∑
j=1

E[(f (Xτ+k−j )− f (X′
τ+k−j−1))]P{τ = j}

= E[(f (Xk)− f (X′
k−1)) 1{τ > k}] +

k∑
j=1

E[(f (Xτ+k−j )− f (X′
τ+k−j−1)) 1{τ = j}]

= E[f (Xk)− f (X′
k−1)]

= E[f (Xk)− f (Xk−1)],
where the second equality follows because of (a), and the third inequality is a consequence of
independence as at (b). Furthermore, the aperiodicity of X and the boundedness of f imply
that Ef (Xk) → Ef (X∞) as k → ∞, where X∞ has the distribution π , the unique stationary
distribution of the Harris chain.

It remains to establish condition (2.2). Observe that the (T (n) − 1) are the regeneration
times for the sequence {Xn+1 : n ≥ 0}, in whichX is initialized with the distribution P{X1 ∈ ·}.
Equivalently, the (T (n) − 1) are renewal times for the delayed renewal process in which the
interrenewal times share the same interrenewal distribution as for the T ′(n), but in which the
probability mass function for the initial delay is given by {qj : j ≥ 0}, where qj = P{T ′(2)−
T ′(1) = j + 1}. Thus, τ is the first time that two independent aperiodic renewal processes
couple, in which one is nondelayed (corresponding to {X′

n : n ≥ 0}) and the other is delayed
with initial delay (qj : j ≥ 0). According to Lindvall (2002, p. 27), Eτ r < ∞ for r ≥ 1,
provided that E[T (2)− T (1)]r < ∞. (Note that

∑∞
j=0 j

rqj < ∞ = E[T (2)− T (1)]r for the
specific delay distribution that arises here.) Of course, the positive recurrence ofX implies that
E[T (2)− T (1)] < ∞ (see Athreya and Ney (1978)), implying that Eτ < ∞. Hence,

E

∞∑
k=0

|�j | ≤ 2 ‖f ‖ E

∞∑
k=0

1{τ > k} = 2‖f ‖ Eτ < ∞,

where ‖f ‖ = sup{|f (x)| : x ∈ S} < ∞, validating (2.2). It follows that Z is an unbiased
estimator for Ef (X∞).

For the periodic case (with period p), we can apply the above algorithm to (Xpn : n ≥ 0),
and apply the coupling τ to coupling the Xpn to the Xp(n−1). (Note that, by setting X0 = X′

0,
we guarantee that both {Xn : n ≥ 0} and {X′

n : n ≥ 0} start in the same periodic subclass, so that
{Xp(n+1) : n ≥ 0} can successfully couple with {X′

pn : n ≥ 0}.) We summarize our discussion
thus far in the following result.

Theorem 3.1. If X is a positive recurrent Harris chain and f is bounded, the RV Z described
above is an unbiased estimator for Ef (X∞).

Of course, this estimator may fail to exhibit a ‘square root convergence rate’, because Z
may not have finite variance and the expected computation time to generate Z may be infinite.
However, we note that because �k = 0 for k > τ in this setting, the number of time steps of
{(Xj ,X′

j ) : j ≥ 0} that need to be simulated in order to compute Z is bounded by 2 min{τ,N}.
(The factor of 2 appears because we need to simulate both the Xj and X′

j .) Hence, if ξ is a
measure of the computational effort required to generate Z, Eξ is automatically finite because
Eτ < ∞, regardless of the distribution of N . (In fact, we may set N = ∞ almost surely (a.s.)
in this setting, if we so wish.)
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Turning now to the variance of Z, we note that if f is bounded, E�2
k = O(P{τ > k})

as k → ∞. Furthermore, if E[T (2) − T (1)]r < ∞ for r > 1, then Eτ r < ∞, so that
E�2

k = O(k−r ) by virtue of Markov’s inequality. Also, for k < j , �k�j = 0 unless τ > j ,
so E�k�j = O(j−r ) as j → ∞, uniformly in k. Thus,

∞∑
k=j+1

E�k�j = O(k1−r ) as k → ∞.

In order that there exist a probability distribution N so that EZ2 < ∞, (2.6) implies that it is
therefore sufficient that α > 2 (in which case we can, for example, chooseN so that P{N ≥ k}
is of order k1−α/2 for large k).

We have therefore proved the following theorem, establishing square root convergence (in
computational effort c) for our estimator.

Theorem 3.2. If X is a Harris chain with E[T (2)− T (1)]r < ∞ for r > 2 and f is bounded,
then

c1/2(Z̄�(c) − Ef (X∞)) ⇒ √
Eξ · varZ N(0, 1) as c → ∞.

An improvement to the above coupling is easily implemented. In the above algorithm, τ
occurs whenever X and X′ m time steps earlier were in A, and both X and X′ independently
chose at that time to distribute themselves according to ν m time units later. But an alternative
coupling is to generate (XT+m,X′

T+m−1) as follows, whenever (XT ,X′
T−1) ∈ A× A. As

in the previous algorithm, distribute XT+m according to ν with probability λ, and according
to Q(XT , ·) with probability 1 − λ. Now modify the dynamics for X′. Whenever XT+m
is distributed according to ν, set X′

T+m−1 = XT+m. On the other hand, whenever XT+m is
distributed according to Q(XT , ·), independently generate X′

T+m−1 according to Q(X′
T−1, ·).

This coupling preserves the marginal distribution of X and X′, but the time τ ′ at which X and
X′ couple (so thatXτ ′ = X′

τ ′−1) is a.s. smaller than under the previous ‘independent coupling’.
Consequently, P{τ ′ ≥ k} ≤ P{τ ≥ k} for k ≥ 0, so E(τ ′)r ≤ Eτ r for r > 0, thereby
establishing that this coupling can be used in place of τ in proving Theorem 3.2. Since τ ′ ≤ τ ,
this coupling is computationally preferable to τ .

4. A Glivenko–Cantelli result

In some settings, one may be interested in computing the equilibrium distribution of some
real-valued functional f of the Markov chain, rather than merely its expected value Ef (X∞).
In this section we study the behavior of our unbiased estimator for the equilibrium probability
P{f (X∞) ≤ x} = E[1{f (X∞) ≤ x}] as a function of x. Because the mapping 1{f (·) ≤ x} is
not Lipschitz, the theory of Section 2 does not apply. Consequently, we focus here on the case
where X is a positive recurrent Harris chain.

Set Yk = f (Xk) and Y ′
k = f (X′

k). Let {{(Yk,j , Y ′
k,j ) : 0 ≤ k ≤ min{τj , Nj } } : j ≥ 1} be a

sequence of i.i.d. copies of {(Yk, Y ′
k) : 0 ≤ k ≤ min{τ,N} }, where theYk andY ′

k are constructed
as in Section 3. The empirical measure (intended to estimate F∞(·) := P{f (X∞) ≤ ·})
associated with sample size n is then given by the random signed measure

πn(·) = 1

n

n∑
j=1

τj∧Nj∑
k=0

δYk,j (·)− δY ′
k−1,j

(·)
P{N ≥ k} ,
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where a ∧ b := min{a, b} and δy(·) is a unit point mass measure at y. Observe that

∫
S

y πn(dy) and Fn(x) :=
∫
S

1{y ≤ x}πn(dy)

are unbiased estimators for Ef (X∞) and F∞(x) respectively as in Section 3. We may rewrite
Fn(·) as

Fn(x) =
∞∑
k=0

1

n

n∑
j=1

(1{Yk,j ≤ x} − 1{Y ′
k−1,j ≤ x})1{τj ∧Nj ≥ k}

P{N ≥ k} .

Because the sample functions

1

n

n∑
j=1

1{Yk,j ≤ x} 1{τj ∧Nj ≥ k} and
1

n

n∑
j=1

1{Y ′
k−1,j ≤ x} 1{τj ∧Nj ≥ k}

are monotone in x, a proof identical to that of the standard Glivenko–Cantelli theorem (see, for
example, Chung (2001)) establishes that

sup
x

∣∣∣∣
n∑
j=1

1{Yk,j ≤ x} 1{τj ∧Nj ≥ k} − E[1{Yk ≤ x} 1{τ ≥ k}]P{Nj ≥ k}
∣∣∣∣ a.s.−−→ 0

and

sup
x

∣∣∣∣
n∑
j=1

1{Y ′
k−1,j ≤ x} 1{τj ∧Nj ≥ k} − E[1{Y ′

k−1 ≤ x} 1{τ ≥ k}]P{Nj ≥ k}
∣∣∣∣ a.s.−−→ 0

as n → ∞, for each fixed k ≥ 0. Since we proved in Section 3 that

E[(1{Yk ≤ x} − 1{Y ′
k−1 ≤ x}) 1{τ ≥ k}] = P{Yk ≤ x} − P{Yk−1 ≤ x},

it follows that, for any m ≥ 1,

sup
x

∣∣∣∣
m∑
k=0

1

n

n∑
j=1

(1{Ykj ≤ x} − 1{Y ′
k−1,j ≤ x})1{τj ∧Nj ≥ k}

P{N ≥ k} − P{Ym ≤ x}
∣∣∣∣ a.s.−−→ 0 (4.1)

as n → ∞. If X is any aperiodic positive recurrent Harris chain, Ym converges to Y∞ in total
variation, and, hence,

sup
x

|P{Ym ≤ x} − F∞(x)| → 0 as m → ∞. (4.2)

(If X is periodic, adapt (4.2) by restricting m to multiples of p, replacing (4.2) by

sup
x

∣∣∣∣ 1

p

p−1∑
i=0

P{Ym+i ≤ x} − F∞(x)
∣∣∣∣ → 0

as m → ∞.)
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Suppose now that P{N ≥ k} ∼ ck−α as k → ∞, where ak ∼ bk means that ak/bk → 1 as
k → ∞. Note that, for sufficiently large m,

∑
k>m

∣∣∣∣1

n

n∑
j=1

(1{Ykj ≤ x} − 1{Y ′
k−1,j ≤ x})1{τj ∧Nj ≥ k}

P{N ≥ k}
∣∣∣∣

≤
∑
k>m

1

n

n∑
j=1

1{τj ∧Nj ≥ k}
P{N ≥ k}

≤ 2

c

∑
k>m

kα
1

n

n∑
j=1

1{τj ∧Nj ≥ k}

≤ 3

c(α + 1)

1

n

n∑
j=1

(τj ∧Nj + 1)α+1 1{τj ∧Nj ≥ m}

a.s.−−→ 3

c(α + 1)
E[(τ ∧N + 1)α+1 1{τ ∧N ≥ m}] as n → ∞. (4.3)

If E(τ ∧N)α+1 < ∞, it follows that

E[(τ ∧N + 1)α+1 1{τ ∧N ≥ m}] → 0 as m → ∞. (4.4)

By first fixing m, then letting n → ∞, and finally sending m → ∞, (4.1)–(4.4) therefore
prove that

sup
x

|Fn(x)− F∞(x)| a.s.−−→ 0 as n → ∞.

It remains to consider the finiteness of E(τ ∧N)α+1. Observe that

E(τ ∧N)α+1 ≤ (α + 1)
∞∑
k=0

kαP{τ ≥ k} P{N ≥ k}.

But
∑∞
k=0 P{τ ≥ k} = E(τ + 1) < ∞ and kαP{N ≥ k} → c as k → ∞, thereby proving that

E(τ ∧N)α+1 is necessarily finite.
This proves the following Glivenko–Cantelli-type theorem for the estimator of Section 3.

Theorem 4.1. Suppose that P{N ≥ k} ∼ ck−α as k → ∞ for α > 0. If X is a positive
recurrent Harris chain then Fn(x) is an unbiased estimator for F∞(x) for each x ∈ R, and

sup
x

|Fn(x)− F∞(x)| a.s.−−→ 0 as n → ∞.

5. Numerical results

We present here a brief account of the numerical performance of our exact estimation
algorithms.

As an example of a contracting chain, consider the non-φ-irreducible Markov chain X =
{Xn : n ≥ 0} given by

Xn+1 = 1
2Xn + Vn+1,
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Table 1: Contracting chain: 106 time steps, X0 = 1, P{N ≥ n} = 21−n.

f (x) Estimator 90% confidence interval # Samples

x Z 1.013 ± 1.1 × 10−2 6.7 × 104

Z∗ 0.9974 ± 7.3 × 10−3 5.0 × 104

min(1, x) Z 0.7531 ± 6.2 × 10−3 6.7 × 104

Z∗ 0.7552 ± 4.7 × 10−3 5.1 × 104

x2 Z 1.344 ± 2.3 × 10−2 6.7 × 104

Z∗ 1.334 ± 1.6 × 10−2 5.0 × 104

Table 2: Contracting chain: 106 time steps, X0 = 1, P{N ≥ n} = 0.95n−1.

f (x) Estimator 90% confidence interval # Samples

x Z 1.009 ± 3.3 × 10−2 2.7 × 103

Z∗ 1.006 ± 6.1 × 10−2 2.4 × 102

min(1, x) Z 0.743 ± 1.7 × 10−2 2.7 × 103

Z∗ 0.764 ± 3.6 × 10−2 2.5 × 102

x2 Z 1.356 ± 6.7 × 10−2 2.7 × 103

Z∗ 1.39 ± 1.3 × 10−1 2.5 × 102

where S = [0, 2] and the Vi are i.i.d. with P{Vn = 0} = 1
2 = P{Vn = 1}, with corresponding

Lipschitz functions f1(x) = x, f2(x) = min{1, x}, and f3(x) = x2. For this example, π is
uniform on [0, 2],

Ef1(X∞) = 1, Ef2(X∞) = 3
4 , and Ef3(X∞) = 4

3 .

In Tables 1 and 2 we present results for two different distributions for N . As expected, the
algorithm based on Z becomes more attractive when N has a heavier tail, because the compu-
tational effort for Z∗ increases quadratically in N (because of the nonrecursive computation of
the �i), whereas the effort for Z increases linearly in N .

We turn next to the Harris chain algorithm, implemented with the coupling τ ′ of Section 3.
Consider the Markov chain W = {Wn : n ≥ 0} on R+ corresponding to the waiting time
sequence for the M/M/1 queue, with arrival rate 1

2 and unit service rate. The equilibrium
distribution π here is a mixture of a unit point mass at 0 and an exponential distribution with
rate parameter 1

2 , with the same probability 1
2 for each mixture component. Let the function f

be given by f (x) = 1{x > 1}, so that

P{W∞ > 1} = 1
2 e−1/2 ≈ 0.303.

As forN , we note that the same proof technique as for Proposition 1 of Rhee and Glynn (2013)
establishes that the optimal choice for the distribution ofN is to choose P{N ≥ k} proportional
to √

E�2
k + 2

∑∞
j=k+1 E�k�j

P{τ ≥ k} ,

provided that this sequence is nonincreasing. Since it seems likely that E�2
k will frequently be

of roughly the same order as P{τ ≥ k} for large k, this suggests that the optimal distribution
will often have positive mass at infinity. In view of this observation, we have chosen to use
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Table 3: Harris chain.

# Steps simulated 90% confidence interval # Samples

1.0 × 105 0.283 ± 8.3 × 10−2 3.2 × 104

2.0 × 105 0.279 ± 5.8 × 10−2 6.5 × 104

5.0 × 105 0.296 ± 3.4 × 10−2 1.6 × 105

1.0 × 106 0.329 ± 2.7 × 10−2 3.2 × 105

2.0 × 106 0.294 ± 1.8 × 10−2 6.5 × 105

5.0 × 106 0.308 ± 1.2 × 10−2 1.6 × 106

1.0 × 107 0.2992 ± 8.4 × 10−3 3.2 × 106

2.0 × 107 0.3089 ± 5.8 × 10−3 6.5 × 106

5.0 × 107 0.2995 ± 3.7 × 10−3 1.6 × 107

1.0 × 108 0.3041 ± 2.6 × 10−3 3.3 × 107

2.0 × 108 0.3024 ± 1.9 × 10−3 6.5 × 107

5.0 × 108 0.3036 ± 1.2 × 10−3 1.6 × 108

a very heavy-tailed specification for N , namely, P{N ≥ k} = 1/k for k ≥ 0. In Table 3 we
present the results of our computations with λ = 1 and a small set A = {0}; the results show
the ‘square root’ decrease in the width of the confidence interval that is to be expected.
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