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ADJUSTING TWO-DIMENSIONAL VELOCITY DATA TO OBEY 
CONTINUITY 

By L. A. RASMUSSEN 

(V.S . Geological Survey, Tacoma, Washington 98402, V.S.A.) 

ABSTRACT. An algorithm is developed for adjusting 
glacier surface-velocity vectors, given on the nodes of a 
square grid, so that they obey a central-<lifference 
approximation of the continuity equation . Also required 
on the grid nodes are the glacier thickness, the ratio of 
the surface-velocity to the average velocity in the 
column, and the difference between the mass balance 
and the thickness change. All these other variables are 
assumed to be known exactly, and only the surface
velocity field is adjusted. The result is optimum in the 
sense that the magnitude of the adjustment is minimized. 
Either the relative or the absolute adjustment can be 
minimized, depending on how weights are specified. No 
restriction is placed on the shape of the solution region, 
and no boundary condition is required . The algorithm is 
not iterative. The algorithm first forms a parallel flow 
field tha t satisfies the continuity equation, and then 
uses a stream function to add a divergenceless field to 
it . The stream function that leads to the minimum 
velocity adjustment is obtained as four independent, 
interlacing solutions covering the solution region . For 
each of the four , a well~onditioned, sparse-rnatrix 
system of simultaneous linear equations is solved. A 
compact, sub-<lptimum, well-behaved iterative procedure 
is also developed for transforming part of the veloci ty 
adjustment into an adjustment of the thickness field . 

RESUME. Ajustem ent d 'ull champ de vitesses 
bidimensionnel observe a/in de respecter /'equation d e 
continuite. On developpe un algorithme qui permet d'ajuster 
des vecteurs vitesse superficielle donnes aux noeuds d'une 
grille carn!e de maniere it ce qu'ils obeissent it un schema 
aux differences centrees de l'equation de continuite. Pour ce 
faire, il faut egalement connaitre aux noeuds de la grille 
l'epaisseur du glacier, le rapport entre la vitesse en surface 
et la vitesse moyenne sur une verticale amSl que la 
difference entre bilan de masse et variation d'epaisseur. 
Toutes ces variables sont supposees parfaitement connues et 
seul le champ de vitesse superficielle est ajuste . 
L'optimisation est realisee en minimisant la valeur de 
I'ajustement. On peut, en specifiant les poids respectifs, 
minimiser les valeurs d ' ajustements relatives ou absolues. La 
forme de la region soumise au calcul peut etre quelconque, 
aucune condition aux limites n'est necessaire et l'algorithme 

INTRODUCTION 

For some ice-mass configurations - confluences of 
tributaries, valley glaciers with high curvature of the 
centerline, ice sheets the explicit treatment of 
transverse variations of the flow ma y yield better resu Its 
than representing them in parameterized form in a 
one-<limensional model. The one-<limensional 
parameterization is effected by introducing shape 
factors, which have a partly theoretical, partly empirical 
basis . A two-<limensional flow model - by which is 
meant that there are two independent horizontal space 
coordinates (x,y ) - avoids the need for shape factors to 
parameterize the transverse variations. 

Whatever a model's dimensionality , its application to 
an actual ice mass must begin by obtaining a set of 

n'est pas iteratif. L'algorithme construit d'abord un champ 
de vitesses paralleles satisfaisant I'equation de continuite 
puis, utilisant une fonction de courant, lui ajoute un champ 
it divergence nulle. La fonction de courant correspondant it 
l'ajustement minimal des vitesses est obtenue comme 
combinaison de quat re solutions independantes couvrant la 
region. Pour chacune des quatre solutions, on resoud un 
systeme lineaire dont la matrice est creuse et bien 
conditionnee . Une procedure iterative compacte, sub 
optimale, stable et convergente est egalement developpee afin 
de transformer une par tie de l'ajustement cinematique en un 
ajustement des epaisseurs. 

ZUSAMMENFASSUNG . Einpassung z weidimensiollaler 
Geschwindigkeitsdaten in die Kontinuitiitsgleichung. Es wird 
ein Rechenverfahren zur Einpassung von oberfHichlichen 
Geschwindigkeitsvektoren in den Schnittpunkten eines 
Quadratnetzes auf eine zentral-differentielle Annaherung der 
Kontinuitatsgleichung entwickelt. In den Netzpunkten werden 
we iter benOtigt die Gletscherdicke, das Verhaltnis zwischen 
der OberfHichengeschwindigkeit und der mittleren 
Geschwindigkeit in der Saule und die Differenz zwischen 
der Massenbilanz und der Dickenanderung. Diese Parameter 
werden als fehlerfreie GrOssen betrachtet, so dass sich die 
Einpassung nur auf das oberflachliche Geschwindigkeitsfeld 
erstreckt. Das Ergebnis ist insofern optimal, als die 
Einpassung minimiert wird. Dies kann entweder mit der 
relativen oder der absoluten Ausgleichung geschehen - je 
nach der Gewichtsfestsetzung. Die Form des 
Uisungsbereiches unterliegt keinen Einschrankungen; eine 
Randbedingung wird nicht benOtigt. Der Algorithmus ist 
nicht iterativ. Der Algorithmus erzeugt zuerst ein 
paralleles StrOmungsfeld, das die Kontinuitatsgleichung 
erfullt , und zieht dann eine StrOmungsfunktion zur Addition 
eines divergenzfreien Feldes heran. Die StrOmungsfunktion, 
die zur Ausgleichung der Geschwindigkeiten fuhrt, wird aus 
4 unabhangigen, verknupften Uisungen, die den 
LOsungsbereich uberdecken, gewonnen. Fur jede der 4 ist 
ein gut konditioniertes Matrizen-System fur gleichzeitige 
lineare Gleichungen zu IOsen. Ein kompaktes, nicht ganz 
optimales, aber gunstiges lterationsverfahren zur 
Transformation eines Teiles der Geschwindigkeitsausgleichung 
in eine Ausgleichung des Dickenfeldes wird ebenfalls 
vorgefuhrt. 

initial conditions that are consistent with respect to the 
particular form of the dynamic equations employed by 
the model, including the continuity equation, and that 
are faithful, within the bounds of observation error, to 
the available field data . If they are not consistent, the 
model would rapidly redistribute the mass, not as a 
realistic projection of the future behavior of the ice 
mass but, artificially, to reconcile the inconsistencies. 
Slight errors in the velocity data can be amplified into 
spuriously large changes in glacier thickness. 

If a particular form of the flow law is not 
assumed, the data must still be consistent with respect to 
the continuity equation . Such a data set, obeying 
continuity and faithful to the field data, would be 
useful in estimating the numerical values of the 
flow-la w parameters and the amount of sliding motion . 
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Adjusting data to be consistent is much more 
difficult in two dimensions than it is in one. Velocity 
adjustment in one dimension is easy: flow enters an 
element at one side , it leaves at the other side, and the 
difference between the two fluxes equals the integra I 
over the element of the difference between the mass 
balance and thickness change. Beginning with an 
assumed or estimated flux value at one end of a 
one-dimensional domain , a simple integration gives 
values directly at all the other nodes. In two dimen sions, 
however, it is not alwa ys obvious whether any particular 
side of an element carries inflow or ou tflow. If the 
flow is roughly parallel to one axis of a 
two-dimensional grid, then clearly the up-stream side has 
inflow , and the down-stream side has outflow, but the 
lesser flow across the other two sides may have either 
sign. Or, if the flow is diagonal to a two-{iimensional 
grid, so that the sign of the flux across each side is 
obvious, there is still not a one-to~ne correspondence 
between the flux across one side and the flux across 
another side; this one-to~ne correspondence is what 
makes the one-{iimensional adjustment algorithm so 
simple, and so compact. 

Also, a complete solution, in which all the variables 
are adjusted, is more difficult than a partial solution, in 
which only one is adjusted and the others are taken to 
be exact. The velocity and thickness appear non-linearly, 
as a product, in the continuity equation . Different 
adjustment criteria may be appropriate for different 
variables. The number of values to be adjusted is 
greater in a complete solution, which substantially 
increases the amount of computation. 

Developed here is an algorithm that: 

(a) adjusts only the velocity and assumes the other 
variables to be known, including the glacier 
thickness and the ratio of the surface velocity 
to the average velocity in the vertical column; 

(b) requires values of all variables on a square 
grid, including initial estimates of the 
velocity; but requires no special conditions on 
the boundary; 

(c) produces velocity 
cen tral-{i iff erence 
equation; 

values 
form 

exactly satisfying a 
of the continuity 

(d) uses a non-iterative procedure that minimizes 
the magnitude of the adjustment of the 
original velocity values, either the absolute 
adjustment or the relative adjustment; and 

(e) is applicable to an arbitrarily shaped solution 
region. 

Also developed is a compact, sub~ptimum, well-behaved 
iterative procedure for transforming part of the velocity 
adjustment into a thickness adjustment. 

CONTINUITY EQUATION 

The horizontal ~ -axis is taken to be positive in the 
direction of the flow, and the z-axis is taken to be 
vertical, positive upwards (Fig. I) . The horizontal 
component s of the glacier velocity at the surface Z is 
assumed to be the sum of a sliding part sB' which is 
constant with z, and a part sD due to deformation 
under simple shear that varies according to a power law 
in z: 

Z 

sD(z) =sD -A J [pg(Z -z)sin a cos a]'dz, (I) 

z 

in which A and n are the flow-law parameters, p is the 
ice density, g is the acceleration due to gravity, and the 
surface slope Cl is positive if the surface slopes down in 
the direction of flow . The bed slope is assumed not to 
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Fig. 1. Vertica l section through the glacier thickness. The 
horizolltal coordinate ~ is in the direction of the glacier 
flow. 

differ markedly from the surface slope and it is also 
assumed that there are no gradients of longitudinal 
stress or basal or side wall drag. The value at the 
surface z = Z is denoted sD and similarly for other 
variables, but below the surface (ZB ( z < Z) it is 
denoted sD(z). If sD(z) = 0 at the glacier bed z = ZB' 
then on performing the integration through the glacier 
thickness, h = Z - ZB' 

The area flux qD (volume flux per 
from the deformational part is obtained 
vertical integration: 

Z 

J sD(z)d z 

ZB 

11 + I 
---sDh, 
n + 2 

so that the total flux is 

[

11 + I 
q = qD + qB = -

If + 2 

unit 
by 

(2) 

width) 
another 

(3) 

(4) 

which, when the factor y is introduced, is expressed in 
terms of the thickness and the surface veloci ty . From 
Equation (4), since s = sD + sB' 

11 + I sD sB 
y = -- . - + - (5) 

11 + 2 S S 

A characteristic thickness h == yh may be introduced ' its 
product hs with the surface velocity gives the same flux 
q as the integral of the actual velocity profile through 
the actual thickness . 

The foregoing is an idealized formulation, based on 
several simplifying physical assumptions, for determining 
y. A more precise and complete formulation would be 
appropriate only if sufficient data existed for applying 
it. What follows, however, as stated essentially by point 
(a) above, pertains to a data set in which y is specified , 
by whatever means may be used . Moreover, it is the 
product yh that is used in conjunction with the surface 
velocity, and in actual practice difficulties may arise in 
determining h accurately as well as in determining y. 
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Fig. 2. Hori zontal coordinate system, grid indices , alld 
solutioll region 0/ a hy pothetical problem. The symbols u, 
v, alld X illdicate whether Olle , the other , or both 
compollellts are to be adjusted. 

When the surface velocity y is referred to an 
arbitrary horizontal coordinate system, with components 
u in the x-dire~tion and v in the y-direction, the speed 
is s = (u 2 + y2)t . Considering an infinitesimal element 
in the x,y plane, and assuming the density p to be 
constant, the conservation of mass may be expressed in 
the form of the continuity equation as 

b -h = <;7.g = <;7·Yh 
a a 

_ - (uh) + - (vh), 
ax ay 

(6) 

in which iz Z is the time rate of change of the 
thickness, assuming ZB = 0, and b is the net ice balance 
at both the top and the bottom of the column , as well 
as from exchange with en glacial liquid-phase wate r. 
Equation (6) ma y be approximated by central differences 
on a square grid with spacing <;7x (Fig. 2) as 

(uh)ij+l - (uh)ij_l + (vh)i_l j - (vh)i+l j 

= 2t.x(b - h)ij == Fij' 
(7) 

Slight errors in the velocity data - one source of 
which is the interpolation of field data to the grid 
nodes - can produce large residuals in Equation (7). An 
error in one of the velocity components may be small 
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relative to s, but it will generally be large relative to 
b - h; unless t.x is very large compared with h, this will 
produce a large residual relative to F. 

THE ALGORITHM 

The problem may be posed formally as finding the 
velocity field y that satisfies continuity and that 
minimizes some measure of its difference from the 
original velocity field Xo ' A least-squares form is used 
here for this measure, termed the adjustment 
magnitude, 

E 1 ),ij ([Uij - (UO)i/ + [Vij - (vo)ij12 ) 

ij 

(8) 

which can be used to represent either the absolute 
adjustment, if ),ij = I, or the relative adjustment , if 
),ij = (so)i} 

If Xl and X2 are any two 
Equation (6), then 

fields satisfying 

0, (9) 

Therefore, given any field Xl satisfying continuity, the 
problem is transformed into that of finding the field X

2 
that satisfies Equation (9) and that minimizes E. Because 
any vector that obeys a stream function is identically 
divergenceless, if the field ('12 - Xl) h is defined by 

(u 2 - ul)h = -/NIl ay, 

(V 2 - vl)h = /NIl ax, } (10) 

in which the scalar field", is the stream function, then 
Equation (9) is satisfied. If centraf..<fifference 
approximations 

(11) 

are used for the ",-derivatives, then the 
central-difference approximation of Equation (9) is also 
exactly satisfied. 

On substituting for (u 2 )ij and (v 2 )ij from Equations 
(\ I) , and introducing them into Equation (8), 

E 1 ),ij ([ Ul -Uo)ij + ("'i+1 j --I-'i-l ) I Hi/ + 

ij (12) 

in which Hi ' = ?hi ·!lx. Setting aEl a", · · to zero for all 
-I-'ij leads to {he sys/em of simultaneou/Lnear equations: 

(13) 
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TABLE I. FOUR INDEPENDENT, INTERLACING SUBSETS OF THE SOLUTION REGION. 
INDICATED FOR EACH SUBSET ARE THE ROW AND COLUMN COMBINATIONS FOR WHICH 
THE 'I'-VALUES ARE COMPUTED (FROM EQUATIONS 13), ON WHICH THE u2-VALUES AND 
v

2
-VALUES ARE THEN DETERMINED (FROM EQUATIONS 11), AND ON WHICH THE 

F-VALUES ARE USED TO GET THE ul-VALUES AND VI-VALUES (FROM EQUATIONS 14) 

'" u 
Subset rows columns rows columns 

even even odd even 

Il even odd odd odd 

1Il odd even even even 

IV odd odd even 

in which c · · = d · -/H·· and d · · = ).. /Fz .. Because the 
I) I) I) '1 I) 'F 

'I'~ubscript increments are all ±2, the determination of 
the 'l'ij requires solving four separate systems of linear 
equations, one on each of the four independent, 
interlacing subsets (Table I, Fig. 3) of the grid nodes in 
the solution region. Each of the four linear systems is 
singly underdetermined the 'I'-<lifferences are 
unaffected if a constant is added to all the 'l'ij - which 
can be remedied by arbitrarily setting one of the 'l'ij to 
zero, say, and solving for the others. The matrix formed 
from the left-hand side of Equation (13) is sparse and 
diagonally dominant; each row contains the diagonal 
element and from two to four off -<liagonal elements, 
depending on how many u or V values in the solution 
region surround 'l'ij-

Because the 'I':.field has the same number of degrees 
of freedom as the X2 field which it produces, a globally 
optimum solution occurs. The number of degrees of 
freedom in the y 2 field is the number of elements less 
the number of points at which Equation (7) is applied . 
The number of degrees of freedom in the 'I'-field is one 
less than the number of its elements. Through Equations 

odd 

odd * v~ 

even A7-

odd -* viP 

even * Fu 

odd Jjjf 

Subset key 

even 

* ,yv 

~ uF 

11; iPv 

$-uF 

all mw 

*-

odd even odd 

* vr; * ,yv ~ vr; 

* Fu ~ uF * Fu 

-* vr; * iPv ~ vr; 

* Fu $ uF * Fu 

~ * * vr; 

odd 

Fig. 3. Patterns o[ the four independent . interlacing subsets 
of the solution region . illustrating Table I. The key at the 
bottom shows to which subset each of the four corners of 
the pattern at each grid node pertains. For example. 
subset TV gives u-values on the evell-rolV. odd-columll 
nodes and it gives v-values on the odd-rOlV. even-columll 
nodes. 
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[ 
rows columns rows columlls 

even odd odd odd 

even even odd even 

odd odd even odd 

odd even even even 

(11), the X2 field is produced 
assumed to satisfy Equation 
parallel-flow solution for Xl is 

in terms ofaXI field 
(7). For instance, a 

vij = 0 

(j ~ 2 or hi) =0) 1 
hij_,)/ hij (j ~ 3 and hij > 0) 

(14) 

Although a mathematical proof cannot be adduced here, 
numerical experimentation revealed that the resulting X

2 
field is independent of the .Y I field used . Exactly the 
same Y2 field was obtained when Xl was obtained from 
Equations (14) by setting the Uij = 0 and making the vi· 
satisfy Equation (7), and also when another Xl bette~ 
resembling Yo was used with both uij and vi· generally 
non-zero. The uniqueness of the solutlOn X2 i/ confirmed 
intuitively by noting that E is a quadratic norm 
(Equation (8» and that the constraint is linear (Equation 
(7». 

The topology of the solution region can be intricate . 
If the continuity equation is applied at some point (i,j) , 
then F must be present there; u at (iJ+l) and (iJ-l); v 
at (i-IJ) and (i+IJ); and 'I' at (i-I,j+l), (i-IJ-I), 
(i+IJ+I), and (i+I,j-i). Table I gives the patterns for 
each of the four independent, interlacing subsets of the 
solution region . Figure 2 shows a hypothetical solution 
region in terms of the nodes at which u and/or v are to 
be adjusted; it includes an unusual point (3,2) at which 
the continuity equation is applied, but at which only the 
u-<:omponent is to be adjusted. Figure 4 shows the 
corresponding subset II in terms of the patterns of F, u, 
v, and '1'. 

ADJUSTING THICKNESS DATA 

Consideration of Equation (7) reveals that if hand 
Y2 satisfy it at any point (i,j), then so do hi p and PY2 
for any p > O. This makes it easy to reduce the velocity 
adjustment E by t~nsforming part of it into an 
adjustment of the h field. The magnitude of the 
compound adjustment, in which v is an arbitrary 
constant to scale, the contributions from the two 
variables, 

E' 2 Il;/hi/Pi) - hi/ + 

ij (15) 

may represent either the relative or the absolute 
magnitude of the velocity adjustment, depending on how 
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Fig. 4. Subset 1I of the solution region shown ill Figure 2. 
The continuity equation is applied at nodes indicated by 
F to adjust components u and v at nodes indicated by 
those symbols by means of the stream function at nodes 
indicated by IjI. 
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'Aij is assigned, and may represent either the absolute 
thIckness adjustment if l1ij = I. or the relative 
adjustment if 11; · = h~ .. Because the adjustment at one 
point is independent or the adjustments at other points. 
E I can be min imized by minimizing the contributions 
from the individual points. However. this piecewise 
minimization. first E and then E'. does not produce as 
small an E I as would occur were 1i and X2 adjusted 
simultaneously . The contribution at some point is 
minimized by setting aE;/aPij = 0, which gives rise to 
the quartic polynomial (the subscripts having been 
dropped) 

in which (16) 

The quartic may be rearranged into the convenient 
form 

P = 
+ Nps 

M
S;: ~p). 

+ p 
(I 7) 

and may easily be solved iteratively. The function 4J(p) 
varies monotonically from ~o) = I and d~O)/dp = O. to 
4J(CD) = N/M and d4J(CD)/dp = O. A good approximation is 

Po 
(I + M)s + N(I + N)s 

( I + M)s + M(I + N)s 
(18) 

which may suffice in some applications as itself an 
acceptable val ue of p or. if not. provides a first 
·approximation for numerically solving Equation (17). 

MS. received 6 February 1984 and in revised form 6 November 1984 
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