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The granular monoclinal wave: a dynamical
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The theoretical existence of the granular monoclinal wave, based on the Saint-Venant
equations for flowing granular matter, was reported recently by Razis et al. (J. Fluid Mech.,
vol. 843, 2018, pp. 810–846). The present paper focuses on the mathematical interpretation
of its behaviour, treating the equation of motion that describes any granular waveform as a
dynamical system, taking also into consideration the Froude number offset Γ introduced
by Forterre & Pouliquen (J. Fluid Mech., vol. 486, 2003, pp. 21–50). The critical value
of the Froude number below which stable uniform flows are observed is determined
directly from the stability analysis of the aforementioned dynamical system. It is shown
that the granular monoclinal wave, represented as a heteroclinic orbit in phase space,
can be categorized into two classes: (i) the mild class, for which the exact form of the
waveform can be approximated by the non-viscous (first-order) adaptation of the granular
Saint-Venant equations, and (ii) the steep class, for a description of which a second-order
(viscous) term in the Saint-Venant equations is absolutely needed to capture the dynamics
of the wave. The mathematical criterion that distinguishes the two classes is the changing
sign of the trace of the Jacobian matrix evaluated at the fixed point corresponding to the
waveform’s lower plateau.

Key words: channel flow

1. Introduction

The monoclinal flood wave is a travelling waveform that one can often encounter in
shallow water flows (Moots & Mavis 1938; Whitham 1974; Le Méhauté 1976; Ferrick
2005; Shome & Steffler 2006; Fowler 2011). In recent years, many research groups have
contributed to formulating a hydrodynamic-like framework for describing granular flows.
In this context, our group established the theoretical existence of the monoclinal wave in
granular chute flow (Razis, Kanellopoulos & van der Weele 2018, 2019) by employing the
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Figure 1. Granular monoclinal flood wave on a chute (Razis et al. 2018): a flowing sheet of uniform height
h− and depth-averaged velocity ū− overtakes a shallower and slower flow of height h+ and velocity ū+. The
monoclinal wave, being the travelling shock structure connecting these two regions, is stable as long as the
Froude number Fr− of the upper plateau does not exceed a critical value Frcr given by (3.18). It propagates at
a wave speed c exceeding the velocities of the granular materials in both plateaus, i.e. c > ū− > ū+.

appropriately modified granular Saint-Venant equations (Savage & Hutter 1989; Forterre
2006; Gray & Edwards 2014; Viroulet et al. 2017).

A typical monoclinal wave is sketched in figure 1. It may be formed if we allow extra
material to flow over a pre-existing thin, uniform sheet of height h+ that propagates with
mean velocity ū+. Thus, a sheet of greater height h− and speed ū− is created on the
upstream flank. This waveform retains its stability as long as the Froude number in the
upper plateau does not exceed a critical threshold, Frcr. In the context of one-dimensional
flow, the Froude number is defined as follows:

Fr(x, t) = ū(x, t)√
h(x, t)g cos ζ

, (1.1)

where ū(x, t) is the depth-averaged velocity of the granular sheet, h(x, t) is its height, g is
the gravitational acceleration and ζ is the inclination angle of the chute.

The paper is organized as follows. In § 2 the governing equations, being the
one-dimensional Saint-Venant equations adapted to the granular context, are introduced.
We then give the fundamental solution representing the stable uniform flow. In § 3 the
dynamical system that governs all possible wave solutions (travelling and standing) is
derived, its fixed points are located and their local stability properties are determined.
Then, in this context, the critical Froude number for the fundamental solution (stable
uniform flow) is found. In § 4 the geometrical shape of the orbit of the granular monoclinal
wave in phase space is determined. Based on the above findings, and on the form of the
first-order approximation of the granular Saint-Venant equations, a classification of the
monoclinal waveform is given. Finally, in § 5 the paper is concluded with a recapitulation
of the main results and with a computational experiment confirming the stability of the
granular monoclinal waves.

2. The Saint-Venant equations for granular chute flow

The dynamics of a flowing granular sheet, in analogy with the shallow water
approximation in normal fluids, is described in terms of its height h(x, t) and depth-
averaged velocity ū(x, t). The latter is defined as ū(x, t) = h(x, t)−1 ∫ h(x,t)

0 u(x, z, t) dz,
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The granular monoclinal wave: a dynamical systems survey

where u(x, z, t) is the detailed velocity profile depending on the depth z. Flow variations
in the crosswise direction are ignored; hence both h(x, t) and ū(x, t) depend only on
x and t (cf. figure 1). Furthermore, it is assumed that the granular sheet has a constant
density, so it is treated as an incompressible fluid (Savage & Hutter 1989).

The height h(x, t) and the depth-averaged velocity ū(x, t) are governed by a system of
two coupled, nonlinear partial differential equations (PDEs) (Gray & Edwards 2014; Razis
et al. 2014; Edwards & Gray 2015; Razis et al. 2018; Edwards et al. 2019; Razis et al.
2019), namely the mass conservation

∂h
∂t

+ ∂

∂x
(hū) = 0 (2.1)

and the momentum balance

∂

∂t
(hū) + ∂

∂x
(hū2) = gh sin ζ − ∂

∂x

(
1
2

gh2 cos ζ

)
− μ(h, ū)gh cos ζ + ∂

∂x

(
νh3/2 ∂ ū

∂x

)
.

(2.2)

The terms on the right-hand side of (2.2) represent the following.

(i) The gravity component along the x direction, with g = 9.81 m s−2.
(ii) The force arising from variations in h(x, t), i.e. the negative gradient of the

depth-averaged pressure.
(iii) The frictional force exerted by the chute bed, modelled as a (height- and

velocity-dependent) friction coefficient μ(h, ū) multiplied by the normal reaction
force acting on the granular sheet.

For the friction coefficient, the modified expression for the fully dynamic regime
introduced by Edwards et al. (2017) is adopted:

μ(h, ū) = tan ζ1 + (tan ζ2 − tan ζ1)

(
1 + βh

L(Fr + Γ )

)−1

. (2.3)

Here ζ1, ζ2, L, β and Γ are experimental parameters. The angles ζ1 and ζ2 denote the two
inclination angles that delimit the interval in which uniform granular flows are possible.
For ζ < ζ1 the granular sheet remains at rest, whereas for ζ > ζ2 it flows downwards
in an accelerated fashion. The parameter L has its origins in the functional form of the
experimental fit concerning the critical angle curves that determine the friction force
(Pouliquen & Forterre 2002). It represents a characteristic thickness (usually ranging from
1 to 2 particle diameters) of flow over which a transition between the angles ζ1 and ζ2
occurs in the friction law (2.3). Its exact value depends both on the properties of the grains
and on the bed roughness (Pouliquen & Forterre 2002; Edwards et al. 2017). The parameter
β and the Froude number offset Γ are closely related (Forterre & Pouliquen 2003):

Fr = β
h

hstop(ζ )
− Γ, (2.4)

where hstop(ζ ) denotes the thickness of the deposition layer that is left on the chute, at
an inclination angle ζ , after a uniform flow has passed over it. A first version of (2.4)
(without the Γ offset) was derived by Pouliquen (1999) by experimentally measuring the
Froude number as a function of the quotient h/hstop for four different systems of glass
beads, revealing their linear relation which is independent of the bead size, the inclination
and the roughness condition. The Froude offset Γ was introduced by Forterre & Pouliquen
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(2003) in order to fit the experimental results concerning the mean velocity for different
materials (sand and glass) into a single law, thus formulating (2.4). In this context we note
that the factor 1/

√
cos ζ was absent from their definition of the Froude number Fr and

the offset Γ . In Edwards et al. (2017) also the parameter β∗ was introduced, expressing
the Froude number value at a height h = h∗(ζ ) with hstop(ζ ) < h∗(ζ ) < hstart(ζ ). Here
h∗(ζ ) denotes the level of the thinnest (and therefore slowest) possible steady uniform flow
which leaves a deposit of smaller thickness hstop(ζ ). In the same spirit, hstart(ζ ) denotes
the height for which a static layer is mobilized when the inclination is increased to an angle
ζ . As such, it is guaranteed that the granular chute flow remains fully dynamic as long as
Fr � β∗ (Edwards et al. 2017).

(iv) The viscous-like diffusive term arising from depth-averaging the in-plane stresses
in the sheet. Here, the analytical expression derived by Gray & Edwards (2014) is adopted:

ν = ν(ζ ) = 2L√
g sin ζ

9β
√

cos ζ
γ (ζ ), where γ (ζ ) = tan ζ2 − tan ζ

tan ζ − tan ζ1
. (2.5)

The granular monoclinal wave consists of two uniformly moving plateaus linked together
via a shock front (Razis et al. 2018, 2019). The steady uniform flow corresponds to the
constant solution of the granular Saint-Venant equations (2.1)–(2.2) when all derivatives
with respect to x and t vanish, leaving only tan ζ = μ(h, ū). This condition expresses the
balance between the forces of gravity and friction (Razis et al. 2018). Now, we can express
the velocity of the uniform plateaus as follows:

ū±=β
√

g cos ζ

Lγ (ζ )
h3/2
± − Γ

√
g cos ζ h1/2

± , (2.6)

and the corresponding Froude number takes the form

Fr±=Fr±(h±, ū±) = ū±√
gh± cos ζ

= β

Lγ (ζ )
h± − Γ. (2.7)

The velocity of the shock front is given by the well-known formula (Whitham 1974)

c = h−ū− − h+ū+
h− − h+

, (2.8)

which reflects the fact that in the steady state, for an observer in the co-moving frame, the
flux of material entering the shock structure must be equal to the flux leaving the shock, i.e.
h+(ū+ − c) = h−(ū− − c). Although in the shock region the inertial terms are not exactly
zero, they are sufficiently small to justify this expression which is based on kinematic
considerations alone, namely the mass conservation across the shock (Razis et al. 2018).

Equation (2.8) with the help of equation (2.6) can be expressed in a form which does
not contain the velocities ū±:

c = β
√

g cos ζ

Lγ (ζ )

(
h5/2
− − h5/2

+
h− − h+

)
− Γ

√
g cos ζ

(
h3/2
− − h3/2

+
h− − h+

)
. (2.9)

From (2.9) one might have the impression that when Γ > 0, the shock speed decreases.
This is not the case; in fact the opposite is true as may be seen by fixing the values of the
Froude numbers in both plateaus. Equation (2.7) demonstrates that in the presence of the
Γ offset, the corresponding heights of the plateaus increase and as a consequence, (2.9)
returns a greater shock speed than for Γ = 0. This will become even more evident later,
in § 3, when we introduce the non-dimensional equations.
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The granular monoclinal wave: a dynamical systems survey

Another aspect that is worth noting here is that the minimum height for the lower
plateau, in the fully dynamic regime, can be found by setting Fr+ = β∗ and solving
equation (2.7) for h+. The resulting expression is

h+,min = Lγ (ζ )

β
(β∗ + Γ ). (2.10)

Finally, for completeness, we should note that the advective term ∂x(hū2) in (2.2) may
be multiplied by a shape factor to obtain an optimal correspondence with experiments
(Saingier, Deboeuf & Lagrée 2016; Lagrée et al. 2017). This factor, for a steady flow with
a Bagnold velocity profile, is equal to α = 5/4 (GDR-MiDi 2004; Börzsönyi, Hasley &
Ecke 2005; Gray & Edwards 2014). However, for shallow granular flows with relatively
small Froude number, as in the current paper, the solutions are quite insensitive to the
shape factor’s value (Saingier et al. 2016; Viroulet et al. 2017). In fact, in an experimental
study by Forterre (2006) (see in particular figure 1 in that paper) it was found that the plug
flow with shape factor value α = 1 gave a better correspondence with the experimental
data than the Bagnold profile, for which α would be 5/4.

3. Dynamical systems approach

3.1. Travelling wave solution and stability analysis
The monoclinal wave is a travelling waveform propagating without change of shape
and at a constant velocity c. Therefore its height and depth-averaged velocity are of the
general form h(x, t) = h(x − ct) = h(ξ) and ū(x, t) = ū(x − ct) = ū(ξ), and consequently
the governing equations (2.1)–(2.2) become ordinary differential equations. The mass
balance equation (2.1) reduces to

− ch + hū = −K, (3.1)

where the integration constant K corresponds to the flux of the material per unit width
of the channel in the co-moving frame. Using (2.6), this flux constant can be written as a
function of height only:

K = h±(c − ū±) = ch± − β
√

g cos ζ

Lγ (ζ )
h5/2
± + Γ

√
g cos ζh3/2

± . (3.2)

Solving (3.1) with respect to ū, we find the first and the second derivative ūξ , ūξξ in terms
of h, and then we substitute into the momentum balance equation (2.2). This leads to the
following second-order ordinary differential equation:

νK
h3/2 h′′ − νK

2h5/2 (h′)2 +
(

K2

h3 − g cos ζ

)
h′ + g sin ζ − μ(h)g cos ζ = 0, (3.3)

where now μ(h) has the form

μ(h) = tan ζ1 + tan ζ2 − tan ζ1

1 + βh

L (Γ + (
c − Kh−1

)
(gh cos ζ )−1/2)

. (3.4)

Equation (3.3) governs all the travelling and the standing, when c = 0, waveforms for
granular chute flow that are sustained by the Saint-Venant equations (2.1)–(2.2).
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G. Kanellopoulos

Here, it is convenient to introduce non-dimensional variables, denoted by a tilde, as
follows: h = h−h̃ and ξ = h−ξ̃ (and also h+ = h−h̃+). That is, all length scales are
measured in terms of the thickness h− of the incoming flow. With this rescaling, the
differential equation (3.3) takes the non-dimensional form

d2h̃

dξ̃2
− 1

2h̃

(
dh̃

dξ̃

)2

+ Rh̃3/2

Fr2−(c̃ − 1)

[(
Fr2−(c̃ − 1)2

h̃3
− 1

)
dh̃

dξ̃
+ tan ζ − μ(h̃)

]
= 0,

(3.5)
with

μ(h̃) = tan ζ1 + tan ζ2 − tan ζ1

1 + γ (ζ )h̃(Fr− + Γ )

Γ + Fr−(c̃h̃ − c̃ + 1)h̃−3/2

, (3.6)

c̃ = c
ū−

= 1

1 − h̃+

1
Fr−

(
(Fr− + Γ )(1 − h̃5/2

+ ) − Γ (1 − h̃3/2
+ )

)
, (3.7)

and the granular Reynolds number defined by

R = Lγ (ζ )
√

g cos ζ (Fr− + Γ )

βν(ζ )
Fr−. (3.8)

Equation (3.5) first appeared in a study by Gray & Edwards (2014) of granular roll waves
and also featured in Razis et al. (2019) in the context of the transition from the granular
monoclinal waves to (granular) roll waves. Here, despite the fact that (3.5) is identical, the
constitutive relations (3.6), (3.7) and (3.8) are different, due to the inclusion of the Γ offset.
Of course, for Γ = 0 one recovers the exact same expressions as in Razis et al. (2019). We
also note that the shock speed given by (3.7), expressed only as a function of h̃+, is always
greater than unity for h̃+ > 0 and that c̃|h̃+=0 = 1. Equation (3.7) also implies that in the

presence of the Γ offset, the dimensionless shock speed depends not only on h̃+ but also
on the Froude number. In general, given a fixed value of Fr−, a non-zero Γ offset causes
an increase of the (dimensionless) shock speed.

Now, we can write (3.5) as two coupled first-order ordinary differential equations,
forming a dynamical system:

dh̃

dξ̃
= s̃ = f (h̃, s̃), (3.9a)

ds̃

dξ̃
= s̃2

2h̃
− Rh̃3/2

Fr2−(c̃ − 1)

[(
Fr2−(c̃ − 1)2

h̃3
− 1

)
s̃ + tan ζ − μ(h̃)

]
= g(h̃, s̃). (3.9b)

The fixed points of the above dynamical system lie at the intersections, in the (h̃, s̃) phase
space, of the two nullcline curves:

f (h̃, s̃) = s̃ = 0, (3.10a)

g(h̃, s̃) = s̃2

2h̃
− Rh̃3/2

Fr2−(c̃ − 1)

[(
Fr2−(c̃ − 1)2

h̃3
− 1

)
s̃ + tan ζ − μ(h̃)

]
= 0. (3.10b)

Substituting (3.10a) into (3.10b), the necessary and sufficient condition for uniform flow,
tan ζ = μ(h̃), appears yielding two fixed points: (h̃, s̃) = (h̃+, 0) and (h̃, s̃) = (1, 0).
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This means that both fixed points correspond to uniform flow conditions. To determine
their local stability we consider the Jacobian matrix:

J =

⎛
⎜⎜⎝

∂f

∂ h̃

∂f
∂ s̃

∂g

∂ h̃

∂g
∂ s̃

⎞
⎟⎟⎠
∣∣∣∣∣∣∣∣
(h̃,s̃)=(h̃±,0)

=
⎛
⎝ 0 1

∂g

∂ h̃

∂g
∂ s̃

⎞
⎠
∣∣∣∣∣∣
(h̃,s̃)=(h̃±,0)

(3.11)

and we determine the corresponding eigenvalues

λa,b = 1
2

⎛
⎝∂g

∂ s̃
±
√(

∂g
∂ s̃

)2

+ 4
∂g

∂ h̃

⎞
⎠ (3.12)

on each fixed point. The analytical expressions of the above eigenvalues are four functions
(two for each fixed point) depending on h̃+, Fr, Γ, ζ1, ζ and ζ2. Their formulas are rather
long, so they are not presented here for economy of space. For the granular monoclinal
waveform, in the fully dynamic regime, where β∗ � Fr < Frcr, c̃ > 1 and h̃+ < 1 (and of
course ζ1 < ζ < ζ2), it is found that (h̃+, 0) has always two real eigenvalues with opposite
sign, meaning that it is a saddle, while (1, 0) is always an unstable node with two real
positive eigenvalues. This result is in full agreement with Razis et al. (2019) where the Γ

offset was taken to be zero.
At this point, let us write down the explicit expression of the trace of the Jacobian matrix,

at s̃ = 0, since it will play a key role in our study:

Tr
(h̃,0)

J ≡ ∂g
∂ s̃

∣∣∣∣
s̃=0

= Rh̃3/2(1 − Fr2−(c̃ − 1)2h̃−3)

Fr2−(c̃ − 1)
. (3.13)

This expression depends implicitly on Γ through R (equation (3.8)) and c̃ (equation (3.7)).

3.2. Critical Froude number for stable uniform flow

In the situation of uniform flow along the whole chute (μ(h̃) = tan ζ ) it applies that h̃− =
h̃+(=1), and so the dynamical system (3.9) has a unique fixed point at (1, 0). Now, the
Jacobian matrix (3.11) at this fixed point takes the form

Jc =
⎛
⎝0 1

0 R
1 − Fr2−(c̃ − 1)2

Fr2−(c̃ − 1)

⎞
⎠
∣∣∣∣∣∣
h̃+→1

. (3.14)

The uniform threshold flow, i.e. the marginal value of h̃ above which the uniform flow
cannot be sustained, is neither stable nor unstable (in fact, mathematically it is a cusp point;
see Razis et al. (2019)), so both eigenvalues of the matrix Jc are zero. One eigenvalue
is already zero by default and thus we have only to consider the second eigenvalue.
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This becomes zero when the trace of Jc, when h̃+ → 1, vanishes. This implies

1 − Fr2
cr(c̃ − 1)2|h̃+→1 = 0 (3.15)

or equivalently discarding the negative root:

Frcr = 1
c̃ − 1

∣∣∣∣
h̃+→1

. (3.16)

Equation (3.7) for the (dimensionless) shock speed in this case gives

c̃|h̃+→1 = 5
2

+ Γ

Frcr
, (3.17)

and by substituting into (3.16), we conclude that

Frcr = 2
3 − 2

3 Γ. (3.18)

When the Γ offset is zero, (3.18) gives the well-known critical value of 2/3 (Forterre
& Pouliquen 2003; Gray & Edwards 2014; Razis et al. 2018, 2019) just as it should do.
Here we should also note that (3.17) and (3.18) coincide with the results of Forterre
& Pouliquen (2003). They obtain the corresponding equations from the depth-averaged
PDEs, by performing a stability analysis around the uniform flow and deriving the
associated dispersion relation.

In figure 2, a numerical experiment is conducted in order to validate the result found
in (3.18). The granular Saint-Venant equations (2.1) and (2.2) are solved numerically, with
a randomly perturbed initial condition, of maximum amplitude 0.3 mm around h+ = h−
(denoted by the blue curve) and cyclic boundary conditions. The Froude number of the
incoming flow remains always fixed at Frexp = 0.6, while the value of the Γ offset is
gradually increased. For the rest of the parameters, we use the values measured by Edwards
et al. (2017) (carborundum particles on a bed of glass beads). The outcome is denoted by
the red curve and is depicted after 60 time steps (representing seconds). Starting from
Γ = 0, in figure 2(a), where the critical Froude number Frcr = 2/3 is well beyond Frexp,
we witness the restoration of a stable uniform flow. In figure 2(b) we set Γ = 0.07 which
gives Frcr = 0.62, still larger than Frexp. As expected the uniform flow is still stable. The
case when Frcr = 0.6 = Frexp (Γ = 0.1) is shown in figure 2(c). The perturbed initial
condition can no longer evolve into a uniform flow, and thus it forms and maintains
small-amplitude undulations of relatively long wavelength. Finally, in figure 2(d) we
choose Γ = 0.2, which corresponds to Frcr = 0.533 < Frexp. Now, stable roll waves are
formed as foreseen for flows that exceed the critical Froude number (Gray & Edwards
2014; Razis et al. 2014, 2019). To be more specific, as we can witness, the coarsening of
roll waves has not finished after 60 s. In due time the first roll wave will merge with the
second forming a single wave, while the third will merge with the fourth. The detailed
physical mechanism that allows the larger (and faster) granular roll wave to merge with a
smaller (and slower) one, forming a single travelling wave afterwards, was studied in Razis
et al. (2014). For this computational experiment the numerical scheme that was used was
the method of lines (Schiesser 1991; Razis et al. 2018), with a space step of 
x = 0.003
m over a total length of xmax = 2 m. The grid independence of the result has been checked
by using smaller space steps as well.

Equation (3.18) implies that in order to witness granular monoclinal waves in
experiments, it is preferable to use a material that minimizes the Γ offset parameter.
In fact, most known experimental set-ups that include a non-zero Γ offset are not
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Figure 2. Numerical experiment confirming the relation between the critical Froude number for uniform flow
and the Γ offset, (3.18). In all four runs we fixed the Froude number value to be Frexp = 0.60, and we vary
the value of the Γ offset. The red curve represents the solution we take after 60 time steps in a virtual set-up
for which we have imposed cyclic boundary conditions, while the blue ‘wavy’ curve is the randomly perturbed
initial condition around h+ = h−. (a) With Γ = 0, the critical Froude number (Frcr = 2/3) is beyond our
chosen value and so the uniform flow is stable against the perturbations. After 60 time steps the perturbations
have disappeared (red line). (b) The same behaviour is witnessed for Γ = 0.07 (Frcr = 0.62 > Frexp). (c) When
Γ = 0.10, Frcr = 0.6 = Frexp. Here, the uniform flow is no longer stable, and the perturbed initial condition
gives birth to small-amplitude undulations. (d) For Γ = 0.20, equation (3.18) gives Frcr = 0.533 < Frexp.
Now, as expected, stable roll waves are born, yet in the coarsening process (notice the different scaling of the
vertical axis in this case). The system parameters are taken (except for the Γ offset) from Edwards et al. (2017):
ζ1 = 31.1◦, ζ2 = 47.5◦, L = 0.44 mm, β = 0.63, β∗ = 0.466 and the arbitrary value of ζ = 33◦ is used.

adequate for establishing or maintaining a stable uniform flow, and consequently a granular
monoclinal wave, in the fully dynamic regime. In chronological order, (i) in the set-up
used by Forterre & Pouliquen (2003) concerning sand on a bed of the same material, the
measurements were Γ = 0.77/

√
cos ζ and β = 0.65/

√
cos ζ in an angle interval ζ1 =

27.0◦ < ζ < 43.4◦ = ζ2. The maximum critical Froude number value is Frcr = 0.123
while the minimum β value is β = 0.689, thus rendering impossible the fully dynamic
uniform flow, as the authors also witnessed in their experiments. (ii) The experimental
set-up of Edwards et al. (2017) concerning carborundum particles on a bed of glass beads
with Γ = 0.4 and β∗ = 0.466 gives Frcr = 0.4 < β∗, demonstrating its unsuitability for
the study of dynamic granular monoclinal waves.

In the direction of applying our analysis in a real set of measurements, even though in
all the analytic expressions we will include the Γ offset, for the numerical calculations in
§ 4, the parameter values measured by Russell et al. (2019), concerning glass ballotini on a
bed of the same material, will be used: ζ1 = 21.27◦, ζ2 = 33.89◦,L = 0.2351 mm, Γ =
0.0, β = 0.143, β∗ = 0.19. Moreover, in § 4.3, a hypothetical material with non-zero Γ

offset value, based on the measurements of Edwards et al. (2017), will be assumed in order
to illustrate that the parameter Γ alters the results only quantitatively and not qualitatively.
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0.8

0.7
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h̃+

h̃–

ξ̃

c̃

s̃
1

(b)

(a)

Figure 3. A granular monoclinal wave profile (a) and its phase space depiction (b). The two uniform plateaus
h̃− = 1 and h̃ = h̃+ correspond to the fixed points (1, 0) (unstable node) and (h̃+, 0) (saddle), respectively.
The granular monoclinal wave connecting these plateaus is represented in phase space as a heteroclinic orbit
connecting the two fixed points. The background grey arrows, which denote the vector field, as well as the
added black arrows, show that the orbit is repelled by the (unstable) manifold of the node and attracted by the
saddle’s stable manifold. The manifolds are denoted by the thin black lines. The system parameters are taken
from Russell et al. (2019): ζ1 = 21.27◦, ζ2 = 33.89◦,L = 0.2351 mm, Γ = 0.0, β = 0.143, β∗ = 0.19 and the
arbitrary value of ζ = 25◦ is used.

4. Classification of the granular monoclinal waves

4.1. The heteroclinic orbit and its properties
In phase space, the monoclinal wave is represented as a heteroclinic orbit connecting
the saddle’s stable manifold with the nearest (always repelling) manifold of the unstable
node (see figure 3) (Razis et al. 2018, 2019). This means that the reason for the granular
monoclinal wave to exist (from the dynamical systems perspective) is the presence of the
stable manifold of the saddle point. The exact position, i.e. the specific negative slope with
respect to the horizontal axis, of that manifold as the value of h̃+ varies determines the
entire shape of the granular monoclinal wave.
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The contribution of the unstable node at (h̃, s̃) = (1, 0) is rather simple by comparison.
Its trace and its determinant are always positive, repelling any initial condition in its
neighbourhood. The saddle has a more interesting contribution. In a two-dimensional
phase space, the two manifolds of a saddle are rotated as the trace of the Jacobian matrix
(evaluated at the saddle point) varies, while the always negative determinant regulates the
relative angle between the two manifolds. This general behaviour is depicted in figure 4 for
a minimal dynamical system. The saddle point lies at the origin while the manifolds are the
straight lines that intersect with it. In figure 4(a,b), the trace of the corresponding Jacobian
matrix is kept constant at Tr = 0 while the determinant becomes smaller, from Det = −1
in figure 4(a) to Det = −2 in figure 4(b). Evidently, the two manifolds move away from
each other with respect the x axis and the angle α increases without any rotation. On the
other hand, in figure 4(c,d) where the determinant is kept constant at Det = −1 and the
trace changes values from Tr = 1 in figure 4(c) to Tr = −1 in figure 4(d), the relative
distance of the manifolds is kept intact but they are rotated. More specifically, the angle α

increases as the trace becomes smaller.
Back to our system, the analytical expression of the determinant, evaluated at the saddle

point (h̃+, 0), as a function of h̃+ is

Det J|(h̃+,0) = − ∂g

∂ h̃

∣∣∣∣
(h̃+,0)

= C(ζ )
(Fr− + Γ )h̃3/2

+ + (− 2
3 Fr− − Γ )h̃1/2

+ + (Fr− + Γ )h̃2
+ + (− 2

3 Fr− − Γ )h̃+ − 2
3 Fr−

h̃2+((Fr− + Γ )h̃1/2
+ + (Fr− + Γ )h̃+ + Fr−)

,

(4.1)

where the prefactor C(ζ ) is given by

C(ζ ) = 27 (tan(ζ ) − tan(ζ1)) (tan(ζ ) − tan(ζ2))

4 tan(ζ ) (tan(ζ2) − tan(ζ2))
. (4.2)

Equation (4.1) expresses a negative, monotonically increasing function for 0 < h̃+ < 1
and β∗ � Fr < Frcr (see figure 5). This means that as the two plateaus of the granular
monoclinal wave come closer to each other (h̃+ approaches 1) the determinant of the
saddle approaches zero. This implies that the slope of the stable manifold has the tendency
to decrease as the fixed points come closer to each other.

The trace of the Jacobian matrix evaluated at the saddle point is given by

Tr
(h̃+,0)

J ≡ ∂g
∂ s̃

∣∣∣∣
(h̃+,0)

= Rh̃3/2
+ (1 − Fr2−(c̃ − 1)2h̃−3

+ )

Fr2−(c̃ − 1)
. (4.3)

In figure 5 the value of the trace is depicted for fixed Froude number value Fr = 0.6 and
parameter values taken from Russell et al. (2019). As expected, the trace of the saddle can
be positive, negative or even zero as the value of h̃+ varies. The slope of the stable manifold
becomes milder as the trace increases its value and vice versa, in full correspondence with
the effects of the determinant. In fact, when Tr

(h̃+,0)
J = 0, the two manifolds of the saddle

are fully symmetric as far as the slopes of its manifolds are concerned (locally near the
saddle point), as the eigenvalues have the same absolute value (but opposite sign).
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y y

y y

x x

x x

α

α α

α

(a)
Tr = 0

Tr = 1 Tr = –1

Tr = 0

Det = –1

Det = –1 Det = –1

Det = –2

(b)

(c) (d )

Figure 4. The relative position of the manifolds of a saddle, in a minimal two-dimensional dynamical system,
for various values of the trace and the determinant of the corresponding Jacobian matrix. (a,b) As the trace
is kept fixed at Tr = 0 and the determinant becomes smaller, from Det = −1 in (a) to Det = −2 in (b), the
manifolds diverge without any rotation. This also leads to the increase of the angle α. (c,d) When the (always
negative) determinant is kept constant at Det = −1 and the trace becomes smaller, from Tr = 1 in (c) to
Tr = −1 in (d), the manifolds are rotated around the origin keeping their relative distance intact. Also here
the angle α increases.

4.2. Mild and steep granular monoclinal waves
The vanishing of the saddle’s trace constitutes a criterion that can be used to classify the
granular monoclinal waves, in the sense that it determines the interval of validity of the
first-order approximation of the equation of motion (3.5). If we assume the inviscid limit
(ν(ζ ) = 0), then the non-dimensional equation (3.5) takes the form

dh̃

dξ̃
= μ(h̃) − tan ζ

Fr2−(c̃ − 1)2h̃−3 − 1
(4.4)

which, with (3.13), can also be written as

dh̃

dξ̃
= s̃f =

(
tan ζ − μ(h̃)

)
Rh̃3/2

Tr
(h̃,0)

J Fr2−(c̃ − 1)
. (4.5)
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2

0

–2

–4

Trace

0.50 0.75 1.00

Determinant

h̃+

Figure 5. Plot of the determinant (4.1) (red curve) and the trace (4.3) (blue curve) of the Jacobian matrix
evaluated at the saddle point (h̃, s̃) = (h̃+, 0) as a function of h̃+ for fixed Froude number Fr = 0.6. The
system parameters are taken from Russell et al. (2019): ζ1 = 21.27◦, ζ2 = 33.89◦,L = 0.2351 mm, Γ = 0.0,

β = 0.143, β∗ = 0.19 and the arbitrary value of ζ = 25◦ is used.

Equation (4.5) constitutes a dimensionless and more general form (due to the inclusion of
the Γ offset) of (4.1) from Razis et al. (2018), where the authors investigate the region of
validity of the inviscid description for the granular monoclinal wave.

Now, the trace of the unstable node is always positive, Tr(1,0)J > 0, and thus when also
Tr

(h̃+,0)
J > 0 holds, it means that the approximate trajectory of the granular monoclinal

wave in phase space, given by (4.5), does not encounter any singularity in the interval
h̃+ � h̃ � 1 (c̃ is always larger than 1 in the same interval). Indeed, in this case, and
especially if Tr

(h̃+,0)
J is well above zero, one can safely use the first-order approximation

rather than (3.5) (see figure 6a). In fact, one can find here, to a very good approximation,
the orbit of the granular monoclinal wave in phase space algebraically, from the right-hand
side of (4.5), without solving the dynamical system (3.9). On the other hand, if Tr

(h̃+,0)
J <

0, (4.5) will produce a singularity inside the interval h̃+ � h̃ � 1, rendering the inviscid
approximation invalid, as can be seen in figure 6(c). The critical state is witnessed in
figure 6(b), where we set h̃ = h̃+ + 0.001 (to achieve visualization for this case we
must deviate slightly from h̃ = h̃+ and Tr

(h̃+,0)
J = 0). Here, the use of the inviscid

approximation is still marginally possible but, as can be seen in the inset, is inadvisable.
The above analysis prompts us to classify the monoclinal waves into two major categories,
the mild (M) and the steep (S), depending on whether the sign of the trace of the Jacobian
matrix evaluated at the saddle (h̃+, 0) is positive or negative, respectively.

The algebraic expression of the threshold height of the lower plateau h̃+,thres with
respect only to incoming Froude number Fr− can be found analytically by solving the
equation Tr

(h̃+,0)
J = 0 given in (4.3) with the help of (3.7). Discarding the two complex

solutions and the one real solution that gives h̃+,thres > 1, we conclude

h̃+,thres = −Fr− + (−3(Fr− + Γ − 1)(Fr− − Γ/3 + 1/3))1/2 + Γ − 1
2(Fr− + Γ − 1)

. (4.6)
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Figure 6. The classification of the granular monoclinal waves for fixed Froude number Fr = 0.6 < Frcr =
2/3. The threshold value of h̃+, taken from (4.6), is h̃+,thres = 0.6771243445. (a) Mild regime. For h̃+ =
0.75 > h̃+,thres we witness that the heteroclinic orbit, representing the monoclinal wave in phase space (red
thick curve), is in very good agreement with the inviscid approximation given by (4.5) (dark blue thin curve).
The h̃ value for which the first-order approximation becomes singular is well before h̃+ (vertical line), validating
its use. The good agreement can be seen also in the corresponding profile depicted in the right-hand panel.
There, the area of interest is magnified in the inset in order to visualize the small differences. (b) Critical
regime. At h̃+ = h̃+,thres the first-order approximation is marginally valid, as the singular point lies at h̃ = h̃+
(the plots are generated by setting h̃+ = 0.678 = h̃+,thres + 0.001 in order to enable the visualization of this
case). (c) Steep regime. Here, when h̃+ = 0.6 < h̃+,thres, the singularity lies inside the interval h̃+ � h̃ � 1,
rendering the first value approximation invalid. The system parameters are taken from Russell et al. (2019): ζ1 =
21.27◦, ζ2 = 33.89◦,L = 0.2351 mm, Γ = 0.0, β = 0.143, β∗ = 0.19 and the arbitrary value of ζ = 25◦ is
used.
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0.60.50.40.30.2

Figure 7. Phase diagram showing h̃+,thres (red curve) together with h̃+,min (blue curve) as a function of the
incoming Froude number (Fr−). The dark shaded region denotes the area where the flow is not fully dynamic.
The letter ‘M’ above the h̃+,min curve and to the left of the h̃+,thres curve denotes the area where the mild
granular monoclinal waves appear, while the letter ‘S’ to the right of the h̃+,thres curve and above the h̃+,min
curve (light shaded area) denotes the steep regime. The gradient shading inside the mild regime represents the
increasing lack of accuracy of the inviscid approximation close to the h̃+,thres curve. The system parameters are
taken from Russell et al. (2019): ζ1 = 21.27◦, ζ2 = 33.89◦,L = 0.2351 mm, Γ = 0.0, β = 0.143, β∗ = 0.19.

At the same time, however, one must take into account the lower boundary for the fully
dynamic regime, β∗ � Fr+, which dictates the minimum height of the lower plateau h̃+.
Equation (2.10) can be written in dimensionless variables as

h̃+,min = β∗ + Γ

Fr− + Γ
. (4.7)

A combined plot of (4.6) together with (4.7) is depicted in figure 7 for parameter values
taken from Russell et al. (2019). The dark shaded area below h̃+,min (blue curve) denotes
the values of Froude number and h̃+ for which the regime is not fully dynamic. The
light shaded region, which lies above h̃+,min and to the right of h̃+,thres (red curve), is
labelled with the letter ‘S’ and represents the area where the steep granular monoclinal
waves will be formed. There, the use of the second-order differential equation (3.5) is the
only valid choice. On the other hand, the region labelled with the letter ‘M’, above the
h̃+,min curve and to the left of the h̃+,thres curve, is the mild regime where the granular
monoclinal wave can be approximately described by the inviscid limit (4.4). The gradient
grey shading near the h̃+,thres curve reflects the fact that the inviscid approximation (4.4)
becomes increasingly inaccurate. The intersection of the two curves is found by setting
h̃+,thres = h̃+,min. For Froude number values smaller than Fr ≈ 0.5 here, the granular
moniclinal waves are exclusively of the mild type.

The above classification of the granular monoclinal waves into two regimes, the mild
and the steep, must be seen mainly from a mathematical point of view. Indeed, the viscous
equation of motion, (3.5), is capable of fully describing dynamic granular monoclinal
waves (as well as all the other waveforms, given the appropriate parameter values)
regardless of to which regime they belong. The element that makes this classification
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important, combined with the dynamical systems view, is that in the mild regime we
can approximate, quite accurately, the granular monoclinal wave in phase space, without
solving the full system but by directly plotting (4.5) as a function of h̃. This constitutes an
insightful and direct way to reveal the dynamics of any granular monoclinal wave in the
mild regime.

4.3. A case study
It is conceivable that an experimental set-up can be constructed, in which fully dynamic
granular monoclinal waves can be detected despite the fact that the chosen material
displays a non-zero Γ offset. For that reason, a case study of a hypothetical material that
includes a Γ offset and is nevertheless capable of establishing this waveform is studied
in this subsection. The parameter values of Edwards et al. (2017) are adopted with the
exception of the Γ offset value. Here we take Γ = 0.1 (instead of Γ = 0.4), and so
the full set of the parameter values becomes: ζ1 = 31.1◦, ζ2 = 47.5◦,L = 0.44 mm, β =
0.63, β∗ = 0.466, Γ = 0.1. In addition, the value of ζ = 33.0◦ is used. The critical Froude
number in this case, see (3.18), is Frcr = 0.6, and thus the fully dynamic interval is
restricted to 0.466 � Fr < 0.6. Using equation (4.7), the corresponding interval of validity
for h̃+ is found to be 0.83235 � h̃+ < 1.

Taking these values into consideration, the incoming Froude number is chosen to be
Fr− = 0.58, while the corresponding lower plateau threshold that separates the mild
from the steep regime, see (4.6), is h̃+,thres = 0.876359. In figure 8 the classification of
the granular monoclinal waves for this hypothetical material is depicted. In figure 8(a)
where the value h̃+ = 0.9 > h̃+,thres is chosen, one can see a mild granular monoclinal
wave, as expected. In the right-hand panel, the orbit’s excellent agreement with the
inviscid approximation is witnessed. In figure 8(b) the near-critical case is presented: h̃+ =
0.8765 = h̃+,thres + 0.0002. Finally, the steep case can be seen in figure 8(c) where h̃+ =
0.85 < h̃+,thres. Comparing these results with the findings of figure 6, the two systems are
qualitatively identical; the differences are only quantitative. This is evident also in figure 9
where the corresponding h̃+,thres curve is plotted along with the corresponding h̃+,min
curve, as a function of the incoming Froude number, for this hypothetical set-up.

The phase diagrams of figures 7 and 9 provide a guideline for further study of granular
monoclinal waves. Equations (4.6) and (4.7) have a simple algebraic form and they depend
only on the parameters Γ and β∗. This fact makes them a very useful tool for theorists and
experimentalists alike.

5. Concluding remarks

In this paper, the mathematical properties of the granular monoclinal wave are clarified.
As a travelling waveform, it can be well described by casting the granular Saint-Venant
equations into a two-dimensional dynamical system. In order to make the formulation
as general as possible, the modified expression of the friction coefficient introduced by
Edwards et al. (2017), which includes the Γ offset, has been adopted.

Exploiting the stability analysis findings, the critical Froude number above which the
uniform flow becomes unstable was determined as a function of the Γ offset (equation
(3.18)). From that relation it is clear that – given the fact that the granular monoclinal
wave is a travelling shock structure that connects two plateaus of steady and uniform flow
– a material with Γ = 0 is more likely to develop such waves.
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Figure 8. Granular monoclinal waves in our hypothetical set-up for fixed Froude number Fr = 0.58 < Frcr =
0.6 and thus, from (4.6), h̃+,thres = 0.876359. (a) Mild regime. For h̃+ = 0.90 > h̃+,thres the heteroclinic
orbit (red thick curve) is in very good agreement with the inviscid approximation given by (4.5) (dark blue
thin curve), as can be especially seen in the inset of the profile plot in the right-hand panel. (b) Critical
regime. At h̃+ = h̃+,thres + 0.0002 the first-order approximation is marginally valid. (c) Steep regime. Here,
when h̃+ = 0.85 < h̃+,thres, the singularity lies inside the interval h̃+ � h̃ � 1, making the full second-order
(viscous) expression necessary. The system parameter values are hypothetical based on measurements of
Edwards et al. (2017): ζ1 = 31.1◦, ζ2 = 47.5◦, ζ = 32.7◦,L = 0.44 mm, β = 0.63, β∗ = 0.466, Γ = 0.1 and
the arbitrary value of ζ = 33◦ is used.
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h̃+

1.00

0.4

0.6

0.8

h̃+,min
h̃+,thres

S

M

0.6000.5750.5500.5250.5000.475

Fr_

Figure 9. Phase diagram showing h̃+,thres (red curve) together with h̃+,min (blue curve) as a function of the
incoming Froude number for the hypothetical set-up of § 4.3. As in figure 7, the dark shaded region denotes the
area where the dynamic regime is impossible. The letter ‘M’ above the h̃+,min curve and to the left of the h̃+,thres
curve denotes the area where the mild granular monoclinal waves appear, while the light shaded area with the
letter ‘S’ to the right of the h̃+,thres curve and above the h̃+,min curve denotes the steep regime. The gradient
shading inside the mild regime represents the increasing lack of accuracy of the inviscid approximation close
to the h̃+,thres curve. The system parameter values are: ζ1 = 31.1◦, ζ2 = 47.5◦,L = 0.44 mm, β = 0.63, β∗ =
0.466, Γ = 0.1.

t = 10 s

h (x, t)
(m)

x (m)

t = 60 s
t = 120 s t = 180 s

500

Figure 10. Stability of a granular monoclinal wave which constitutes a solution of (3.3) with Fr = 0.6 and a
height h+ corresponding to h̃+ = 0.92 (mild regime): an initial perturbation (black thin curve) is positioned on
the wave’s upper plateau and its evolution is computed from the granular Saint-Venant equations (2.1)–(2.2).
The perturbation is seen to diminish in time, and after 180 s we witness that the monoclinal wave has recovered
its initial shape. The red dashed curve denotes the unperturbed initial monoclinal wave, and is presented here
for direct comparison with the solution taken from the PDEs (solid lines). The evolution of the system has
been evaluated using the method of lines (Schiesser 1991; Razis et al. 2018), with a computational space step
of 
x = 0.01 m over a total length of xmax = 50 m. The system parameters are taken from Russell et al.
(2019): ζ1 = 21.27◦, ζ2 = 33.89◦,L = 0.2351 mm, Γ = 0.0, β = 0.143, β∗ = 0.19 and the arbitrary value of
ζ = 25◦ is used.
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The granular monoclinal wave: a dynamical systems survey

Based on our understanding of the properties of the saddle’s stable manifold, a
classification of the granular monoclinal waves was possible. It was shown that when the
trace of the saddle is positive, the actual profile can be approximated by the inviscid limit
(4.4) of the full, viscous equation of motion (3.5) (mild regime). On the other side of the
spectrum, when the saddle’s trace is negative, this approximation becomes invalid (steep
regime). In the same context, an analytical expression relating the height of the lower
plateau with the value of the incoming Froude number that separates these two regimes
is given (4.6). Along with the curve that determines the minimum level of h̃+ in the fully
dynamic regime (4.7), they constitute a map of the dynamical properties of the granular
monoclinal waves.

A study of the possible formation of granular monoclinal waves in a hypothetical
material with non-zero Γ offset is included in this paper. The results were qualitatively
very similar to those obtained with the experimental set-up of Russell et al. (2019), which
lacks the Γ offset parameter, illustrating the relevance of the case study in question.

In order to address the important issue of the stability of the solutions obtained from the
dynamical system, one must return to the original time-dependent PDEs, i.e. the granular
Saint-Venant equations (2.1)–(2.2). The stability of the monoclinal profiles found earlier
can be demonstrated by inserting them, in perturbed form, as initial conditions into these
PDEs. In figure 10, as an example, we show the time evolution of the thus perturbed
‘mild’ monoclinal wave. The perturbation (a small surplus of material in the shape of
a Gaussian-like bump) is seen to disappear in the course of time, yielding again the
unperturbed profile which remains unchanged afterwards.

As a final remark, it may be noted that this analysis applies to normal fluids too. The
modified Saint-Venant equations introduced by Kranenburg (1992) in the context of the
evolution of roll waves in normal fluids (see also Yu & Kevorkian 1992; Yu, Kevorkian &
Haberman 2000; Balmforth & Mandre 2004) give rise to a similar dynamical system with
many analogies. This will be reported in a forthcoming publication.
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