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Abstract. We express Néron functions and Schneider’s local p-adic height pairing on an abelian
variety A with split multiplicative reduction with theta functions and their automorphy factors on the
rigid analytic torus uniformizing A. Moreover, we show formulas for the �-splittings of the Poincaré
biextension corresponding to Néron’s and Schneider’s local height pairings.
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Introduction

The object of this paper is to ‘calculate’ Néron’s local height pairing and Schneider’s
local p-adic height pairing on abelian varieties with split multiplicative reduction.
Such an abelian variety admits of a rigid analytic uniformization as T=�, where T
is a split rigid analytic torus and � is a lattice in T . The pullback of a divisor on A
is the divisor of a theta function on T . These theta functions and their automorphy
factors will be the building blocks of our formulas. Our results generalize well-
known results on Tate curves to the higher dimensional case.

Concerning the Néron pairing, we actually prove a more general statement,
namely a formula for the Néron map on an abelian variety with split multiplicative
reduction which is similar to a formula due to Néron for an abelian variety over
C . Here we use the terminus Néron map for the association of a canonical local
height function with any given divisor. These canonical local height functions were
constructed by Néron in order to find quadratic global height functions on abelian
varieties.

Afterwards we restrict our attention to height pairings, which means that we con-
sider only divisors algebraically equivalent to zero. We adopt an approach to height
pairings which is due to Mazur and Tate (see [Ma–Ta]). Starting with an abelian
variety over a local field K and any homomorphism � from K� to some abelian
group Y , they define a local height pairing on A with values in Y whenever � can
be continued to a ‘bihomomorphic’ map, a so-called �-splitting, �: P (K) ! Y
on the K-rational points of the Poincaré biextension associated with A. In some
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cases there exist canonical �-splittings, e.g. whenK is archimedean and � vanishes
on elements of absolute value one, or when K is non-archimedean, � is unrami-
fied (i.e. vanishes on the group of units), and the target group Y satisfies certain
divisibility conditions. These two cases suffice to describe Néron’s local height
pairings via canonical �-splittings. There is also an axiomatic characterization of
the �-splittings leading to Schneider’s local p-adic heights (as defined in [Sch]).

For an abelian variety with split multiplicative reduction we define a new �-
splitting by a certain expression on a trivial biextension covering P (K). This
definition is restricted to the case where � is what we call �-invertible, i.e. where
� maps the lattice � to a lattice of full rank in Y n. If � is unramified, we show
that � is �-invertible if and (adding an additional assumption) only if the Mazur–
Tate condition for the existence of a canonical �-splitting is fulfilled, and that
our �-splitting coincides with the canonical one. Furthermore, if � is the map
corresponding to Schneider’s p-adic height, then � is �-invertible if and only if
Schneider’s conditions are fulfilled, and in this case our �-splitting is the one giving
rise to the p-adic height.

Moreover, we prove a formula for the height pairing defined by our �-splitting,
using theta functions on the covering torus T and their automorphy factors, which
yields the desired formulas for Schneider’s and Néron’s pairings.

After this paper was completed, we learnt that a generalization of our formula for
the Néron map to arbitrary abelian varieties with semistable reduction was proved
independently (and earlier) by M. Hindry in the unpublished preprint [Hi]. Hindry
is interested in finding good representatives for the local Néron height functions
associated with a divisor which are a priori only defined up to a constant, whereas
our main interest lies in computing height pairings in the Mazur and Tate style and
investigating their existence conditions. With this focus we only get information
on divisors algebraically equivalent to zero, but we can investigate height pairings
with value groups other than the real numbers. So the overlap between this paper
and [Hi] concerns only our Section 3. We nevertheless decided to include this
section to complete the picture.

1. Local heights

Let us first recall some facts about local height functions and height pairings.
We fix an abelian variety A over a local field K , whose absolute value we will
always normalize according to the product formula, i.e. ifK = R, we take the usual
absolute value, ifK = C , we take the square of the usual absolute value, and ifK is
non-archimedean, we denote the residue class field by k and put jxjK = (#k)�v(x),
where v is the valuation map (normalized so that a prime element has valuation
one). By A0 we denote the dual abelian variety of A. If K is non-archimedean, we
denote by R its ring of integral elements, and by A (respectively A0) the Néron
model of A (respectively of A0) over Spec R. We write Div(A) for the group of
(Weil or Cartier) divisors on A, and for any nonzero f in the function field K(A)
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ofAwe denote the corresponding principal divisor by div(f). For any Zariski open
subset U of A, let Q(U) be the group of continuous functions U(K)! R, and let
C(U) be the subgroup of constant functions on U(K).

THEOREM 1.1 (Néron). There is a unique way of associating to anyD 2 Div(A)
an element

�K;D = �D 2 Q(AnsuppD)=C(AnsuppD)

with the following properties:

(i) All representatives of �D have divisor D, i.e. whenever D restricted to some
Zariski open subset U of A is equal to the divisor of a rational function
f (restricted to U), then for every representative �?D of �D there exists a
continuous map �: U(K) ! R such that �?D(x) = log jf(x)jK + �(x) on
(AnsuppD)(K) \ U(K).

(ii) �D+D0 = �D + �D0 , where both sides are defined.
(iii) For all f 2 K(A)�, we have �div f � log jf jK modulo C(Ansupp div(f)).
(iv) For all a 2 A(K) we have �t�

a
D = �D � ta.

We call D 7! �D the N eron map.
Proof. Existence follows from [Né1], Theorem 1, p. 278, and [Né1], Proposi-

tion 5, p. 292. Uniqueness follows from [Né1], Lemme 7, p. 279. 2

Note that the Néron map is compatible with finite base changes: For any finite
extension L over K the restriction of [L: K]�1�L;DA

L

to A(K) is equal to �K;D.

Let Z0(A=K) denote the group of all zero cycles on A with degree zero and
K-rational support (i.e. the elements of degree zero in the free abelian group on
A(K)). For any z = �iniai 2 Z0(A=K) we put �D(z) = �ini�

?
D(ai) for an

arbitrary representative �?D of �D. Then �D(z) is a well-defined real number if the
support of z is disjoint from the support of D.

By (Div A � Z0(A=K))0 we denote the set of all pairs (D; z) with disjoint
supports. Then we can define a pairing (Div A � Z0(A=K))0 ! R by (D; z) 7!
�D(z). We will denote the restriction of this pairing to (Div0 A � Z0(A=K))0,
where Div0 A denotes the group of divisors on A algebraically equivalent to 0, by
( ; )N;A=K . An axiomatic characterization of ( ; )N;A=K is given in [Né1], p. 294.

In [Bl], Bloch gave a description of Néron’s local height pairing using a contin-
uation of the map log j jK to extensions of A by Gm. This approach was modified
by Schneider in [Sch] to define an (analytic) p-adic height pairing. The conceptual
background of Bloch’s and Schneider’s constructions becomes fully transparent in
the paper [Ma–Ta] by Mazur and Tate. Let us briefly recall some of their results.
Denote by P the Gm-torsor on A � A0 corresponding to the Poincaré bundle
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expressing the duality between A and A0. P can be endowed with the structure
of a biextension of A and A0 by Gm (with respect to the fppf, étale or Zariski
topology), see [SGA7, I, exp. VIII], p. 225. Note that P (K) is a biextension of
A(K) and A0(K) by K� in the category of sets.

DEFINITION 1.2 ([Ma–Ta], p. 199). Let U , V , W and Y be abelian groups, let
X be a biextension of U and V by W , and let �: W ! Y be a homomorphism. A
�-splitting of X is a map �: X ! Y such that

(i) �(wx) = �(w) + �(x) for all w 2W and x 2 X .
(ii) For all u 2 U (respectively v 2 V ) the restriction of � toX �U�V (fug � V )

(respectively X �U�V (U � fvg)) is a group homomorphism.

Now let �: K� ! Y be a homomorphism to some abelian group Y and assume
that � : P (K)! Y is a �-splitting. Then we can define a bilinear pairing

( ; )MT;�:
�

Div0A� Z0 �A=K��0 �! Y;

(D; z) 7�! �(sD(z));

where sD is a rational section of P jA�fdg ! A with divisor D, and where d is
the point in A0(K) corresponding to D. The rational section sD is defined only up
to a constant in K� which vanishes when we continue sD linearly to Z0(A=K).
We have (div(f); z)MT;� = �(f(z)) and (t�aD; t

�
az)MT;� = (D; z)MT;� for all

a 2 A(K) (see [Ma–Ta], 2.2, p. 212). In the following three cases, Mazur and Tate
prove the existence of a canonical �-splitting:

(I) Let K be archimedean, i.e. R or C , and assume that �(c) = 0 for all c 2 K�

with jcjK = 1. Put v(c) := log jcjK . Since �(c) depends only on the value v(c),
there is a unique homomorphism r: R ! Y such that r � v = �. There is a unique
continuous v-splitting �v of P (K) (see [Ma–Ta], 1.8.1, p. 201), and we define the
canonical �-splitting �� of P (K) to be �� = r � �v . ([Ma–Ta], 1.5.1, p. 202.)

(II) Assume that K is non-archimedean, i.e. the absolute value is discrete, and
that � vanishes on R�. If this is the case, we call � unramified. Assume that Y is
uniquely divisible by mA, the exponent of the group Ak(k)=A

0
k(k), k being the

residue class field of R. There exists a unique biextension PR of A0 and A0 by
Gm;R (over R and with respect to the fppf-topology) with generic fibre P , see
[SGA7, I exp. VIII], 7.1 b), p. 300. The canonical �-splitting �� is defined as the
unique �-splitting vanishing on PR(R) � P (K). ([Ma–Ta, 1.5.2, p. 202.)

(III) Assume that K is non-archimedean, A has ordinary reduction and Y is
uniquely divisible by mAmA0nAnA0 , where nA is the exponent of A0

k(k)=TA(k)
for the maximal torus TA inAk. The formal completion P t of PR along the inverse
image of TA � TA0 in PR is a formal biextension of the formal completion of A
along TA and the formal completion ofA0 along TA0 byG^

m, the formal completion
ofGm;R along its special fibre.P t is trivial and admits a unique split �0: P t ! G^

m.
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Then the canonical �-splitting �� is defined as the unique �-splitting of P (K) such
that ��jP t(R) = � � �0. ([Ma–Ta], 1.5.3, p. 203.)

The canonical �-splitting is in all three cases compatible with base change with
respect to continuous embeddings of local fields, see [Ma–Ta], 1.10.2, p. 205.

Cases (I) and (II) are sufficient to get a description of the local Néron pairings.
Put Y = R and let �: K� ! R be the map �(x) = log jxjK . Then � vanishes
on elements with absolute value 1. As the divisibility condition in (II) is fulfilled
in R, we get a canonical �-splitting �� : P (K) ! R, applying case (I), if K is
archimedean, and case (II), ifK is non-archimedean. According to [Ma–Ta], 2.3.1,
p. 212 we have (D; z)MT;�� = (D; z)N;A=K .

The connection to Schneider’s p-adic height pairing is the following: Let K
be a finite extension of Ql , and let � : K� ! Qp be a non-trivial continuous
homomorphism. Then � is continuous for the profinite topology on K� and
extends therefore uniquely to a homomorphism �^ on the profinite completion
K

�^ of K�. By local class field theory, K�^ is topologically isomorphic to
Gal(Kab=K). Then �^ determines a Zp-extensionK1=K with intermediate fields
K� which are the uniquely determined cyclic extensions of degree p� of K such
that �(NK�=KK

�
� ) = p��(K�) � Qp , see [Ma–Ta], 1.11.1, p. 207. For any com-

mutative group G over K we denote by NG(K) � G(K) the group of universal
norms with respect to K1=K . Furthermore, let P (K� ;K) be the set of points
in P (K�) which project to A(K�) � A0(K). We define NP (K) � P (K) as the
intersection of all NK�=KP (K� ;K), where we use the group structure of P over
A0 to define norms. If NA(K) has finite index in A(K), then NP (K) carries the
structure of a biextension ofNA(K) andA0(K) byNGm(K), see [Ma–Ta], 1.11.4,
p. 208.

THEOREM 1.3. If l = p, assume thatNA(K) has finite index inA(K). Then there
exists a unique �-splitting ��: P (K)! Qp vanishing on(

NP (K) if l = p

PR(R) if l 6= p.

We call ( ; )MT;�� Schneider’s local p-adic height pairing with respect to �.
Proof. See [Ma–Ta], 1.11.5, p. 208 for the case l = p. The case l 6= p follows

from the existence of the canonical splitting in case (II), since the homomorphism
�: K� ! Qp is unramified (see the beginning of the proof of 4.13). 2

If � is unramified (so e.g. in the case l 6= p), the universal norm group NA(K)
always has finite index inA(K), and the canonical �-splitting vanishing on PR(R)
can also be described as the unique �-splitting vanishing onNP (K), see [Ma–Ta],
1.11.6, p. 208.

Note that if L is a finite extension of K , then � extends to a non-trivial continuous
homomorphism �L: L� ! Qp , and we get �� = ��L jP (K). Hence the �-splittings
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leading to Schneider’s p-adic height pairings can be calculated after finite base
changes.

2. Abelian varieties with split multiplicative reduction

Let K be a non-archimedean local field. We will denote by RigK the site of rigid
analytic varieties over K endowed with the strong Grothendieck topology, see
[BGR], p. 357. Adopting the terminology from [BGR], we call coverings with
respect to this site admissible. By ZarK we denote the big Zariski site over SpecK ,
i.e. the category of all schemes locally of finite type over SpecK endowed with the
Zariski topology. The rigid analytic GAGA-functor, as explained in [Kö], Section 1
and [BGR], p. 361f, induces a morphism of sites which we denote by

an: RigK ! ZarK :

For an object X and a morphism f in the Zariski category we simply write Xan

and fan for the corresponding analytic objects. There is a natural map

�X: Xan �! X;

of locally G-ringed spaces. (See [Kö], Section 1, and for the definition of locally
G-ringed spaces see [BGR], 9.3.1, p. 353). The rigid analytic analogues of Serre’s
GAGA theorems hold, see [Kö]. We will call a group object in RigK a (rigid)
analytic group. A split rigid analytic torus T over K is a rigid analytic group over
K such that T ' (Gn

m;K)
an for some natural number n. Its character group is the

analytic Cartier dual of T , hence a constant analytic group defined by a free abelian
groupH of rank n contained in �(T;O�). Any choice of a basis �1; : : : ; �n of the
free Z-moduleH yields an isomorphism T ' (Gn

m;K)
an and can be used to define

a map

�: T (K) �! R
n ;

z 7�! (log j�1(z)j; : : : ; log j�n(z)j):

We call a closed analytic subgroup � � T a split lattice if it is a constant analytic
K-group whose K-rational points are mapped bijectively via � (for some choice
of �1; : : : �n) to a lattice of full rank in Rn , see [Bo–Lü3], p. 656.

We say that an abelian varietyA overK has split multiplicative reduction if the
special fibre of the identity component of the Néron model of A is a split torus.
Then there exists a split analytic torus T overK and a split lattice � � T such that
we have an isomorphism T=�

�
�! Aan in the rigid analytic category. (See [Ray]

or [Bo–Lü3], p. 655f.) The rigid analytic structure on the quotient T=� is defined
so that T ! T=� is locally bianalytic, see [Ge], p. 324, or Bo–Lü3], p. 661. Via
the projection T ! Aan,Aan is the categorical quotient of T after the �-operation
(in the sense of [Mu1], p. 3). On an abelian variety A with split multiplicative
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reduction we have a theory of theta functions analogous to the situation over C . We
have

�(T;O�) = K�H = fa�: a 2 K�; � 2 Hg;

whereO denotes the rigid analytic structure sheaf. (See [Ma], p. 289.) Note that the
analogous group in the complex analytic setting is more complicated. That makes
the definition of theta functions even easier in the rigid analytic case. LetM be the
sheaf of meromorphic functions on T (in the sense of [Bo], p. 6).

DEFINITION 2.1 ([Ma], p. 290). A function � 2 �(T;M�) with �-invariant
Cartier divisor div � is called a theta function.

Let � be a theta function. Then we have div(�(�x)) = div(�(x)), hence �(�x)
and�(x) differ by an element in �(T;O�). So for all � 2 � there exists a constant
a� 2 K

� and a character �� 2 H such that

�(�x) = a��
�1
� (x)�(x) for all x 2 T:

a� and�� are uniquely determined, and it is easy to see that they have the following
properties:

� � 7! �� is a homomorphism
� ��1(�2) = ��2(�1)
� a�1a�2 = a�1�2��1(�2)

DEFINITION 2.2. We say that K contains enough roots if for every � 2 H and
for every � 2 � there exists an element !(�; �) 2 K� such that !(�; �)2 = �(�).

Given � and H , there is always a finite extension L of K which contains enough
roots. We can define L by choosing bases �1; : : : ; �n of � and �1; : : : ; �n of H
and adjoining a fixed square root of all �i(�j) to K .

Note. In this and in the next section we will assume that our ground field K
contains enough roots.

Let �, a� and �� be as above. Since K contains enough roots, we can define a
bimultiplicative and symmetric map [ ; ]�: ���! K� such that [�; �]2� = ��(�)
for all �; � 2 �. Furthermore, as �� is a character, [ ; ]2� has an extension to
a bimultiplicative map [ ; ]2� : � � T (K) �! K�. We define  � : � ! K� by
 �(�) := a�[�; �]�. An easy calculation shows that  � is a homomorphism. Then
the automorphy factor of � has the following shape

�(�x) =  �(�)[�; �]
�1
� [�; x]�2

� �(x):

(The same arrangement of the automorphy factor is used in [Ma], p. 290). [ ; ]� is
uniquely determined up to a bimultiplicative and symmetric map from � � � to
f�1g. Hence the absolute values of [ ; ]� and  � are independent of the choice of
[ ; ]�.

The following result is crucial for our investigations.
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THEOREM 2.3 (Gerritzen). H1(T;O�) = 1.
Proof. See [Ge], Theorem 1, p. 326. 2

This implies that every analytic Cartier divisor on T is a principal divisor. Let us
denote by �: T ! Aan the uniformization map and consider an algebraic divisor
D onA.D induces an analytic Cartier divisorDan = ��AD onAan. Then ��Dan is
principal, i.e. there is a function � 2 �(T;M�) such that ��(Dan) = div�: Our
notation is justified, since� is indeed a theta function in the sense of Definition 2.1.
We call � a theta function corresponding to D. Two theta functions corresponding
to the same divisor D differ by an element in �(T;O�) = K�H . Note that for
a 2 K� and � 2 H we have [ ; ]2a�� = [ ; ]2�. Hence we may put [ ; ]2D = [ ; ]2� for
any theta function corresponding to D.

PROPOSITION 2.4. A divisor D on A is algebraically equivalent to zero if and
only if [ ; ]2D = 1.

Proof. Let � be a theta function corresponding to D. Then �(x; y) := �(xy)
�(x)�1�(y)�1 2 �(T � T;M�) is a theta function corresponding to the divisor
m�D�p�1D�p

�
2D onA�A (wherem is multiplication and p1; p2 are projections).

Hence, ifD is algebraically equivalent to zero, we get � = a� �h � (���), where
a� 2 �(T � T;O�) is the product of a constant a 2 K� and a character � on
T�T , and where h is a rational function onA�Awith divisorm�D�p�1D�p

�
2D.

In this case, we deduce for all � 2 �

�(x2)

�(x)�(x)
��1(x; x) =

�(�x2)

�(�x)�(x)
��1(�x; x);

which implies�(�; 1) = [�; x]�2
D . Hence for all� the character [�;�]�2

D is constant,
hence equal to 1, which gives indeed [ ; ]2D = 1.

On the other hand, suppose that [ ; ]2D = 1. This implies that �(x; y) is �� �-
invariant, hence � = (� � �)�h for some global meromorphic function h on
Aan � Aan. Since A � A is projective, h is actually a rational function (see e.g.
[Bo], p. 12), which implies that D is algebraically equivalent to zero. 2

For any divisor D 2 Div0(A) and any theta function � corresponding to D we
choose [ ; ]� = 1, i.e.  �: �! K� is the well-defined homomorphism satisfying
�(�x) =  �(�)�(x).

We define a homomorphism

Div(A) �! H1(�;�(T;O�));

(where we take group cohomology with respect to the natural action of � � T (K)
on �(T;O�)) by D 7! �D(�x)=�D(x). It is easy to see that this morphism is
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well-defined (i.e. independent of the choice of �D), and that its kernel consists
exactly of the principal divisors. Hence we get an injection

�: CH1(A) ,! H1(�;�(T;O�)):

In accordance with [Mu1], 1.6, p. 30, we call a collection of morphisms u� :
Gan
m � T

�
�! Gan

m � T (� 2 �) such that u�1�2 = u�1 � u�2 and such that for all
� 2 � there exists an element e� 2 �(T;O�) with u�(�; x) = (�e�(x); �x), a
�-linearization on the trivial Gan

m -torsor Gan
m � T over T . For every Gm-torsor L

on A there is a trivialization ��Lan �
�! Gan

m � T , hence the natural �-operation
on ��Lan (given by multiplication by � on T ) induces a �-linearization fu�g
on Gan

m � T . It is clear that a different trivialization of ��Lan gives rise to a �-
linearization v� such that u� = h�1�v��h for some fixedGan

m -torsor isomorphism
h: Gan

m � T
�
�! Gan

m � T . If this is the case, we call u� and v� congruent. Let us
denote the set of congruence classes of �-linearizations by LinCl. Then we get a
map

 1: CH1(A) �! LinCl:

As in the complex case (see [Mu2], Chapter I, Section 2) it is possible to define an
inverse map by constructing the quotient ofGan

m �T after a �-linearization. Hence
 1 is a bijection. (See also [Bo–Lü3], Lemma 2.2, p. 662.) Furthermore, if we

choose an isomorphism i: Gan
m � T

�
�! ��Lan, then (Lan; Gan

m � T
i
! ��Lan

�
!

Lan) is the categorical quotient (in RigK) of Gan
m � T by the operation of � given

by the�-linearization u� derived from i. (For the definition of categorical quotients
see [Mu1], p. 3)

On the other hand, we have a natural bijection  2: H1(�;�(T;O�)) �! LinCl
induced by mapping a cocycle fe�g to the set of maps u� defined by u�(�; x) =
(�e�(x); �x). Following all our constructions, it turns out that 2 ��: CH1(A) �!
LinCl coincides with the bijection  1 defined above. In particular, we deduce that
� is an isomorphism.

3. The Néron map

If we assume for a moment that we are dealing with an abelian variety A over the
complex numbers, a result of Néron tells us how to calculate the Néron map on A.
Let �: V ! A(C ) be the complex uniformization of A(C ), so that A(C ) = V=�,
where V is a complex vector space and � is a lattice in V . For every divisor D
on A there is a normalized theta function �D on V with divisor ��D, i.e. �D is a
meromorphic function on V such that for all z 2 V and for all � 2 �

�(z + �) = �(z) exp
�
�H

�
z +

�

2
; �

�
+ 2�iK(�)

�
;
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whereH is a hermitian form on V �V andK(�) is real for all � 2 �. (For a proof
see [La1] or [Ro].) Put

�?D(x) = log j�D(z)j �
�

2
H(z; z);

where z 2 V is an arbitrary preimage of x 2 A(C ). Then �: D 7! �?D mod C is
the Néron map on A. (See [Né1], p. 329.)

We will now derive a similar formula in the non-archimedean case. So let us
return to the case that A is an abelian variety with split multiplicative reduction
over a non-archimedean local ground field K . Then Aan is uniformized as T=�,
and we denote by � : T ! Aan the projection map. We fix a basis �1; : : : ; �n
for the character group H of T and a basis �1; : : : ; �n for the lattice � � T (K).
By v we denote the valuation map on K�. Note that (v(�j�i)i;j) is a matrix
of full rank over Z, since � is a split lattice. Fix a natural number N satisfying
N det(v(�j�i)i;j)�1 2 Z. In analogy to the complex situation we define

DEFINITION 3.1. We call a theta function � on T normalized, if j �(�)j = 1 for
all � 2 �.

Then we have the following

PROPOSITION 3.2. For any divisor D on A there is a normalized theta function
�0 corresponding to the divisorND, which is uniquely determined up to a constant
a 2 K�.

Proof. Consider a divisorD onA and a theta function� corresponding toD. We
have to find a character � 2 H such that�0 = ��N is a normalized theta function.
Now, according to our definition, ��N is normalized if and only if for all � 2 �we
have 1 = j ��N (�)j = j�(�)jj �(�)j

N . For brevity, put  :=  �. To construct
�, we solve the linear system of equations v( (�i)) = �n

k=1akv(�k�i) for all
i = 1; : : : ; n with uniquely determined ak 2 Q. Then ak 2 det(v(�j�i)i;j)�1Z for
all k, hence Nak 2 Z. Define � := ��Na1

1 � � ���Nan
n 2 H . An easy calculation

now shows that j�(�i)j�1 = j (�i)j
N for all elements of our chosen basis. This

implies that j�(�)j�1 = j (�)jN for all � 2 �, as both sides are multiplicative in �.
Hence ��N is normalized. The second part of our assertion is obvious, since two
theta functions corresponding to the same divisor differ by an element of K�H .
Note that any character mapping � to R� is trivial. 2

DEFINITION 3.3. (i) For any z 2 T (K)we denote bywj(z) 2 Q, j 2 f1; : : : ; ng,
the uniquely determined solution of the following system of linear equations

v(�i(z)) =
nX
j=1

wj(z)v(�i(�j)) for i = 1; : : : ; n:

Note that Nwj(z) is an integer.

comp3946.tex; 17/06/1997; 13:02; v.7; p.10

https://doi.org/10.1023/A:1000139010486 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000139010486


ABELIAN VARIETIES WITH SPLIT MULTIPLICATIVE REDUCTION 299

(ii) For every divisor D on A put for y; z 2 T (K)

HD(y; z) = �

nX
i;j

wi(y)wj(z) log j[�i; �j ]Dj:

Note thatHD is a bilinear, symmetric mapT (K)�T (K) �! R, which is obviously
continuous in both arguments. Some other properties of HD which we need in our
calculation of the Néron map are established in the following lemma.

LEMMA 3.4.

(i) HD1+D2 = HD1 +HD2 .
(ii) Let � be a character on T . Then log j�(z)j = �jwj(z) log j�(�j)j.
(iii) For all y; z 2 T (K) we have HD(y; z) = � 1

2�iwi(y) log j[�i; z]2Dj.
(iv) For � 2 � and z 2 T (K) we have HD(�; z) = �1

2 log j[�; z]2Dj, which gives
for z = � 2 � the equation HD(�; �) = � log j[�; �]Dj.

Proof. (i) is obvious from the definitions.
(ii) By definition, v(�i(z)) = �jwj(z)v(�i�j) for all i. Hence we get for all

i: log j�i(z)j = �jwj(z) log j�i(�j)j: By additivity, this holds for all � 2 H .
(iii) From (ii), we get log j[�; z]2D j = �jwj(z) log j[�; �j ]2Dj, which implies our

claim.
(iv) By (iii), we get for all i: HD(�i; z) = � 1

2�jwj(�i) log j[�j ; z]2Dj =
� 1

2 log j[�i; z]2Dj, since wj(�i) = �ij . As the �i are a basis of �, this formula
holds for all � 2 �. 2

We can now prove a formula for the Néron map onA. The following theorem can be
deduced from a result due to M. Hindry (Théorème D in [Hi]) who independently
proved a formula for the Néron map on an abelian variety with semistable reduction
via its Raynaud uniformization. Nevertheless, since our arguments are in a different
spirit, it might be useful for the reader to give a proof here.

THEOREM 3.5. For any divisor D on A let �ND be a normalized theta function
corresponding to the divisor ND. We define for all x 2 (AnsuppD)(K)

��ND(x) :=
1
N

log j�ND(z)j �
1
N
HND(z; z);

where z 2 T (K) is an arbitrary point with �(z) = x. Then

�: D 7�! (�D = ��ND mod C(AnsuppD));

is the Néron map for A, as defined in 1:1.
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Proof. First of all, note that a different choice of �ND amounts to adding a
constant, so that �D depends solely on D. Next, we will show that �ND(x) is
well-defined, i.e. independent of the choice of a preimage z of x. Indeed, for � 2 �
and z 2 ��1(fxg) we have

log j�ND(�z)j �HND(�z; �z) = log j[�; �]�1
ND [�; z]

�2
ND�ND(z)j

�HND(�; �)�HND(z; z)

�2HND(�; z)

= log j�ND(z)j �HND(z; z);

according to 3.4, (iv). Now we have to check properties (i) to (iv) of 1.1.

(i) Assume that the restriction of D to the Zariski open subset U of A is
equal to div f for some f 2 K(A). Then Dan restricted to Uan equals div fan.
Choose a normalized theta function � = �ND for ND. We have div((fan)N �

�)j��1Uan = div(�)j��1Uan , hence �=(fan � �)N 2 �(��1Uan;O�). Thus,
log j�(z)=fN (�z)j 2 R for all z 2 ��1Uan. As HND has no singularities,
and ��(�z) = log jf(�z)j + (1=N) log j�(z)=fN (�z)j � (1=N)HND(z; z), this
proves our claim.

(ii) is clear since the product of two normalized theta functions is normalized.
(iii) Let f 6= 0 be a rational function on A. Then fan is a global meromorphic

function on Aan, and (��fan)N is a normalized theta function corresponding to
N div(f), which implies that �div(f) � log jf j mod C.

(iv) Finally, we have to check translation invariance. Let a be a point in A(K).
Fix some b 2 T (K) with �(b) = a. Denote by ta respectively tb the translation
maps x 7! ax on A respectively z 7! bz on T . Then obviously � � tb = ta � �.
So, if � = �ND is a normalized theta function corresponding to ND, we have
��(Nt�aD) = (� � tb)

�(ND) = t�b(div �). Hence � � tb is a theta function
corresponding to the divisor Nt�aD. For all � 2 � and all z 2 T (K) we have
�(b�z) =  �(�)[�; b]

�2
ND [�; �]

�1
ND[�; z]

�2
ND�(bz), which implies

j[ ; ]Nt�
a
Dj = j[ ; ]NDj and j ��tb(�)j = j �(�)[�; b]

�2
ND j:

Now let �0 be a normalized theta function corresponding to N(t�aD). Then
�� tb = �0a� for some a 2 K� and � 2 H , as both theta functions have the same
divisor. Hence j ��tb(�)j = j �0(�)�(�)j, which implies j[�; b]�2

ND j = j�(�)j,
since � and �0 are normalized. Then we get, using again 3.4, HND(z; b) =
�1

2�jwj(z) log j[�j ; b]2NDj =
1
2�jwj(z) log j�(�j)j = 1

2 log j�(z)j. Now we cal-
culate for all z 2 T (K) with �z = x

��(ax) =
1
N

log j�(bz)j �
1
N
HND(bz; bz)
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=
1
N

log j�0(z)j +
1
N

log jaj+
1
N

log j�(z)j �
1
N
HND(b; b)

�
2
N
HND(z; b)�

1
N
HND(z; z)

� ��0(x) modulo C:

Hence, �t�
a
D = �D � ta, as claimed. 2

Theorem 3.5 generalizes a well-known result on Tate curves, see [La2], Chapter
III, Section 5. We used normalized theta functions in order to get a formula similar
to Néron’s result in the complex case. We could avoid this notion altogether, as the
following corollary shows:

COROLLARY 3.6. Let D be a divisor on A and let �D be a theta function
corresponding to D. Define for all z 2 T (K) the vector (w1(z); : : : ; wn(z)) as in
3:3. Then put for all x 2 (AnsuppD)(K)

�?�D(x) = log j�D(z)j �
nX
j=1

wj(z) log j �D(�j)j �HD(z; z);

where z 2 T (K) is an arbitrary preimage of x. Substituting �D by another theta
function corresponding to D amounts to adding a constant on the right-hand side,
hence we get a well-defined map

D 7�! �D := (�?�D modulo C(AnsuppD));

which is the Néron map.
Proof. An easy calculation, similar to the one in the proof of 3.5, shows that

the expression we used to define �?�D(x) does not depend on the choice of a
preimage z. Furthermore, if a is an element in K� and � is a character, we
get �?�(x)� �?a��(x) = � log jaj � log j�(z)j +�jwj(z) log j�(�j)j = � log jaj
according to 3.4, (ii). This proves that using a different theta function corresponding
to D amounts to adding a constant. Therefore, it remains to be shown that �D is
the Néron map, which follows easily by comparison with the expression we found
in 3.5. 2

We can now derive a formula for Néron’s local height pairing.

COROLLARY 3.7. For (D; z) 2 (Div0A� Z0(A=K))0 with z = �niai we have

(D; z)N;A=K = log

�����Y
i

�D(bi)
ni

������X
i

ni
X
j

wj(bi) log j �D(�j)j;

for any theta function �D corresponding to D and for arbitrary preimages bi of ai
in T (K).
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Proof. Our statement follows immediately from 3.6. Note that for a divisor
D which is algebraically equivalent to zero HD vanishes identically according
to 2.4. 2

For a different investigation of Néron’s local height pairing on principally polarized
abelian varietes with split multiplicative reduction see [Tu].

4. Local Mazur–Tate height pairings

We consider again an abelian variety A with split multiplicative reduction over a
non-archimedean local ground field K such that Aan is uniformized as T=�, and
we denote by �: T ! Aan the projection map. Let T� be the split torus over K
with character group �. We put

T 0 := T�
an:

Then T 0 is a split analytic torus. The character group H of T can be regarded
as a subgroup of T 0(K) = Hom (�;K�). Furthermore, the constant analytic
group defined by H is a split lattice in T 0. Hence the quotient T 0=H is a rigid
analytic variety over K , see [Bo–Lü3], p. 661. It is algebraic, i.e. there is an
abelian variety B over K with Ban ' T 0=H (see [Ge], p. 341). We will denote
by �0 the uniformization map �0 : T 0 ! Ban. We define now a 1-cocycle in
H1(� �H;�(T � T 0;O�)) by e(�;�) = �(�)�� 2 �(T � T 0;O�). It is easy to
see that the cocycle condition is satisfied. e(�;�) defines a ��H-linearization

u(�;�)(�; x; y) = (e(�;�)(x; y)�; �x; �y);

on the trivialGan
m -torsor overT�T 0. LetP be a line bundle onA�B corresponding

to (u(�;�)) via the map  1 from Section 2.

PROPOSITION 4.1. (B;P ) is the dual abelian variety corresponding to A.
Proof. Our claim follows from combining [Bo–Lü1], Proposition 1.1, p. 258,

and [Bo–Lü3], proof of 2.1, p. 663. (See also [Ge], Section 5.) 2

Because of this Proposition, we will henceforth write A0 instead of B.
Recall that we proved in 2.4 that a divisor D on A is algebraically equivalent

to zero if and only if [ ; ]2D = 1. The identification of Pic0(A) with A0(K) is given
by mapping an isomorphism class of a line bundle M in Pic0(A) to the point
y 2 A0(K) satisfying P jA�fyg ' M . This is exactly the point y 2 A0(K) =

T 0(K)=H = Hom(�;K�)=H corresponding to the class of  � 2 Hom(�;K�)
for any theta function � for M .
P an (respectively its associated Gan

m -torsor) is a rigid analytic biextension of
Aan andA0 an byGan

m . As we explained at the end of Section 2, there is an analytic
morphism

�0: Gan
m � T � T 0

�
�! (� � �0)�P an ! P an;
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such that (P an; �0) is the categorical quotient of Gan
m � T � T 0 after the u(�;�)-

operation.�0 is a morphism ofGan
m -torsors, i.e.�0 lies over the projectionT�T 0 !

Aan�A0 an and commutes with the operation of Gan
m . But asGan

m � T � T 0 is the
trivial biextension of T and T 0 by Gan

m , both sides carry additional structures. The
next Proposition investigates in how far �0 is already a morphism of biextensions.

PROPOSITION 4.2. There is a unique point c 2 K� such that the map

� := mc � �0: Gan
m � T � T 0 �! P an;

is a morphism of biextension. Here mc denotes the Gan
m -torsor operation by c on

P an.
Proof. Since for any c 2 K� the map mc � �0 is compatible with the torsor

structures, the only problem is to find an element c 2 K� such that � := mc � �0

is a homomorphism with respect to both group structures. If c is such an element,
then �0(c; 1T ; 1T 0) must be equal to the unit section of P an over A0 an applied to
the unit section of A0 an over K . Let us denote this element by e. On the other
hand, since both �0(1Gan

m
; 1T ; 1T 0) and e project to (1Aan ; 1A0 an), they differ by

an element in K�. Hence we see that we have to define c 2 K� as the element
satisfying �0(c; 1T ; 1T 0) = e. Put � = mc � �0. It remains to be shown that � is
indeed a morphism of biextensions.

We begin by studying the analytic morphism

f: T � T � T 0 �! P an;

(u; v; w) 7�! �(1; uv; w)�(1; u; w)�1�(1; v; w)�1;

where on the right-hand side we multiply and take inverses with respect to the
group structure on P an over A0 an, and where we use functorial points (u; v; w).
We will now investigate the behaviour of f under the operation of � � � � H
on T � T � T 0. By definition, � is invariant under the operation of u(�;�), which
means that �(�; x; y) = �(�e(�;�)(x; y); �x; �y). Hence an easy calculation using
the definition of the e(�;�) shows that f is �� ��H-invariant. Thus there exists
a morphism f0: Aan �Aan �A0 an ! P an with f0 � (� � � � �0) = f .

Denote by � the projection P ! A � A0. Then �an: P an ! Aan � A0 an is
a homomorphism of analytic groups over A0 an. Since �an � � = (� � �0) � p23

(where p23 is the projection to the last two factors) is a homomorphism, we see that
�an �f is the map T �T �T 0 ! Aan�A0 an given by (u; v; w) 7! (1Aan ; �0(w)).
Hence �an � f0 is the morphism given by (a; b; c) 7! (1Aan ; c). This means that
�an � f0 factorizes through the unit section of the group Aan � A0 an over A0 an.
As P an is a biextension, we know that

0 �! Gan
m �A0 an �! P an �an

�! Aan �A0 an �! 0;
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is an exact sequence of analytic groups over A0 an. Thus there exists an A0 an-
morphism g : Aan � Aan � A0 an �! Gan

m � A0 an which, composed with the
embedding Gan

m � A0 an ! P an, gives the morphism f0. Furthermore, g is the
product of a morphism h: Aan�Aan�A0 an �! Gan

m and the projection toA0 an.
Now h corresponds to an element in �(Aan�Aan�A0 an;O�), which by GAGA
theorems is isomorphic to �(A�A�A0;O�) = K� (see [Kö], p. 43). Hence f is

the following morphism: T � T � T 0 ! T 0
d��0
�! Gan

m �A0 an ! P an, where d is
aK-rational point ofGan

m . But, by the definition of �, we have f(1T ; 1T ; 1T 0) = e,
hence we get d = 1. This implies that � is a group homomorphism with respect to
the group structures over T 0 respectively A0 an.

The same reasoning, applied to the morphism

T � T 0 � T 0 �! P an;

(u; v; w) 7�! �(1; u; vw)�(1; u; v)�1�(1; u; w)�1;

where we now use the group structure on P an over Aan, implies that � is also
homomorphic with respect to the second group law. 2

Note that P an together with the new quotient morphism �: Gan
m � T � T 0 ! P an

is still the categorical quotient of Gan
m � T � T 0 for the action of ��H given by

the u(�;�).
Let now Y be an abelian group (noted additively), and let �: K� ! Y be a

homomorphism. The following result characterizes all �-splittings in our situation:

PROPOSITION 4.3. There is a (1-1)-correspondence between

(a) �-splittings �: P (K) �! Y and
(b) �-splittings ��: (Gan

m � T � T 0)(K)! Y satisfying for all � 2 �, � 2 H ,
y 2 T (K) and z 2 T 0(K) : ��(1; �; z) = ��(�(z)) and ��(1; y; �) =
��(�(y)), induced by mapping a �-splitting �: P (K)! Y to �� = � � �.

Proof. As � is a morphism of biextensions, for any �-splitting � of P (K) the
map � �� will indeed be a �-splitting of (Gan

m � T � T 0)(K). Furthermore, as � is
u(�;�)-invariant, we have ���(�(z); �; z) = ���(u(�;1)(1; 1; z)) = ���(1; 1; z) =
0. A parallel argument shows that � � �(�(y); y; �) = 0. Hence � � � is indeed an
element of the set in (b).

On the other hand, take a �-splitting ��: K�� T (K)� T 0(K)! Y satisfying
��(1; �; z) = ��(�(z)) and ��(1; y; �) = ��(�(y)). Then we can calculate for
all � 2 K�, � 2 �, � 2 H , y 2 T (K) and z 2 T 0(K)

��(�; �y; �z) = �(�) + ��(1; �; �) + ��(1; �; z) + ��(1; y; �)

+��(1; y; z)

= � �(�(�)�(z)�(y)) + ��(�; y; z):
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Hence �� is invariant under the operation given by the u(�;�). Since P (K) is the
categorical quotient of K� � T (K) � T 0(K) after the u(�;�)-operation, there is
a unique map � : P (K) ! Y such that � � � = ��. As � is a homomorphism of
biextensions, � is in fact a �-splitting. This proves our claim. 2

We will now define a new �-splitting for homomorphisms �with a certain property.
As we will see later, this result can be used to calculate the canonical Mazur–Tate
height in case (II) and Schneider’s local p-adic height pairing on A.

DEFINITION 4.4. Let �: K� ! Y be a homomorphism to an abelian group Y .
We call � �-invertible, if the following two conditions are fulfilled:

(i) Y is the additive group of a commutative ring (which we also call Y).
(ii) There is a homomorphism �0: K� ! Y and an element a 2 Y such that
� = a � �0, and such that for some (and hence for any) bases �1; : : : ; �n of �
and �1; : : : ; �n of H the element det(�0(�j�i)ij) is a unit in Y .

From now on, we fix a basis �1; : : : ; �n of H and a basis �1; : : : ; �n of �.

THEOREM 4.5. Assume that �: K� ! Y is �-invertible. Let M 2 Matn;n(Y ) be
the inverse matrix of (�0(�j�i)ij).

(i) Define the �-splitting ��: K� � T (K)� T 0(K)! Y by

(�; y; z) 7�! �(�)� (�0(�1y); : : : ; �0(�ny))M
t(�(�1z); : : : ; �(�nz)):

Then there exists a unique �-splitting �: P (K) �! Y such that � � � = ��.
(ii) Denote the map T (K) ! Y n given by y 7! (�(�1y); : : : ; �(�ny)) by �n.

Assume that for every element u 2 �n(T (K)) there is a natural number du which
is a unit in Y and which satisfies duu 2 �n(�). Then the �-splitting � defined in
(i) is the unique �-splitting such that � � � vanishes on f1g � (ker �n)� T 0(K).

Proof. (i) It is easy to see that �� is indeed a �-splitting. In order to check that
it gives rise to a �-splitting � of P (K), according to 4.3 we have to show for all
�, �, y and z that ��(1; �; z) = ��(�(z)) and ��(1; y; �) = ��(�(y)). Since we
know that �� respects the group laws on the biextension K� � T (K) � T 0(K),
we can assume that � 2 � and � 2 H are elements of the chosen bases. Note
that (�0(�1�i); : : : ; �0(�n�i))M = tei, where ei is the ith unit vector, and that
M t(�(�j�1); : : : �(�j�n)) = aej . Hence our claim follows.

(ii) The �-splitting in (i) obviously vanishes on f1g�ker �n�T 0(K). We have
to check that under the conditions of (ii) �� is uniquely determined by the following
properties:

� ��(1; �; z) = ��(�(z)) for all � 2 �.
� ��(1; y; �) = ��(�(y)) for all � 2 H .
� ��(1; y; z) = 0 for all y 2 ker �n � T (K).
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Consider elements y 2 T (K) and z 2 T 0(K). Then according to our assumption
we find a natural number dwhich is a unit in Y such that d�n(y) 2 �n(�) � Y n. So
there exists an element� 2 � such that�n(yd��1) = 0 2 Y n, which implies that yd

and � differ by an element in ker �n. Hence d��(�; y; z) = d�(�)+��(1; yd; z) =
d�(�) + ��(1; �; z) = d�(�) � �(�(z)). Since d is a unit in Y , we see that �� is
in this case uniquely determined. 2

As described in Section 1, our �-splitting induces a local pairing

( ; )MT;�:
�

Div0A� Z0 �A=K��0 �! Y:

We define meromorphic sections of a rigid analytic line bundle (respectivelyGan
m -

torsor) as in [EGA IV], 20.1.8. The following result shows that the meromorphic
section of the trivial line bundle on T given by a theta function �D is just the lift
of a rational section with divisor D.

LEMMA 4.6. Let D 2 Div0(A), and let d 2 A0(K) be the corresponding point.
Let �D be a theta function for D, and let t be the induced meromorphic section of
the trivial torsorGan

m �T . Then there exists a rational section sD of P jA�fdg with
divisor D, such that the following diagram commutes

Tnsupp ��Dan t
- Gan

m � T

Ansupp D

�A � �

?

sD
- P jA�fdg

?

�P � �(�;�; d
0) ;

where �A : Aan ! A and �P : P an ! P are the canonical maps (see Sect. 2),
and where d0 2 T 0(K) is the point corresponding to the homomorphism�! K�

given by

� 7�!  �D(�) =
�D(�x)

�D(x)
:

Proof. By construction, �(�;�; d0): Gan
m � T � fd0g ! P anjAan�f�0(d0)g is

equal to the composition of an isomorphism!:Gan
m �T�fd

0g
�
�! ��(P anjAan�fdg)

and the projection ��(P anjAan�fdg)! P anjAan�fdg. Let now sD be any rational
section of P jA�fdg with divisorD. Then sD induces a meromorphic section ��sanD
of ��(P anjAan�fdg). Via the isomorphism !, we find a meromorphic section t of
Gan
m � T � fd0g with divisor ��Dan such that the following diagram commutes
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Tnsupp ��Dan t
- Gan

m � T

Ansupp D

�A � �

?

sD
- P jA�fdg

?

�P � �(�;�; d
0) :

Furthermore, t is given by a global meromorphic function � on T . We now have
to connect � to our given theta function �D. We know that � and �D have the
same divisor, hence they differ by an element in K�H . Since t is a lift of sD,
we have �(�(x); x; d0) = �(�(�x); �x; d0). On the other hand, �(�(x); x; d0) =
�(u(�;1)(�(x); x; d

0)) = �(�(d0)�(x); �x; d0), hence

�(�x)

�(x)
= �(d0) =

�D(�x)

�D(x)
:

Since the presence of a character would affect the automorphy factor, �=�D must
be constant. If �D = c� for some c 2 K�, the rational section csD of P jA�fdg
has also divisor D and makes the diagram in our claim commutative. 2

DEFINITION 4.7. Assume that � is �-invertible. Define for all y 2 T (K) the
vector (w1(y); : : : wn(y)) 2 Y

n to be (�0(�1y); : : : ; �0(�ny))M:

Then (w1(y); : : : ; wn(y)) is a solution of the linear system of equations

�(�i(y)) =
X
j

wj(y)�(�i(�j)); i = 1; : : : ; n:

COROLLARY 4.8. LetD be in Div0(A) and let z = �k
i=1(ai� bi) be a zero cycle

with K-rational support disjoint from the support of D. Furthermore, let � be the
�-splitting defined in 4:5: For any choice of a theta function �D corresponding to
D and of preimages a0i, b

0
i of ai, bi in T (K) we have

(D; z)MT;� = �

 Y
i

�D(a
0
i)

�D(b
0
i)

!
�

nX
j=1

wj

 Y
i

a0i
b0i

!
�( �D(�j)):

Proof. According to 4.6, for any y 2 T (K)nsupp��Dan and for any theta
function �D for D we have sD(�y) = �(�D(y); y; d

0) for a suitable rational
section sD with divisor D and for �(d0) =  �D(�). Hence

�(sD(�y)) = �(�(�D(y); y; d
0))

= ��(�D(y); y; d
0)
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= �(�D(y))� (�0(�1y); : : : ; �0(�ny))

�M t(�(�1(d
0)); : : : ; �(�n(d

0)))

= �(�D(y))�
nX
j=1

wj(y)�( �D (�j));

by the definition of the wj’s. This implies our claim. 2

We will now investigate the �-splitting � from 4.5 in the case that � is unramified,
i.e. that � vanishes on units in R. Recall that if � is unramified and if Y is uniquely
divisible by mA, the exponent of Ak(k)=A

0
k(k), Mazur and Tate have shown that

there exists a unique �-splitting �� of P (K) vanishing on PR(R). Here PR is
the unique biextension of A0 and A0 by Gm;R with generic fibre P . The next
lemma will be needed to compare the conditions for the existence of �� and our
splitting � .

LEMMA 4.9. Denote by v : K� ! Z the valuation map. Then mA divides
det(v(�j�i)i;j), and det(v(�j�i)i;j) divides mn

A in Z.
Proof. For Tate curves, this means thatmA = �v(�1�1), which is a well-known

result, see [Si], p. 358f. Recall that det(v(�j�i)i;j) 6= 0, as � is a split lattice in T .
LetA0^ be the formal completion ofA0 along the special fibre. We can associate to
A0^ its rigid analytic generic fibreA which is an open analytic subgroup variety of
Aan (see [Bo–Lü2], Sect. 1). The uniformization map � induces an isomorphism

T (R) := fy 2 T (K) : j�i(y)j = 1 for all ig �
�! A(K);

see [Bo–Lü3], p. 655. We have furthermore a natural identification A(K)
�
�!

A(R). The preimage ofA0(R) under this identification is justA(K), see [Bo–Lü2],
Proposition 1.3, p. 72. The restriction to the special fibre induces a homomorphism
A(R)! Ak(k), which is surjective, since A is smooth over the henselian ring R
([EGA IV], 18.5.17). The preimage of A0

k(k) under this map is just A0(R).
So we find that the preimage of A0

k(k) under the surjective reduction map
A(K) ! Ak(k) is A(K). Hence we get an isomorphism A(K)=A(K)

�
�!

Ak(k)=A
0
k(k). Via the uniformization � : T ! Aan we get an isomorphism

T (K)=T (R)�
�
�! Ak(k)=A

0
k(k). Hence mA is equal to the exponent of T (K)=

T (R)�.
For any point y 2 T (K) and any natural number m the point ym is in T (R)�

if and only if there are natural numbers m1; : : : ;mn such that

mv(�i(y)) =
X
j

mjv(�i(�j)) for all i = 1 : : : n:

It is easy to see that this is always the case if we choose m = det(v(�i�j)i;j)
= det(v(�j�i)i;j). Hence mA divides det(v(�j�i)i;j). On the other hand, choose
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for all k a point yk 2 T (K) such that v(�i(yk)) = �ik. This is possible, since
(�1; : : : ; �n) : T (K) ! K�n is an isomorphism. As mA is the exponent of
T (K)=T (R)�, we find for every k 2 f1; : : : ; ng integers m1; : : : ;mn such that

mA�ik = mAv(�i(yk)) =
X
j

mjv(�i(�j)) for all i:

If M = (Mi;j)i;j is the inverse matrix of (v(�i�j)i;j), this is equivalent to Mj;k =
mj=mA for all j = 1; : : : ; n. Hence all coefficients of M lie in mA

�1Z, which
implies that det(v(�j�i)i;j)�1 = det(M) 2 m�n

A Z, hence det(v(�j�i)i;j) divides
mn
A in Z. 2

In order to compare our �-splitting to the canonical Mazur–Tate splitting in the
unramified case, we need another lemma:

LEMMA 4.10. Denote again by T (R) � T (K) the set of K-rational points of T
which are mapped to R� by all characters � 2 H . The morphism of biextensions

�: Gan
m � T � T 0 �! P an

mapsR��T (R)�T 0(K) to PR(R) � P (K). Furthermore, every point in PR(R)
has a preimage in R� � T (R)� T 0(K).

Proof. We fix a point z 2 T 0(K) and put b = �0(z) 2 A0(K). We denote by b
also the corresponding point inA0(R), and we denote the projectionPR ! A0�A0

by �. For brevity, we put Z = PRjA0�fbg, which is an extension of A0 by Gm;R.
As H1(SpecR;Gm) is trivial, Z(R) is an extension of A0(R) by R�. Now let
S = SpecR, and for all integers n > 0 put Sn = SpecR=Mn+1, where M is
the maximal ideal in R. Note that S0 = Speck. For S-schemes and S-morphisms
we use subscripts n to indicate base changes by Sn, and for any S-scheme Y
we denote the formal completion after its special fibre by bY . Hence we writebS for the formal spectrum of R. Then bZ is a formal extension of bA0 by bGm;R.
Since A has split multiplicative reduction, all A0

n are split tori. Hence, by [SGA7,
I, exp. VIII], 3.3.1, all extensions Zn split. Choose a section �0 : A0

0 ! Z0 of
the projection �0 : Z0 ! A0

0. By [SGA3, II, exp. IX], 3.6, we find for all n
uniquely determined Sn-homomorphisms �n: A0

n ! Zn such that �n�Sn S0 = �0.
Furthermore, from �0 � �0 = idA0

0
, we deduce by [SGA3, II, exp. IX] 3.4, that

�n � �n is the identity map onA0
n. Hence we found a compatible system of sections

(�n)n, which induces a section of the homomorphism bZ ! bA0, and hence a section
of bZ( bS)! bA0( bS). Since bZ( bS) = Z(R) and bA0( bS) = A0(R) (which follows e.g.
from Grothendieck’s existence theorem [EGA III], 5.4.1), we find a section � of
the homomorphism PR(R)jA0(R)�fbg = Z(R)! A0(R).

For all y 2 T (R) we have � � �(1; y; z) = (�(y); �0(z)) 2 A0(R) � fbg.
Composing this map with our section � , we get a morphism

� � � � �(1; y; z) : f1g � T (R)� fzg �! PR(R)jA0(R)�fbg:
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As � � � � (� � �(1; y; z)) = � � �(1; y; z) = (�(y); �0(z)) , the maps y 7!

� � � � �(1; y; z) and y 7! �(1; y; z) differ by a homomorphism h: T (R) ! K�.
Identifying T (R) with R�n, we get a homomorphism h: R�n ! K�. Composing
h with the natural projection K� ! K�=R� ' Z, we get a homomorphism
g: R�n ! Z.

Assume now that Im g 6= f0g. Then there exists an integer � > 0 such that � is
minimal among all integers � > 0 such that � 2 Im g. Let y be an element in R�n

with g(y) = �. Now choose a natural number  > 1 such that the characteristic of k
does not divide . Let U (1) � R� be the units congruent to 1 modulo the valuation
ideal. Then, by Hensel’s Lemma, x 7! x induces a surjection U (1) ! U (1). Now
R� 'W �U (1), whereW is torsion. Hence g factorizes through the projection of
R�n to the direct factor U (1)n. Let y1 be the projection of y to U (1)n. Then there is
a z 2 U (1)n such that z = y1. Hence g(z) = g(y1) = g(y) = �. As  is bigger
than 1, we get a contradiction to our choice of �.

Thus Im g = f0g, which implies that the image of h is contained in R�. Hence
we find that � �� ��(1; y; z) ��(1; y; z)�1 is an element ofR�. As � �� ��(1; y; z)
is in PR(R), we deduce that �(1; y; z) 2 PR(R). Let now (�; y; z) be an element
of R� � T (R) � T 0(K). Then �(�; y; z) = ��(1; y; z) 2 PR(R), which proves
our first claim.

Finally let x be a point in PR(R), and let (a; b) 2 A0(R) � A0(R) be the
projection to A0 � A0. Recall from the proof of 4.9 that the preimage of A0(R)
under the map T (K) ! A(K)

�
! A(R) is just T (R)�. Hence a has a preimage

y 2 T (R). We choose any preimage z 2 T 0(K) of b. Now �(1; y; z) is an element
of PR(R) projecting also to (a; b) 2 A0(R) � A0(R), hence there is an � 2 R�

such that x = ��(1; y; z) = �(�; y; z), which proves our claim. 2

Now we can compare our �-splitting to the canonical splitting of Mazur and
Tate.

THEOREM 4.11. Let �: K� ! Y be unramified, and let Y be a (commutative)
ring. If Y is uniquely divisible by mA, then � is �-invertible. If � is �-invertible in
such a way that � = a�1 with det(�1(�j�i)i;j) a unit and a not a zero divisor in Y ,
then Y is uniquely divisible by mA.

Let us assume that Y is uniquely divisible by mA, and put �0(x) = v(x) � 1Y .
Then (�0(�j�i)i;j) has an inverse matrix M 2 Matn;n(Y ). Let � : P (K) ! Y be
the �-splitting defined by

�(x) = �(�)� (�0(�1y); : : : ; �0(�ny))M
t(�(�1z); : : : ; �(�nz));

for an arbitrary preimage (�; y; z) 2 K� � T (K) � T 0(K) of x 2 P (K) under
�. Then � is uniquely determined by the property that � � �(1; y; z) = 0 for all
y 2 ker�n � T (K) and all z 2 T 0(K).

Furthermore, the canonical Mazur–Tate splitting �� in case (II) is equal to � .
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Proof. Let r be a prime element in R. The fact that � is unramified implies
that � satisfies �(x) = �(r)�0(x). Assume now that Y is uniquely divisible by
mA. Then mA is a unit in Y , and Lemma 4.9 implies that det(�0(�j�i)i;j) =
det(v(�j�i)i;j) � 1Y is a unit in Y . Hence � is �-invertible. On the other hand,
assume that there exists a homomorphism �1: K� ! Y and an element a 2 Y not
dividing zero such that �(x) = a�1(x) and such that det(�1(�j�i)i;j) is a unit in
Y . Then �1(x) = �0(x)�1(r), hence det(�1(�j�i)i;j) = �1(r)

n det(�0(�j�i)i;j),
which implies that det(�0(�j�i)i;j) is a unit in Y . From Lemma 4.9 we can now
deduce that mA is a unit in Y .

In order to show that � is uniquely determined by the property above, by Theo-
rem 4.5, (ii) it suffices to show that for all y 2 T (K) there exists a natural number
dy 2 Y � such that dy�n(y) 2 �n(�). Put d = det(v(�j�i)i;j). Then d is a unit
in Y , as we have just seen. For any y 2 T (K) we can solve the system of linear
equations �jqjv(�i(�j)) = v(�i(y)) for i = 1; : : : ; n with q1; : : : ; qn 2 d�1Z.
Now it is easy to see that d�n(y) 2 �n(�). It remains to be shown that �� = � .
As �� is the unique �-splitting vanishing on PR(R), it suffices to show that our
�-splitting � fulfills that condition. Let x 2 PR(R). According to Lemma 4.10,
we find a preimage (�; y; z) of x under � in R� � T (R)� T 0(K). Then we have
�(x) = ��(�; y; z) = 0, as T (R) � ker �n. 2

Using Corollary 4.8, we get a formula for the canonical local height pairing in
case (II) in terms of theta functions. As the homomorphism log j jK which leads to
Néron’s local height pairing is unramified and the necessary divisibility conditions
are satisfied in Y = R, we get a formula for the local Néron height pairing on A,
which coincides with the formula we derived from our description of the Néron
map in 3.7. (This does not make our results in Section 3 superfluous because there
we computed the whole Néron map, not only its restriction to Div0(A).)

For a construction of a K�-valued pairing with different theta functions on
an abelian variety from which one can deduce formulas for Néron’s local height
pairing and for a p-adic height pairing see [Né2], [Né3], and [Né4].

We will now derive a formula for Schneider’s local p-adic height pairing on
A. From now on we will assume that K is a finite extension of Ql for some
prime number l, and that �: K� ! Qp is a non-trivial continuous homomorphism
for some fixed prime number p. As we have seen in Section 1, � determines a
Zp-extension K1=K with intermediate fields K� of degree p� over K such that
�(NK�=KK

�
� ) = p��(K�) � Qp . Recall that if l = p, Schneider’s local p-adic

height pairing with respect to � is defined only under the condition that the group
of universal norms NA(K) has finite index in A(K). We will first investigate this
condition.

PROPOSITION 4.12. If l = p, then � is �-invertible if and only if NA(K) has
finite index in A(K).
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Proof. (For Tate curves, this is also proved in [Na].) We may assume that � is
not unramified: First of all note that � is unramified iff K1 is unramified over K .
If this is the case, we find by 4.11 that � is �-invertible, and by [Ma–Ta], 1.11.6,
p. 208, that the universal norm group has finite index.

Hence let us assume that � is not unramified. Let r is a prime element in R, so
that K� ' hri � R�. Since R� is a compact subgroup of K�, it is mapped by
� to a compact subgroup. Therefore �(R�) is contained in ptZp for some integer
t, and since �(R�) is closed and not zero, t can be chosen so that �(R�) = ptZp.
Hence �(K�) = �(r)Z+ ptZp = psZp for some integer s.

For each intermediate field K� we write N� for the norm map NK�=K . The
homomorphism � induces surjections �: K�=N�K

�
� �! �(K�)=p��(K�), since

�(N�K
�
� ) = p��(K�). As both groups have the same cardinality, these maps are

isomorphisms for all �. Furthermore, we see that the kernel of � is equal to
\�N�K

�
� = NGm(K).

Now the preimage ofNA(K) = \�N�A(K�) under the covering map �: T (K)
! A(K) is \�(�N�T (K�)). Hence � induces an isomorphism � : T (K)=
\�(�N�T (K�))

�
�! A(K)=NA(K). Choose a basis �1; : : : ; �n of the char-

acter groupH . Via (�1; : : : ; �n), T (K) is isomorphic toK�n. Denote the induced
lattice in K�n by �1. Then by definition, � is �-invertible, if and only if �n(�1)
contains a Qp -basis of Qnp , where �n: K�n ! Qnp is the induced map. We get an
isomorphismK�n=\� (�1(N�K

�
� )

n)
�
�! A(K)=NA(K). As the kernel of �n is

equal to (\�N�K
�
� )

n � \�(�1(N�K
�
� )

n), this induces an isomorphism

�n(K�n)

�n(\��1(N�K
�
� )n)

�
�!

A(K)

NA(K)
:

Note that �n(\��1(N�K
�
� )

n) = �n(�1), where �n(�1) denotes the p-adic closure
of �n(�1), so that

�n(K�n)=�n(�1)
�
�! A(K)=NA(K):

Now let us assume that NA(K) has finite index in A(K). Then, since �n(K�n)
contains a basis of Qnp , the same holds for �n(�1) and hence also for �n(�1). So �
is �-invertible.

On the other hand, suppose that � is �-invertible. Then �n(�1) contains a Qp -
basis of Qnp . Hence �n(K�n)=�n(�1) is a finitely generated torsion Zp-module,
hence finite, which implies that NA(K) has finite index in A(K). 2

Now we can calculate Schneider’s p-adic height pairing.

THEOREM 4.13. Let �: K� ! Qp be a non-trivial continuous homomorphism
and assume that in the case l = p the group of universal norms NA(K) has
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finite index in A(K). Then the matrix (�(�j�i)ij) has an inverse matrix M 2

Matn;n(Qp). Let �: P (K)! Qp be the �-splitting defined by

�(x) = �(�)� (�(�1y); : : : ; �(�ny))M
t(�(�1z); : : : ; �(�nz));

for an arbitrary preimage (�; y; z) 2 K� � T (K) � T 0(K) of x 2 P (K). Then
( ; )MT;� is equal to Schneider’s p-adic height pairing corresponding to �.

Proof. First assume that l 6= p. As we have seen at the beginning of the proof
of 4.12, �(R�) = ptZp for some integer t, if �(R�) 6= 0. But R� has no infinite
pro-p-quotient, which implies that � is unramified. By Theorem 4.11, we find that
� is equal to the canonical Mazur–Tate splitting ��, which proves our claim.

We now treat the case l = p. The fact that NA(K) has finite index in A(K)
implies that � in�-invertible, as we have seen in 4.12. HenceM exists. Schneider’s
local p-adic height pairing is equal to ( ; )MT;�� , where �� is the unique �-splitting
vanishing on NP (K). Hence it suffices to show that � vanishes on NP (K).

For all (�; y; z) 2 K� � T (K)� T 0(K) denote by ��(�; y; z) again the right-
hand side of the equation defining � . Fix a point (�; y; z) 2 K�� T (K)� T 0(K)
such that �(�; y; z) is in NP (K). Furthermore, fix a natural number m such
that the vector M t(�(�1z); : : : ; �(�nz)) 2 Qnp is already contained in m�1Znp.
Bear in mind that m does not depend on � or y. We write N� for the norm map
NK�=K . For all �, the point �(�; y; z) is in N�P (K� ;K), i.e. there exists a point
x� 2 P (K�), projecting toA(K�)�A

0(K), such thatN�x� = �(�; y; z). Choose
a preimage (�� ; y� ; z) of x� in K�

� � T (K�) � fzg. Then �N�(�� ; y� ; z) =
N�(x�) = �(�; y; z). Recall that �(N�K

�
� ) = p��(K�). Furthermore, we have

seen in the proof of 4.12 that there is an integer s such that �(K�) � psZp. Hence
�(N�K

�
� ) � p�+sZp. Then we derive for all � > 1

m��(�; y; z) = m��(N��� ; N�y� ; z)

= m�(N���)�m(�(N�(�1y�)); : : : ; �(N�(�ny�)))

�M t(�(�1z); : : : ; �(�nz))

2 p�+sZp;

since �(N�K
�
� ) � p�+sZp and mM t(�(�1z); : : : ; �(�nz)) � Znp. Therefore

��(�; y; z) = 0, which implies that � vanishes on NP (K). 2

COROLLARY 4.14. If l = p, assume that NA(K) has finite index in A(K) (or,
equivalently, that � is �-invertible). LetD be in Div0(A) and let z = �k

i=1(ai� bi)
be a zero cycle with K-rational support which is disjoint from the support of D.
Choose a theta function �D corresponding to D and preimages a0i, b

0
i of ai, bi in

T (K). Furthermore, define for all y 2 T (K) the vector (w1(y); : : : ; wn(y)) 2 Qnp
as the unique solution of the linear system of equations �jwj(y)�(�i(�j)) =
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�(�i(y)) for i = 1; : : : n. Then we have the following formula for Schneider’s
p-adic height pairing

(D; z)MT;�� = �

 Y
i

�D(a
0
i)

�D(b
0
i)

!
�

nX
j=1

wj

 Y
i

a0i
b0i

!
�( �D(�j)):

Proof. Immediate consequence of Corollary 4.8 and Theorem 4.13. 2

If A is a Tate curve, and if

� =

(
logp �NK=Ql

if l = p,

logp �j jl �NK=Ql
if l 6= p,

we get the formula proven in [Sch], p. 408.
Finally, let us briefly compare our �-splitting � to the canonical �-splitting ��

in case (III). First of all, the condition that � is �-invertible is not equivalent to
the divisibility condition in case (III). But even if � and �� exist, we should not
expect them to coincide: As we have just seen, for continuous � : K� ! Qp

our � gives rise to Schneider’s p-adic height pairing, hence the corresponding
height pairings do not even necessarily coincide on Tate curves, see [MTT], p. 34.
The relation between � and �� is the following: For any x 2 P (K) there exists
a certain preimage (�; y; z) 2 K� � T (K) � T 0(K) of x(mA;mA0

) such that
��(x) = (mAmA0)

�1�(�). Hence, by Theorem 4.13, the difference between ��
and � can be calculated via the bilinear term involving M .

5. The canonical Mazur–Tate splitting in the Archimedean Case

Using the result of Néron which we recalled at the beginning of Section 3, one
can calculate Néron’s local height pairing over an archimedean ground field via
theta functions. By transcribing our arguments in Section 4 from the rigid analytic
to the complex setting, we can do a bit more, namely prove a formula for Mazur
and Tate’s canonical �-splitting in case (I). From this we could reprove Néron’s
expression for his local height pairing with arguments analogous to those we used
in Section 4.

So let A be an abelian variety over C of dimension n, such that A(C ) = V=�
for some n-dimensional vector space V and a lattice � in V . Let �: V ! A(C )
be the projection. Absolute values will from now on always be complex ones. Let
�: C� ! Y be a homomorphism to an abelian group Y with �(c) = 0 whenever
jcj = 1. We define v(c) := log jcj. Recall from Section 1 that there is a unique
homomorphism r : R ! Y such that r � v = �. Furthermore, there is a unique
continuous v-splitting �v of P (C ), and the canonical �-splitting of P (C ) equals
�� = r � �v . Hence, in order to derive a formula for ��, it suffices to treat the
case � = v. The canonical �-splitting in case I) does also exist if the ground field
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is R, not C , but as canonical �-splittings behave well under finite base changes, it
suffices to treat the complex case.

According to [Mu2], p. 86, the uniformization of the dual abelian variety A0

can be described as follows: A0(C ) = V 0=�0, where V 0 = HomC-antilin(V; C ), and
�0 = fl 2 V 0 : Im l(�) 2 Z for all � 2 �g. Let �0 be the corresponding map
V 0 ! A0(C ), and let P be the canonical biextension of A and A0 by Gm;C. The
pullback of P (C ) via � � �0: V � V 0 ! A(C ) �A0(C ) is a trivial C� � V � V 0-
torsor, since H1(V � V 0;O�) = 1 (see [Mu2], p. 13). According to [Mu2], p. 86,
P (C ) is the quotient of C� � V � V 0 for the action of �� �0 given by

u(�;�0)(�; z; z
0) = (� exp(�[�0(z) + z0(�) + Re(�0(�))]

��i Im�0(�)); � + z; �0 + z0);

for all (�; z; z0) 2 C� � V � V 0 and (�; �0) 2 � � �0. After multiplying by an
element of C� , we can assume that the quotient map �: C� � V � V 0 ! P (C )
maps (1; 0V ; 0V 0) to 1P=A(1A=C). As in 4.2 one can show that � is a morphism of
biextensions. Define now ��: C� � V � V 0 �! R by

��(�; z; z0) = v(�) � v(exp(�z0(z))):

Then we have

LEMMA 5.1. (i) �� is a v-splitting of the trivial biextension C� � V � V 0.
(ii) �� is continuous.
(iii) �� is invariant under the action of �� �0 given by u(�;�0).
Proof. (i) and (ii) are obvious.
(iii) We have

��(u(�;�0)(�; z; z
0)) = v(�) + v(exp[��0(z) + �z0(�) + �Re�0(�)

��i Im�0(�)]) � v(exp[�(�0 + z0)(�+ z)])

= ��(�; z; z0) + v(exp[�2�i Im�0(z)])

+v(exp[�2�i Im�0(�)])

= ��(�; z; z0);

since Im�0(�) 2 Z, which leads to the vanishing of the third term. The second
term vanishes as j exp(�2�i Im�0(z))j = 1. 2

From this we deduce immediately

THEOREM 5.2. The map �: P (C ) �! R given by

x 7�! ��(�; z; z0) = v(�) � v(exp[�z0(z)]);
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where (�; z; z0) 2 C� � V � V 0 is an arbitrary preimage of x 2 P (C ) under �, is
a continuous v-splitting of P (C ). Hence � is equal to the canonical v-splitting of
Mazur and Tate.
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