Bull. Aust. Math. Soc. 88 (2013), 376–379 doi:10.1017/S0004972713000191

HAMILTON SEQUENCES FOR EXTREMAL QUASICONFORMAL MAPPINGS OF DOUBLY-CONNECTED DOMAINS

GUOWU YAO

(Received 14 September 2012; accepted 21 December 2012; first published online 22 March 2013)

Abstract

Let T(S) be the Teichmüller space of a hyperbolic Riemann surface S. Suppose that μ is an extremal Beltrami differential at a given point τ of T(S) and $\{\phi_n\}$ is a Hamilton sequence for μ . It is an open problem whether the sequence $\{\phi_n\}$ is always a Hamilton sequence for all extremal differentials in τ . S. Wu ['Hamilton sequences for extremal quasiconformal mappings of the unit disk', *Sci. China Ser. A* **42** (1999), 1033–1042] gave a positive answer to this problem in the case where S is the unit disc. In this paper, we show that it is also true when S is a doubly-connected domain.

2010 *Mathematics subject classification*: primary 30C75; secondary 30C62. *Keywords and phrases*: Teichmüller space, Hamilton sequence.

1. Introduction

Let *S* be a Riemann surface whose universal covering surface is the unit disc $\{z \in \mathbb{C} : |z| < 1\}$, and let *S* be represented by a Fuchsian group Γ acting on Δ as $S = \Delta/\Gamma$. Let QC(S) be the space of all quasiconformal mappings *f* from *R* to a variable Riemann surface f(S). The Teichmüller space T(S) is the space of these mappings factored by an equivalence relation. A quasiconformal mapping *f* in QC(S) can be lifted to a quasiconformal mapping \tilde{f} from Δ onto itself. Two mappings, *f* and *g*, are equivalent (and therefore their Beltrami differentials are called equivalent) if there exist lifts \tilde{f}, \tilde{g} of *f*, *g* such that \tilde{f} agrees with \tilde{g} on $\partial \Delta$. Let [f] or $[\mu]$ denote the equivalence class of a quasiconformal mapping *f* in QC(S), where μ is the Beltrami differential of *f*. Since the Beltrami differential μ uniquely determines the mapping *f* up to postcomposition by a conformal mapping, the Teichmüller space T(S) may be represented as the space of equivalence classes of Beltrami differentials μ in the unit ball M(S) of the space $L^{\infty}(S)$. The equivalence class of the Beltrami differentials zero is the basepoint of T(S).

The author was supported by the National Natural Science Foundation of China (Grant No. 11271216). © 2013 Australian Mathematical Publishing Association Inc. 0004-9727/2013 \$16.00

Given $f \in QC(S)$, let $\mu \in$ be the Beltrami differential of f. We define

$$k_0([\mu]) = \inf\{\|\nu\|_\infty : \nu \in [\mu]\}.$$

A quasiconformal mapping f of S onto f(S) is said to be extremal in its class [f] if its Beltrami differential μ is extremal in $[\mu]$, that is, $||\mu||_{\infty} = k_0([\mu])$. Note that $[\mu]$ may contain more than one extremal element.

Let $\mathcal{A}(\Gamma)$ denote the Banach space of holomorphic quadratic differentials ϕ on $S = \Delta/\Gamma$ with L^1 -norm

$$\|\phi\|_S = \iint_S |\phi(z)| \, dx \, dy < \infty.$$

Let $\mathcal{A}_1(\Gamma)$ denote the unit sphere of $\mathcal{A}(\Gamma)$. In particular, we denote by $\mathcal{A}(1)$ the the Banach space of integrable holomorphic quadratic differentials on Δ .

The following theorem due to Hamilton, Kruškál, Reich and Strebel is a characterisation of extremal quasiconformal mappings (see [2]).

THEOREM A. A quasiconformal mapping f of S is extremal if and only if its Beltrami differential μ has a so-called Hamilton sequence $\{\phi_n : \phi_n \in \mathcal{A}_1(\Gamma)\}$ such that

$$\lim_{n\to\infty}\left|\iint_{S}\mu(z)\phi_n(z)\,dx\,dy\right|=||\mu||_{\infty}.$$

It is known that there exists at least a common Hamilton sequence formed by Strebel differentials for all extremal differentials in $[\mu]$ (see [1, 3]). Suppose μ is an extremal Beltrami differential in its class $[\mu]$ and $\{\phi_n\}$ is a Hamilton sequence for μ . The following question was posed by Li in [3].

PROBLEM. Is the sequence $\{\phi_n\}$ always a Hamilton sequence for all extremal differentials in $[\mu]$?

The problem is of interest only when T(S) is infinite-dimensional. Up to now, we have an affirmative answer, given by Wu [5], only when $S = \Delta$.

THEOREM B. Let $[\mu]$ be in $T(\Delta)$ where μ is an extremal differential. Then a Hamilton sequence $\{\phi_n\}$ for μ is a Hamilton sequence for all extremal differentials in $[\mu]$.

The aim of this paper is to show that the answer is also positive when S is a doubly-connected domain. Up to conformal mappings, we may assume that S is either $\Delta^* = \Delta \setminus \{0\}$ or a ring domain $U_r = \{z \in \mathbb{C} : 1 < |z| < r\}$ for some r > 1.

THEOREM 1.1. Let S be a doubly-connected domain in the complex plane. Suppose that μ is an extremal Beltrami differential at a point τ of T(S) and $\{\phi_n\}$ is a Hamilton sequence for μ . Then the sequence $\{\phi_n\}$ is a Hamilton sequence for all extremal differentials in τ .

G. Yao

2. Proof of Theorem 1.1

Let $S = \Delta/\Gamma$ be a doubly-connected domain. Suppose that $f, g \in [f]$ are two extremal quasiconformal mappings from *S* onto f(S), g(S), respectively. Let μ and ν be the Beltrami differentials of *f* and *g*, respectively. Let \tilde{f} and \tilde{g} be their lifts such that $\tilde{f}|_{\partial\Delta} = \tilde{g}|_{\partial\Delta}$; accordingly, let $\tilde{\mu}$ and $\tilde{\nu}$ be the lifts of μ, ν , that is, they are the Beltrami differentials of \tilde{f}, \tilde{g} , respectively. Since the covering transformation group Γ is an Abelian group generated by a conformal self-mapping of Δ , \tilde{f} and \tilde{g} are still extremal in the class $[\tilde{f}]$ by [4, Theorem 1].

It is well known that the lift $\tilde{\mu}$ of μ satisfies (as does $\tilde{\nu}$) the Γ -invariance condition

$$(\mu \circ \gamma)\overline{\gamma'}/\gamma' = \mu$$
 for all $\gamma \in \Gamma$.

Let ϕ be an element of $\mathcal{A}(\Gamma)$ and $\tilde{\phi}(z) dz^2$ be the lift of ϕ . Then $\tilde{\phi}$ satisfies

$$\widetilde{\phi}(\gamma(z))[\gamma'(z)]^2 = \widetilde{\phi}(z), \quad \gamma \in \Gamma, z \in \Delta.$$

On the other hand, there exists a holomorphic quadratic differential $\Phi(z) dz^2 \in \mathcal{A}(1)$ such that the Poincaré series of Φ ,

$$\Theta_{\Gamma}\Phi(z) = \sum_{\gamma\in\Gamma} \Phi(\gamma(z))[\gamma'(z)]^2,$$

is equal to $\widetilde{\phi}$ (see [2, Ch. 4, Theorem 3]). For every $\phi \in \mathcal{A}_1(\Gamma)$, define

 $I(\phi) = \inf\{\|\Phi\|_{\Delta} : \Theta_{\Gamma}\Phi = \widetilde{\phi}, \Phi \in \mathcal{A}(1)\}.$

Since Γ is also an infinite cyclic group, [4, Lemma 3] tells us that $I(\phi) \equiv 1$ for all $\phi \in \mathcal{A}_1(\Gamma)$.

Now, assuming that $\{\phi_n : \phi_n \in \mathcal{A}_1(\Gamma)\}$ is a Hamilton sequence for μ , we need to prove that

$$\lim_{n\to\infty}\left|\iint_{S} v(z)\phi_n(z) \, dx \, dy\right| = \|v\|_{\infty} = k_0([\mu]).$$

Let Ω be a fundamental region for Γ in Δ . Let $\phi_n dz^2$ be the lift of ϕ_n . Then

$$\iint_{S} \mu(z)\phi_{n}(z) \, dx \, dy = \iint_{\Omega} \widetilde{\mu}(z)\widetilde{\phi}_{n}(z) \, dx \, dy.$$
(2.1)

Since $I(\phi_n) \equiv 1$, we can choose $\Phi_n(z) dz^2 \in \mathcal{A}(1)$ such that $\Theta_{\Gamma} \Phi_n = \widetilde{\phi}_n$ and

$$\|\Phi_n\|_{\Delta} = 1 + o\left(\frac{1}{n}\right) \quad \text{as } n \to \infty.$$
(2.2)

We easily derive

$$\iint_{\Omega} \widetilde{\mu}(z) \widetilde{\phi}_{n}(z) \, dx \, dy = \sum_{\gamma \in \Gamma} \iint_{\Omega} \widetilde{\mu}(z) \Phi_{n}(\gamma(z)) [\gamma'(z)]^{2} \, dx \, dy$$
$$= \sum_{\gamma \in \Gamma} \iint_{\gamma(\Omega)} \widetilde{\mu}(z) \Phi_{n}(z) \, dx \, dy = \iint_{\Delta} \widetilde{\mu}(z) \Phi_{n}(z) \, dx \, dy.$$
(2.3)

Thus, combining (2.1)–(2.3),

$$\begin{split} \|\mu\|_{\infty} &= \lim_{n \to \infty} \iint_{S} \mu(z)\phi_{n}(z) \, dx \, dy = \lim_{n \to \infty} \iint_{\Delta} \widetilde{\mu}(z)\Phi_{n}(z) \, dx \, dy \\ &= \lim_{n \to \infty} \iint_{\Delta} \widetilde{\mu}(z) \frac{\Phi_{n}(z)}{\|\Phi_{n}\|_{\Delta}} \, dx \, dy, \end{split}$$

which indicates that $\{\Phi_n(z)/||\Phi_n||_{\Delta}\}$ is a Hamilton sequence for $\tilde{\mu}$. Furthermore, by Theorem B, it is also a Hamilton sequence for $\tilde{\nu}$. Therefore, by the same reasoning as in deriving (2.3),

$$\begin{split} \|v\|_{\infty} &= \lim_{n \to \infty} \iint_{\Delta} \widetilde{v}(z) \frac{\Phi_n(z)}{\|\Phi_n\|_{\Delta}} \, dx \, dy = \lim_{n \to \infty} \iint_{\Delta} \widetilde{v}(z) \Phi_n(z) \, dx \, dy \\ &= \lim_{n \to \infty} \sum_{\gamma \in \Gamma} \iint_{\gamma(\Omega)} \widetilde{v}(z) \Phi_n(z) \, dx \, dy = \lim_{n \to \infty} \sum_{\gamma \in \Gamma} \iint_{\Omega} \widetilde{v}(z) \Phi_n(\gamma(z)) [\gamma'(z)]^2 \, dx \, dy \\ &= \lim_{n \to \infty} \iint_{\Omega} \widetilde{v}(z) \widetilde{\phi}_n(z) \, dx \, dy = \lim_{n \to \infty} \iint_{S} v(z) \phi_n(z) \, dx \, dy, \end{split}$$

that is, $\{\phi_n\}$ is also a Hamilton sequence for ν . This completes the proof of Theorem 1.1.

References

- F. P. Gardiner, 'Approximation of infinite dimensional Teichmüller space', *Trans. Amer. Math. Soc.* 282 (1984), 367–383.
- [2] F. P. Gardiner and N. Lakic, *Quasiconformal Teichmüller Theory* (American Mathematical Society, Providence, RI, 2000).
- [3] Z. Li, 'Strebel differentials and Hamilton sequences', Sci. China Ser. A. 44 (2001), 969–979.
- [4] H. Ohtake, 'Lifts of extremal quasiconformal mappings of arbitrary Riemann surfaces', J. Math. Kyoto Univ. 2 (1982), 191–200.
- [5] S. Wu, 'Hamilton sequences for extremal quasiconformal mappings of the unit disk', *Sci. China Ser. A.* **42** (1999), 1033–1042.

GUOWU YAO, Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, PR China e-mail: gwyao@math.tsinghua.edu.cn

[4]