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Laminar–turbulent transition on the suction surface of the LM45.3p blade (20 % thickness)
was investigated using wall-resolved large eddy simulation (LES) at a chord Reynolds
number of Rec = 106 and angle of attack 4.6◦. The effects of anisotropic free stream
turbulence (FST) with intensities T I = 0 %–7 % were examined, with integral length
scales scaled down from atmospheric measurements. At T I = 0 %, a laminar separation
bubble (LSB) forms and transition is initiated by Kelvin–Helmholtz vortices. At low FST
levels (0 % < T I � 2.4 %), robust streak growth via the lift-up mechanism suppresses the
LSB, while transition dynamics shifts from two-dimensional Tollmien–Schlichting (TS)
waves (T I = 0.6 %) to predominantly varicose inner and outer instabilities (T I = 1.2 %
and 2.4 %) induced by the wall-normal shear and inflectional velocity profiles. The critical
disturbance kinetic energy scales with T I−1.80±0.11, compared with T I−2.40 from Mack’s
correlation. For T I � 4.5 %, bypass transition dominates, driven by high-frequency
boundary layer perturbations and streak breakdown via outer sinuous modes induced by
the spanwise shear and inflectional velocity profiles. The scaling of streak amplitudes
with T I becomes sub-linear and spanwise non-uniformity characterises the turbulent
breakdown. The critical disturbance kinetic energy reduces to T I−0.90±0.16, marking
a transition regime distinct from modal mechanisms. The onset of bypass transition
(T I ≈ 2.4 %−4.5 %) aligns with prior studies of separated and flat-plate flows. A
proposed turbulence spectrum cutoff links atmospheric measurements to wind tunnel
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data and Mack’s correlation, offering a framework for effective T I estimation in practical
environments.

Key words: boundary layer receptivity, boundary layer stability, transition to turbulence

1. Introduction
The turbulence in the lower atmosphere is significantly affected by shear, convection,
surface roughness and wakes of upstream wind turbines (Wyngaard 1992; Amandolèse
& Széchényi 2004). The turbulence intensity spans T I = 5 %−25 % (Højstrup 1999;
Noda & Flay 1999; Thomsen & Sørensen 1999; Hand et al. 2003). Despite the high T I ,
several works report a large region of laminar flow on the suction side of wind turbine
blades (up to 40 % of the chord) (Madsen et al. 2010; Reichstein et al. 2019). This is
partly due to the higher relative velocity (U∞ =

√
V 2∞ + (Ω r)2) felt by the blade, where

V∞ and Ωr are the wind and rotation velocities, respectively, reducing the relative T I
(Schaffarczyk et al. 2017). The latter found T I ≈ 2 % and observed a laminar extent up to
20 % of the chord.

The atmospheric turbulence scales help explain the protracted laminar flow. The
integral length scale, representing the large eddies, may reach Λ= 27−55 m (IEC 2006;
Bertagnolio et al. 2015) from wind turbine experiments. The peak in the energy spectrum
occurs at f = 0.01 Hz, followed by a −5/3-drop (Schaffarczyk et al. 2017). Therefore,
large eddies, which are ineffective in exciting the blade boundary layer (Morkovin 1969;
Saric et al. 2002; Schrader et al. 2009), carry most of the energy. Reeh (2014) interpreted
the large scales (low frequencies) in the turbulence spectrum as unsteadiness in the angle
of attack and pressure distribution. To compute an effective turbulence intensity (T I Nc )
exciting Tollmien–Schlichting (TS) waves on a blade, Madsen et al. (2019) used only
the 100−300 Hz range of the spectrum. Schaffarczyk et al. (2017) highlighted the need
for such a cutoff, but its selection criterion is unclear. This consists in selecting the
low-frequency cutoff Nc > 0 in

T I Nc =
√

(u′Nc
rms)

2 + (v′Nc
rms)

2 + (w′Nc
rms)

2

3
Nc=0== T I, (1.1)

u′Nc

rms =

√√√√√ 1
N 2

N/2∑
Nc

|û|2 Nc=0==
√√√√ 1

N

N∑
0

u′2 = u′rms, (1.2)

where u′ =U −U (similarly for v′rms and w′rms), with U and U representing the
instantaneous and mean x velocity, û the single-sided frequency spectrum of u′, and N
the time-series length; r.m.s. stands for root mean square. The comparison between wind
tunnel and atmospheric turbulence from flight data suggests this threshold may be at f ≈
300 Hz, removing the inertial sub-range from the latter (Romblad et al. 2022). Obtaining
an effective T I from wind turbine data is particularly interesting for usage with Mack’s
empirical relation (Mack 1977) between the critical N factor (Ntr ) and T I given by

Ntr =−8.43− 2.40 · ln (T I/100). (1.3)

Mack’s correlation is obtained from wind tunnel data of a flat plate under zero pressure
gradient and grid turbulence. Here, Ntr is used for transition estimation with the eN

method (Smith & Gamberoni 1956; van Ingen 1956). Transition occurs for ln [A/A(x0)] =
1009 A52-2
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Ntr , where A is the disturbance amplitude and x0 is the location of initial growth. This
method has been successful for natural or TS-dominated transition (Arnal & Casalis 2000;
van Ingen 2008), but bypass transition for T I � 0.5 %−1 % (Morkovin 1969; Reshotko
1976; Arnal & Juillen 1978; Boiko et al. 2002) and flow separation (Fava et al. 2023c)
limit its use.

The transition scenario depends on the receptivity process. Linear receptivity may
occur for T I < 3 % (Brandt et al. 2004), where small vortices diffuse into the boundary
layer (Bertolotti 1997). Shear sheltering prevents high-frequency perturbations from
entering the boundary layer (Hunt & Carruthers 1990; Jacobs & Durbin 1998). Nonlinear
receptivity due to the interaction of oblique waves in the free stream turbulence (FST)
is the primary excitation source for higher T I (Berlin et al. 1999). Blanco et al. (2024)
separated the linear and nonlinear receptivity effects in the Blasius boundary layer,
showing that the former generates streaks with energy E ∝ T I 2 near the leading edge and
the latter creates streaks with E ∝ T I 4 further downstream. Faúndez Alarcón et al. (2022)
and Fava et al. (2023c) studied aerofoil receptivity to FST injected outside the boundary
layer, showing that optimal perturbation analysis explained the initial disturbance growth
for low T I . Large-scale disturbances can also excite shorter wavelength perturbations
through scale conversion/reduction, enabled by fast base-flow variations near the leading
edge (Goldstein 1983; Ruban 1984).

A boundary layer may have a modal instability regime for low T I characterised by
disturbance growth dominated by the eigenmodes (e.g. TS and Kelvin–Helmholtz (KH)
modes) of the linearised Navier–Stokes operators (Reed et al. 1996). The non-modal
scenario (Schmid 2007) is associated with the transient growth of vortical perturbations
(Butler & Farrell 1992), which may lead to streamwise elongated structures denominated
streaks (Klebanoff 1971). The latter grow via the lift-up mechanism (Landahl 1975, 1980),
whose optimal initial disturbances are streamwise vortices (Andersson et al. 1999; Luchini
2000). The streaks may trigger an inner mode, i.e. the secondary instability of TS waves,
with a near-wall critical layer (Vaughan & Zaki 2011). It develops a checkered pattern
over the streaks with lambda structures at the intersection of high- and low-speed streaks
(Nagarajan et al. 2007; Schlatter et al. 2010; Vaughan & Zaki 2011) or hairpin vortices on
the sides of the streak (Hack & Zaki 2014). This mode relies on the excitation near the
leading edge (Schrader et al. 2010). The increase in the adverse pressure gradient (APG)
enhances the amplification of the inner mode and turbulent breakdown (Hack & Zaki
2014), whereas increasing amplitude and decreasing frequency of streaks have the opposite
effect (Vaughan & Zaki 2011). The latter found a maximum phase speed cp = 0.54U∞ for
the inner modes.

The outer mode is linked to the secondary instability of the streaks, with a critical
layer far from the wall. Its dominance occurs for higher T I and is associated with bypass
transition, being a precursor of turbulent spots (Asai et al. 2002; Mans et al. 2005, 2007).
It can manifest as spanwise symmetric and antisymmetric oscillations around the streak
centreline denominated varicose and sinuous instabilities (Swearingen & Blackwelder
1987). The increase in the APG favours a change from the sinuous to the varicose types
(Marquillie et al. 2011). The sinuous instability may be more unstable (Andersson et al.
2001), triggered for a minimum amplitude of 0.085U∞ (Arnal & Juillen 1978; Mandal
et al. 2010; Vaughan & Zaki 2011). Varicose and sinuous outer modes are related to
inflectional velocity profiles in the wall-normal and spanwise directions, respectively
(Brandt et al. 2004). The varicose mode may occur by colliding aligned high- and
low-speed streaks, forming a lambda vortex, which was confirmed experimentally by
Balamurugan & Mandal (2017). This leads to a spatially discontinuous shear layer that
allows high-frequency FST disturbances to infiltrate the boundary layer, leading to hairpin
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vortices and turbulent spots (Brinkerhoff & Yaras 2015). The sinuous instability may arise
by a misaligned collision of high- and low-speed streaks (Brandt & de Lange 2008) and
frequently occurs in the rear part of the former (Mans et al. 2007). Vaughan & Zaki (2011)
found a maximum phase speed of 0.75U∞ for the outer modes. For high T I , inner and
outer instabilities may be suppressed, and the turbulent breakdowns may be directly caused
by the FST forcing (Zhao & Sandberg 2020).

Hosseinverdi & Fasel (2019) showed that an exponential amplification follows the initial
slow algebraic growth of streaks in the APG region of a flow with separation. These
authors identified transition dominated by KH modes for T I = 0.1 %, streaks for T I =
2 %−3 %, and both for intermediate T I . Istvan & Yarusevych (2018) demonstrated that
streaks contribute more to the disturbance kinetic energy than KH modes for an aerofoil
with flow separation for T I > 1.99 %. They noted that high T I leads to decreased spatial
amplification, suggesting that the increased initial disturbance amplitudes in this regime
primarily cause earlier transition. Jaroslawski et al. (2023) indicated that an increase in
T I attenuates the growth of modal instabilities, and the streamwise energy growth shifts
from exponential to algebraic for high disturbance levels. Dotto et al. (2022) noted that
discrete and continuous Orr–Sommerfeld modes were relevant for transition for a zero
APG boundary layer for T I = 2 %−3 %.

Transition on wind turbine blades was investigated with surface microphones
(Özçakmak et al. 2020). Natural transition was observed in wind-tunnel (Madsen et al.
2010; Lobo et al. 2018) and field (Troldborg et al. 2013) experiments for low T I ,
characterised by a pronounced amplitude peak in the microphone pressure spectrum.
Bypass transition occurred when the blade passed through the wake of upstream
wind turbines, with the microphone pressure spectrum presenting high energy for low
frequencies ( f < 10 Hz) and no clear peak (Özçakmak et al. 2020; Lobo et al. 2023).
Dollinger et al. (2019) and Reichstein et al. (2019) detected wedges aligned with azimuthal
direction signalling bypass transition. There are other experimental works on the role of
FST on wind turbines, but they do not provide further insight into transition (Døssing
2008; Bertagnolio et al. 2015; Schaffarczyk et al. 2017; Madsen et al. 2019; Reichstein
et al. 2019; Oehme et al. 2022). Wind-tunnel investigations with grid turbulence and
integral length scale O(10−1) m showed an enhancement in the blade performance due
to bypass transition and suppression of flow separation (Amandolèse & Széchényi 2004;
Sicot et al. 2008; Maldonado et al. 2015).

The literature on how FST affects transition is dense, but there is limited understanding
of how it occurs on wind turbine blades. Pertinent issues include: (i) the assessment of
Mack’s correlation; (ii) a cutoff for the size of free stream eddies affecting transition;
(iii) a T I threshold for bypass transition; (iv) a better understanding of receptivity,
and the stabilising or destabilising interaction between streaks and modal instabilities.
This work attempts to address these questions with detailed wall-resolved large eddy
simulation (LES) of a wind turbine aerofoil at a Reynolds number Rec = 106 under
FST intensities T I = 0 %, 0.6 %, 1.2 %, 2.4 %, 4.5 % and 7 %. This study extends the
results of Lobo et al. (2022) and Fava et al. (2023c) to a realistic Rec of wind turbines.
The manuscript is divided as follows: § 2 presents the numerical set-up and test cases;
§ 3 contains the results and is subdivided into several subsections; § 3.1 characterises
mean and instantaneous fields; § 3.2 investigates the receptivity process; § 3.3 analyses
the evolution of modal and non-modal disturbances, and applies linear stability theory;
§ 3.4 proposes a low-frequency cutoff for FST; and finally, § 4 presents the conclusions.
Appendix A summarises the calculations of coefficients and errors of linear regression of
the critical N factor correlations. Appendix B shows the operators for stability analysis
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Velocity component

Longitudinal Lateral Vertical

Standard deviation σk σ1 0.8 σ1 0.5 σ1
Integral scale, Λk 8.1 Λ1 2.7 Λ1 0.66 Λ1

Table 1. Kaimal length scales and standard deviation ratios from IEC 61400-1 (IEC 2006).

on cross-planes. Appendix C displays the statistics of the time variation of the pressure
coefficient due to the FST.

2. Study cases and numerical approach

2.1. Description of flow cases
The flow on the suction side of a 20 % thick aerofoil, employed at a radius of 35 m of
the LM45.3p blade of the 2 MW Senvion MM92 wind turbine, is analysed for an angle
of attack AoA= 4.6◦. The Reynolds number based on the free stream velocity (U∞) and
chord length (c) is Rec = 106. Unless otherwise stated, the dimensional variables (denoted
by ∗) are non-dimensionalised by U∞ and c. FST intensities T I = 0 %, 0.6 %, 1.2 %,
2.4 %, 4.5 % and 7 % are considered.

Two coordinate systems are employed. The x , y, z coordinates are in the chord direction
(x = 0 at the leading edge and x = 1 at the trailing edge), wall-normal direction (y) and
spanwise direction (z). The U , V and W velocities are in the streamwise (along the
aerofoil), wall-normal (y) and spanwise (z) directions. The second coordinate system,
x , y, z, is only used for the generation of FST. Note that x is aligned with the inflow
direction and forms an AoA= 4.6◦ with x , whereas z is aligned with z. Specifically for
the generation of FST, U , V and W are in the x , y and z directions. The anisotropic FST
is based on the IEC-61400–1 standard (IEC 2006), with integral length scales (Λk) and
standard deviation (σk) ratios given in table 1. They follow a Kaimal spectrum (Kaimal
1973) represented by (2.1), where Ū is the hub-height mean velocity:

E( f ) = σ 2
k

4Λk/Ū

(1+ 6 f Λk/Ū )
5
3

. (2.1)

Here, Λ1 = 42 m for hub heights greater than 60 m (IEC 2006). A wall-resolved LES of
such large scales is computationally expensive. Therefore, the structures are scaled down,
keeping the ratio between the length scales in the three directions, so that they fit within
the spanwise width Lz = L∗z /c= 0.06 (the limiting domain dimension). The maximum
energy is located in the spanwise wavenumber kz =√π/Lz , where kz is a variable. The
maximum spanwise wavelength that can be resolved is based on the spanwise dimension
such that λz = 2π/kz = 0.06. The two-point correlations along the span of the spanwise
velocity drop to zero in the range lcorr = 0.012−0.019 considering all studied cases. The
fact that lcorr < 0.03= Lz/2 ensures that the domain is not forcing an artificial spanwise
periodicity.

Together with the relations from table 1, it is found that the length scales in the x , y and
z directions are 0.211, 0.07 and 0.01 dimensionless units, respectively.

2.2. Details of the numerical method
The Navier–Stokes equations for an incompressible flow are solved using a classical
wall-resolved LES methodology with the code LESOCC (Breuer 1998, 2000, 2018;
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Breuer & Schmidt 2019). It employs a finite-volume method on a curvilinear and block-
structured grid. The solver is second-order accurate in space and time. The dynamic
variant (Germano et al. 1991; Lilly 1992) of the classical Smagorinsky subgrid-scale
model (Smagorinsky 1963) is applied, as Sayadi & Moin (2011) showed the former has
several advantages necessary for predicting transitional flows. FST is generated with the
digital filter method of Klein et al. (2003), improved for numerical efficiency by Kempf
et al. (2012). The method relies on discrete linear digital non-recursive filters and requires
only a few statistical properties for generating FST with proper auto-correlations in time
and two-point correlations in space. Realistic cross-correlations between the three velocity
components are achieved with the transformation by Lund et al. (1998).

The inflow turbulence generator inputs are the mean velocity, Reynolds stresses, and
integral time (T ) and length scales (Λx , Λy, Λz).Here, T can be obtained from Λx using
Taylor’s frozen turbulence hypothesis. The three normal components of the Reynolds
stresses are calculated by first determining the turbulent kinetic energy (TKE or k)
considering isotropic turbulence as k = (3/2)T I 2. Next, using the relations between
the standard deviations in table 1 and the equation for the turbulent kinetic energy
k = (1/2)(u′x u′x + u′yu′y + u′zu′z), the three normal components of the Reynolds stress
tensor for anisotropic FST are determined. To allow for a streamwise–spanwise correlation,
a non-zero Reynolds shear stress is included. This can be set as u′x u′z =−U 2

star , where
Ustar = 0.05 is the friction or shear velocity, which depends on the ground roughness
scale (Jonkman 2009). Here, Ustar = 0.05 is arbitrarily selected. The direction of the non-
zero Reynolds shear stress is chosen to be u′x u′z since the spanwise direction (z) is the
component in the direction from the blade root to the tip and the effect of shear within the
rotor plane, mainly due to the ground, is important to consider. Other turbulence generators
in the wind industry, such as TurbSim (Jonkman 2009), also consider this component for
computing Ustar .

The inflow generator only allows one length scale per direction. This drawback is
overcome by the superposition of inflow turbulence with different length scales, given
by the maximal length scale divided by a factor 2(n−1), where n is the index of the
superimposed signal. The smallest scales that can be resolved depend on the computational
grid. Here, n = 6 is retained. To respect Kolmogorov’s k− 5

3 law, the following steps are
employed in the scaling.

(i) The frequency of each subsequent velocity signal is scaled by a factor of 2(n−1).
(ii) Next, since k ∝ u′2i , the velocity fluctuations are scaled by a factor of 2

1
2 to represent

their contribution to the TKE. This leads to an intermediate scaling factor of
2(n−1)×(1/2).

(iii) Finally, k should decay according to Kolmogrov’s k−5/3 law and thus, the velocity
fluctuations must further be scaled by 2−5/3 leading to the final scaling factor to be
used, that is, 2(n−1)×(−5/3×1/2) = 2(−5/6)×(n−1).

The resulting fluctuating velocity signal ux,sum (similarly for uy,sum and uz,sum)
is obtained by weighing the original signals by this scaling factor for each n and
superimposing them. For obtaining the required T I and TKE spectrum, ux,sum is
normalised according to

ux,sum← ux,sum/
√

sumw , sumw =
∑

n

[
2
−5
6 (n−1)

]2
, (2.2)

where sumw is the total contribution of the weights to the TKE.
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Figure 1. Turbulent kinetic energy spectra of the (a) superimposed sinusoidal signals, (b) synthetic inflow
turbulence compared with atmospheric measurements from Jeromin et al. (2014). (c) Variation of the
turbulence intensity at y = 120δ∗ as a function of x . (d) Local turbulence intensity at y = 120δ∗ as a function
of x for T I = 0 %. (e) Spectrum of perturbation kinetic energy at y = 120δ∗ at the leading edge for T I = 0 %.
(f ) Ratio of the domain spanwise width to the spanwise integral length scale of the synthetic inflow turbulence
with x = 0 corresponding to the leading-edge of the aerofoil.

For simplicity, the scaling is illustrated with the help of six sinusoidal signals with
frequencies 2(n−1) f , where f = 60 and n = 1–6. Figure 1(a) portrays the turbulent kinetic
energy spectrum with the scaling as described in the procedure above, where the resulting
signal follows Kolmogorov’s k−5/3 law.

The inflow turbulence is injected inside the domain, one chord length upstream of
the aerofoil (x =−1), in a region with a streamwise length 2Λx . A special source-term
formulation, developed and validated in several studies (Schmidt & Breuer 2017; Breuer
2018; De Nayer et al. 2018; Breuer & Schmidt 2019), is employed for that. A comparison
of the turbulent kinetic energy spectrum of the generated FST with measurements from the
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free atmosphere is shown in figure 1(b). The measurements are from a two-dimensional
(2-D) atmospheric laser cantilever anemometer (ALCA, blue line) and cup anemometers
(red symbols) in the lower atmosphere (Jeromin et al. 2014). The power spectral density
is normalised by

∫∞
0 S( f ) · d f = (1/2)〈‖u′‖2〉. The synthetic turbulence agrees with the

measured data above a minimum frequency. Figure 1(c) indicates that the turbulence
intensity decays from the injection point to x =−0.4, downstream of which its decrease is
not significant, approximately reaching the nominal values of T I = 0.6 %, 1.2 %, 2.4 %,
4.5 % and 7 % affecting the aerofoil (x = 0−1). Figure 1(d) quantifies the background
noise levels for T I = 0 %, showing that the local turbulence level spans 0.1 %−0.25 %
from the aerofoil leading edge to 40 % of the chord. Figure 1(e) shows the perturbation
kinetic energy spectrum at y = 120δ∗ at the leading edge, which indicates that the
disturbances display mainly low frequency ( f < 2) and spanwise wavenumber (β), with a
predominance of 2-D perturbations.

2.3. Computational domain and grid resolution
The C-type grid included the angle of attack of 4.6◦ and extended 8 and 15 chord lengths
upstream and downstream of the aerofoil, respectively. The spanwise width Lz = 0.06 was
selected such that Lz/Λz > 8, as shown in figure 1(f ), respecting the minimum Lz/Λz = 6
proposed by O’Neill et al. (2004) and followed by Faúndez Alarcón et al. (2022). Although
respecting these guidelines from the literature, the limited spanwise width is expected to
have some influence on the flow structures. A wider domain enables a higher decorrelation
of the structures in the spanwise direction. Conversely, a relatively narrow domain with
spanwise periodic boundary conditions may artificially increase the spanwise correlation
of the turbulence structures, reducing their spatial heterogeneity. The narrow domain
may also constrain global modes arising in laminar separation bubbles (LSBs) to have
an artificially high spanwise wavenumber since these modes may typically present large
spanwise wavelengths, comparable to those of the length of the LSB (Fava et al. 2024b).
As will be discussed in § 3, the only case with separation is T I = 0 %, but the reverse flow
is too low to allow a global mode. Finally, the narrow domain limits the number of streaks
that can fit the domain side by side, which may preclude or underpredict instabilities
related to lateral interactions between streaks.

The time step is �t∗ ·U∞/c= 3× 10−6, yielding a maximum Courant number of 0.26.
The total run time was 25 U∞/c, with statistics collected for the last 8 U∞/c, sufficient
for the temporal convergence of the Reynolds stresses.

A wall-orthogonal grid was generated with y+1st < 1.0 (first cell centre) and expansion
factor of 1.05, �x+ � 30 (suction side), �x+ � 60 (pressure side) and �z+ � 25. This
mesh resolution respects the criteria for wall-resolved LES outlined by Piomelli &
Chasnov (1996). On the suction side, the mesh respects the more restrictive criteria
proposed by Asada & Kawai (2018) for transitional flows with separation and streaks.
The dimensionless grid parameters are similar to those in earlier studies at Rec = 1× 105

(Lobo et al. 2022; Fava et al. 2023c). A grid-independence study was conducted with a
finer grid with nearly three times the number of points of the standard grid and is available
from Lobo (2023).

3. Results

3.1. General flow analysis
Figure 2 exhibits the spanwise- and time-averaged streamwise velocity (〈U 〉z,t ) profiles at
x = 0, 0.1, . . . , 1. The edge of the mean LSB, defined as (x, y) ∈ ∫ y

0 〈U 〉z,t (x, ξ) dξ = 0,
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Figure 2. Wall-normal profiles of spanwise- and time-averaged streamwise velocity ( ) and mean
streamwise velocity distortion (MFD, ) for (a) T I = 0 %, (b) 0.6 %, (c) 1.2 %, (d) 2.4 %, (e) 4.5 % and
(f ) 7 %. The LSB edge (normalised by δ∗) is denoted by . The MFD is magnified four times for enhanced
visibility.

is shown for T I = 0 % in figure 2(a). The LSB lies in the x = 0.44−0.55 region, with
a maximum height hmax/δ

∗ = 0.57 at x = 0.53 and reverse flow of −7 % of U∞. The
APG acting downstream of x = 0.26 is the main driver of flow separation. The transition
location (xtr ) is defined as the streamwise locus of maximum 〈u′rms〉z . For T I = 0 %,
xtr = 0.55 indicates that flow reattachment occurs nearly immediately after transition.
Low levels of FST, such as T I = 0.6 % in figure 2(b), are enough to suppress separation
unlike found in previous studies at Rec = 105 (Lobo et al. 2022; Fava et al. 2023c). The
spanwise-averaged part of the mean flow distortion (MFD), i.e. 〈U 〉z,t − 〈U 〉z,tT I=0.6 %, is
also presented for T I > 0.6 %. Although the separation suppression is an effect of the
MFD (Marxen & Rist 2010), T I = 0.6 % is selected as the base case instead of T I = 0 %
to isolate the effect of non-modal growth on the mean profiles. The MFD becomes
positive near the wall as streamwise momentum is transferred to this region by the lift-
up mechanism. Moreover, the MFD increases in the streamwise direction as the streaks
grow, reaching a maximum at x = 0.4 or 0.45. This maximum increases monotonically
with T I . After transition, the MFD quickly becomes negative as turbulent mixing diffuses
momentum across the wall-normal direction.
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Figure 3. (a) Wall-normal location of the inflection point in the spanwise- and time-averaged streamwise
velocity profiles. (b) Displacement thickness (δ∗).

The capacity of the flow sustaining inflectional instabilities is assessed with the wall-
normal location of the inflection point in 〈U 〉z,t (yin) in figure 3(a), non-dimensionalised
by the displacement thickness (δ∗). The mean flow is inflectional for T I � 0.6 %,
indicating susceptibility to inflectional instabilities. The farther the inflection point from
the wall, the stronger is this type of mechanism. Thus, the flow is more unstable for
T I = 0 %, where the peak value yin/δ

∗ ≈ 1 agrees with Veerasamy et al. (2021) and
Jaroslawski et al. (2023), and occurs at the LSB maximum height location (xhmax = 0.53).
The relatively high values of yin/δ

∗ for T I = 0.6 % also indicate a potential role of
an inflectional instability. For T I � 1.2 %, the mean flow is not inflectional, hence not
susceptible to inflectional instability. The evolution of δ∗ is shown in figure 3(b). The local
maximum in δ∗ in the mid-chord region is due to the near-wall mass flux deficit, which
promotes an increase in δ∗, followed by transition to turbulence, which locally reduces δ∗
via turbulent mixing. The case with flow separation (T I = 0 %) has the highest mass flux
deficit and, therefore, the most pronounced increase in δ∗. Even though the T I = 0.6 %
case does not present flow separation, it displays a reduced mass flux deficit due to the
APG in the laminar flow region. This leads to a local increase in δ∗, similar to, but less
pronounced than, T I = 0 %. The increase in T I reduces the near-wall mass flux deficit,
since turbulent mixing brings high-momentum fluid to this region, and the local maximum
in δ∗ is progressively attenuated.

Figure 4 shows the streamwise velocity fluctuations (u′) on a wall-parallel plane
corresponding to a height of δ∗ at 20 % chord and for arbitrary time. For T I = 0 % in
figure 4(a), 2-D rolls emerge at x = 0.44, which as seen from figure 2(a) lie in the LSB.
The separation (S) and reattachment (R) lines are indicated. The rolls are characteristic of
a KH instability of the separated shear layer (Jaroslawski et al. 2023), as confirmed later
in the analyses.

For T I = 0.6 %, the isolines of Q-criterion (Q = 250) are superimposed on the contours
of u′ in figure 4(b), indicating spanwise rolls at x = 0.46−0.5. However, these are not KH
modes since neither instantaneous nor mean flow separation is detected (see figure 2b).
Moreover, they occur downstream of the mean inflectional flow region (x = 0.27−0.46),
depicted in figure 3(a). Figure 5(a) shows the wall-normal |u′| profile at x = 0.54, z =
0.02, where these rolls occur, for the same instant as figure 4(b). The profile corresponds
to the standard TS waves from Schlatter et al. (2010). However, at z = 0.06, where a streak
passes, the profile presents a local maximum around y/δ∗ = 2, in agreement with the
streaky TS waves computed by Schlatter et al. (2010). Cossu & Brandt (2004) attributed
these modes to the fundamental secondary instability of the TS waves in the streaky
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Figure 4. Streamwise velocity fluctuations (u′ =U − 〈U 〉z,t ) on a wall-parallel plane at a height of δ∗ for
(a) T I = 0 %, (b) 0.6 %, (c) 1.2 %, (d) 2.4 %, (e) 4.5 % and (f ) 7 %. Here S and R denote flow separation and
reattachment. The isolines of Q-criterion (Q = 250) are also shown for T I = 0.6 %.
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Figure 5. Wall-normal profiles of the absolute value of the instantaneous streamwise velocity fluctuations for
(a) T I = 0.6 % at x = 0.5 and (b) T I = 1.2 % and 2.4 % at x = 0.4, z = 0.02 considering the same time as
figure 4. In panel (a), the results are compared with the profiles of TS and streaky TS waves from Schlatter
et al. (2010) (circles). In panel (b), the results are compared with the profiles of inner modes from Fava et al.
(2023b) (circles) for base streaks with amplitudes of Au = 5 % U∞ and 10 % U∞.

flow. Therefore, the streaky TS waves correspond to the inner modes of Vaughan &
Zaki (2011).

The time–space evolution of the streak observed at x = 0.2, z = 0.01 for T I = 0.6 % in
figure 4(b) is investigated. The convection speed of the streak is 0.67 ue ≈ 1, where ue is
the boundary layer edge velocity. Figure 6 shows contour plots of the streamwise velocity
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Figure 6. Contours of streamwise velocity fluctuations on a cross-sectional plane at (a) x = 0.001, (b) x =
0.002, (c) x = 0.038, (d) x = 0.2 for T I = 0.6 % following the same streak as in figure 4(b). The vectors of
fluctuating velocities on this plane are also shown (not to scale). The magenta line indicates δ∗.

fluctuations (u′) on the cross-sectional planes from the leading edge to x = 0.2. The vectors
of fluctuating velocities on this plane, i.e. (w′, v′), are also shown (not to scale). The streak
is generated near the leading edge (x = 0.001, panel a), where there is an influx of high-
momentum fluid from the top of the boundary layer to the near-wall region, generating
high-speed fluctuations in this area for z = 0− 0.04. For z = 0.04−0.06, the low-speed
fluid near the wall is lifted, generating a low-speed distortion. This is typical of the lift-up
mechanism responsible for the amplification of the streaks. Furthermore, the diffusion of
free stream vortices into the boundary layer is characteristic of linear receptivity (Bertolotti
1997). Note that δ∗ is nearly constant along z and only undergoes small modifications
further downstream, implying these structures are not due to a temporary thinning (or
thickening) of the boundary layer. The streaks quickly grow at x = 0.002 (panel b) and
x = 0.038 (panel c), rising above δ∗ in the latter location. Finally, at x = 0.2 (panel d),
the streaks are fully formed with a spanwise scale within the range of those observed by
Brandt et al. (2004), for example, which is lstreaks = (4−7)δ∗. Moreover, the streamwise
vortices characteristic of the lift-up mechanism are present in the vector field.

The number and amplitude of streaks increase for T I = 1.2 %, as shown in figure 4(c).
However, the transition line is spanwise uniform without early turbulent spots. The wall-
normal |u′| profile in figure 5(b) agrees with the inner modes computed by Fava et al.
(2023b) with linear stability analysis for base streaks with an amplitude Au = 5 % U∞. The
T I = 2.4 % case in figure 4(d) presents isolated instabilities over individual streaks (e.g.
at x = 0.3, z = 0.04−0.06). The disturbance profile in figure 5(b) agrees with that from
Fava et al. (2023b) for base streaks with Au = 10 % U∞. The outer maximum increases
in magnitude compared with the near-wall maximum, suggesting an increased importance
of outer modes. However, the near-wall maximum is still 75 % of the outer maximum,
which shows that inner modes play a significant role in this case. This agrees with

1009 A52-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

23
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.235


Journal of Fluid Mechanics

Bose & Durbin (2016), who found inner modes essential for transition at T I ≈ 2 %. The
non-uniformity becomes much more pronounced for T I = 4.5 % and 7 % in figures 4(e)
and 4(f ), where individual streak breakdowns are the rule, indicating the dominance of the
outer modes and bypass transition. Streaky TS waves are not observed. This agrees with
Hosseinverdi & Fasel (2019), who found the transition dominated by streaks for T I > 3 %.
Indeed, the increase in the streak amplitude mitigates the inner modes while enhancing the
outer ones (Vaughan & Zaki 2011).

3.2. Receptivity
The boundary-layer receptivity to FST is analysed. The spectra of perturbation kinetic
energy (|k′|) at the leading edge, where receptivity mainly occurs, are shown in figure 7.
The left and centre columns portray the |k′|-spectra at y = 120δ∗ and y = δ∗, respectively.
The right column presents the ratio between |k′| at y = δ∗ and y = 120δ∗. For T I = 0 %,
the disturbance amplitude outside the boundary layer is very low (panel a). There is an
amplification of three-dimensional disturbances centred around f = 2.7 and β = 1057.3
(nz = Lzβ/(2π)= 10) as shown in panel (c), but the disturbance amplitude remains low
inside the boundary layer (panel b). This phenomenon may be due to non-modal growth
(Schmid 2007) since the mean flow in this region will later be shown to be modally
stable (in the local sense) but prone to transient growth. For T I = 0.6 % (panels d,e,f )
and T I = 1.2 % (panels g,h,i), the maximum amplitudes outside and inside the boundary
layer occur at low- f , low-β. However, high- f , high-β disturbances are mainly excited, as
seen in panel (f,i). However, the perturbation amplitudes inside the boundary layer in this
zone of the spectrum remain low. This changes for T I = 2.4 % (panels j,k,l), T I = 4.5 %
(panels m,n,o) and T I = 7 % (panels p,q,r) for which the regions of high gain overlap
with areas of high disturbance amplitude (O(10−5) in the centre column). The excitation
of high-frequency vortical disturbances inside the boundary layer is associated with bypass
transition (Zaki & Durbin 2005). These disturbances are most likely excited by nonlinear
interactions (Berlin et al. 1999; Schrader et al. 2009) since shear sheltering attenuates the
penetration of high-frequency disturbances into the boundary layer (Durbin 2017).

Figure 8(a,b,c) shows the streamwise evolution of |u′| for three of the highest-amplitude
( f, β) fluctuations in the flow. These disturbances have low frequency and they are induced
in the boundary layer by the FST, especially near the leading edge, where they grow more
rapidly. The lower amplitude of high-frequency fluctuations is possibly related to shear
sheltering. The scaling of |u′| with T I is assessed in figure 8(d,e,f ), where there is good
agreement between the scaled curves for T I � 2.4 % for f = 2.7, β = 104.7 and f = 2.7,
β = 209.4 (centre and right columns). The scaling is not as good for f = 1.3, β = 104.7,
but the curves are clustered for T I � 1.2 % and T I � 4.5 %, separately. These results
suggest that linear receptivity occurs for T I � 1.2 % and possibly also for T I = 2.4 %.
Brandt et al. (2004) found that linear receptivity occurred at T I < 3 % in Blasius flow,
which supports the current results. Figure 8(g,h,i) shows that the curves do not scale well
with T I 2, suggesting that nonlinear receptivity is not dominant in the generation of the
leading boundary-layer perturbations. However, lower amplitude disturbances with high f
and β, likely nonlinearly generated, become significant for T I � 2.4 %, as demonstrated in
figure 7. Figure 8(j,k,l) shows the evolution of |u′| with the streamwise Reynolds number
Re1/2

x (∝ Reδ∗). In most cases, there is a region with a linear trend in the curves, indicating
proportionality between |u′| and Re1/2

x , which is characteristic of the growth of streaks
(Luchini 2000). This linear trend becomes less pronounced for increasing T I , suggesting
that the influence of transient growth lessens.
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Figure 7. Spectra of perturbation kinetic energy at y = 120δ∗ (|k′120δ∗ |, left column), y = δ∗ (|k′δ∗ |, centre
column) and |k′δ∗ |/|k′120δ∗ | (right column) at the leading edge (x = 0) for (a,b,c) T I = 0 %, (d,e,f ) 0.6 %,
(g,h,i) 1.2 %, (j,k,l) 2.4 %, (m,n,o) 4.5 % and (p,q,r) 7 %. The white isoline in the centre column indicates
|k′δ∗ |/|k′120δ∗ | = 100 and the arrow indicates the region with |k′δ∗ |/|k′120δ∗ |> 100.

3.3. Disturbance evolution and flow stability

3.3.1. Transition to turbulence
Estimations of the mean transition location (xtr ) based on the maximum boundary layer
shape factor (H ) are not accurate here as H does not reach a maximum upon transition,
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Figure 8. Streamwise evolution of the wall-normal maximum inside the boundary layer of the (a,b,c)
streamwise velocity fluctuations (|u′|), (d,e,f ) |u′|/T I , (g,h,i) |u′|/T I 2. (j,k,l) Evolution of |u′| as a function
of Re1/2

x .

T I 0 % 0.6 % 1.2 % 2.4 % 4.5 % 7 %

maxx 〈u′rms〉z/U∞ 0.213 0.244 0.260 0.247 0.223 0.222
maxx 〈u′rms〉z/ue 0.176 0.185 0.186 0.172 0.156 0.150
xtr1 = arg maxx 〈u′rms〉z 0.554 0.505 0.459 0.421 0.417 0.302
maxx maxz u′rms/U∞ 0.264 0.286 0.301 0.286 0.261 0.250
maxx maxz u′rms/ue 0.198 0.206 0.213 0.197 0.180 0.172
xtr2 = arg maxx maxz u′rms 0.558 0.500 0.463 0.404 0.374 0.366
xtr3 = (1/2)(arg minx c f + arg maxx c f ) 0.565 0.498 0.456 0.417 0.403 0.339

Table 2. Mean transition locations.
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Figure 9. (a) Mean friction coefficient (c f ). (b) Critical N factor (Ntr ).

unlike in other works (Fava et al. 2023c), especially for high T I . Three criteria are
considered for estimating xtr . The first two consider it the x locus of maximum 〈u′rms〉z
(xtr1) and maxz u′rms (xtr2). The results summarised in table 2 indicate small differences
between the two methods for T I � 1.2 %. Due to the increased occurrence of spanwise-
localised instabilities, xtr1 > xtr2 for T I = 2.4 %−4.5 % as the transition line becomes
very spanwise inhomogeneous (see figure 4e). Nevertheless, xtr1 < xtr2 for T I = 7 % since
the elevated number of streaks promotes the spanwise homogeneity of the transition line,
reducing the probability of a single streak reaching a high amplitude before the onset of
the breakdown (see figure 4f ). The disturbance amplitude at xtr is also listed in table 2,
normalised by U∞ and the local edge velocity (ue). The maximum amplitude of 0.260U∞
(mean) or 0.301U∞ (maximum) occurs for T I = 1.2 %, the highest T I for which the mean
flow is unstable to TS waves. Interestingly, 0.260U∞ corresponds to the threshold for the
occurrence of an outer secondary instability of the streaks in Blasius flow (Andersson
et al. 2001). Hack & Zaki (2014) reported u′rms = 0.16ue before the breakdown of the
streaks, close to the values obtained at xtr1 for T I � 2.4 %. Finally, the last criterion for
estimating xtr relies on computing the friction coefficient (c f ), shown in figure 9(a), and
assuming xtr3 = (1/2)(arg minx c f + arg maxx c f ). The rationale is that c f grows rapidly
upon transition. The c f in the leading edge region was excluded since its high values are
unrelated to transition. The values obtained with this method are close to xtr1 , except for
T I = 7 %. In the remainder of the paper, xtr = xtr1 .

Figure 9(b) portrays the critical N factor (Ntr = N (xtr )) as a function of T I , defined as
Ntr = ln (maxy〈k′rms〉z/ maxy〈k′rms0

〉z), where k′rms0
= k′rms(x0), x0 = 4× 10−3. Similar

to Mack (1977), this definition of Ntr encompasses perturbations unrelated to transition,
unlike the N factor obtained from linear stability theory. However, these two definitions
should be close for transition dominated by TS waves, as the disturbances related to
the latter tend to stand out above the background noise for low T I . The figure shows
that the N factor drops rapidly with T I for T I � 2.4 %, with a trend well predicted by
Mack’s correlation (1.3) (Mack 1977). The exception is T I = 0 %, whose Ntr is lower
than predicted due to flow separation. Mack’s correlation relies on experimental data from
zero pressure gradient flat plates under grid turbulence. The close agreement is surprising
since the pressure gradient, curvature and FST spectra differ from the experiments. Linear
regression of a correlation of the form Ntr = a − b ln(T I/100) to the T I � 2.4 % data
yields a = 2.63 and b= 1.8 with errors σa = 0.51 and σb = 0.11. Appendix A presents
details of these calculations. This allows a better fit to the LES data as the expression
presents a less steep slope than Mack’s correlation. The low and slightly dropping N
factor obtained from the LES for T I > 2.4 % indicates bypass transition. The expression
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Figure 10. Local spatial stability analysis results for β = 0. (a) Frequency envelope of growth rates (solid
lines) and N factor (dashed lines). (b) Neutral curve, where −o− indicates the most unstable frequency.

that best fits the 2.4 % � T I � 7 % region has coefficients a = 1.81 and b= 0.9 with errors
σa = 0.50 and σb = 0.16. Unlike the expression obtained for T I � 2.4 %, which, together
with linear stability theory and the eN method, can be used for estimating the transition
location, the correlation for 2.4 % � T I � 7 % is merely an indication of the gain of the
perturbations in bypass transition. Interestingly, the coefficient b for 2.4 % � T I � 7 % is
half that for T I � 2.4 %. Note that each correlation was obtained with three data points.
A comparison with more data is needed to assess their validity further.

3.3.2. Primary instability and disturbance growth
Local linear stability theory (LST) is employed to help interpret the nonlinear
simulations. The formulation of Fava et al. (2023c) is employed where the ansatz φ′ =
φ̂(y) exp (−iαx + iωt + iβz) is inserted in the linearised Navier–Stokes equations, with
a parallel-flow hypothesis, and solved for φ̂ and α = αr + iαi . Here, φ′ represents pressure
and velocity disturbances for given ω= 2π f and β; αr is the streamwise wavenumber; and
αi is the growth rate. The base flow is the spanwise- and time-averaged field for each T I .
Analyses are only performed for β = 0 (nz = 0) since these are the most unstable modes
in two-dimensional flows (Squire 1933), as those for low T I .

Unstable modes with positive group velocity exist. Figure 10(a) presents their frequency
envelope of growth rates (solid lines) and N factors (dashed lines). The maximum
amplification occurs on average 6 % chord upstream of the transition locations and
decreases with T I due to the spanwise-averaged part of the mean-flow distortion, a
phenomenon observed in experiments (Boiko et al. 1994; Fransson et al. 2005) and
simulations (Fasel 2002; Fava et al. 2023b). This effect stabilises the mean flow with
respect to two-dimensional TS waves for T I � 2.4 %, suggesting that the instability of
streaks becomes the dominant transition trigger in this range. However, the streaks may
have an impact on the growth of the TS waves for lower T I , distorting the wavefronts
and triggering their secondary instability (Kendall 1990; Liu et al. 2008; Vaughan & Zaki
2011; Hosseinverdi & Fasel 2019). This analysis requires the consideration of the spanwise
variation of the flow due to the streaks, which is performed in § 3.3.3. The neutral curves in
figure 10(b) indicate that the frequency of the most unstable TS waves is little affected by
T I upstream of flow separation. The latter occurs for T I = 0 %, leading to the inception
of KH modes and a rise in the frequency of the most unstable modes. This differs from
the Rec = 105 case, where the KH modes have a lower frequency than the TS waves (Fava
et al. 2023c). Another reason for the agreement between the neutral curves for x < 0.4 is
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Figure 11. Spectra of perturbation kinetic energy at y = δ∗ from LES for (a) T I = 0 % at x = 0.53, (b) T I =
0.6 % at x = 0.46, (c) T I = 1.2 % at x = 0.4, (d) T I = 2.4 % at x = 0.38, (e) T I = 4.5 % at x = 0.35 and
(f ) T I = 7 % at x = 0.3.

the low MFD in this region (see figure 2). The range of unstable TS waves narrows for
T I = 1.2 % as the mean flow loses its inflectional character.

Figure 11 shows the perturbation kinetic energy spectra close to transition. For T I =
0 %, there are high-amplitude disturbances centred around f = 22.9 and β = 0, as shown
in figure 11(a). The maximum N factor obtained from LST occurs exactly at this
frequency, which is a good indication that they represent the same modes, namely
inflectional instabilities of the separated shear layer (KH modes). Triadic interactions
(Craik 1971) between the fundamental ( f = 22.9, β = 0), oblique ( f = 22.9, β = 209.4)
and streaky ( f = 0, β = 209.4) modes may be a relevant mechanism due to the observed
high amplitude of the fundamental and streaky disturbances. This can correspond to
the oblique mechanism described by Marxen et al. (2003) and observed by Fava et al.
(2024a), which leads to a rapid transition to turbulence, as seen in figure 4(a). The
spectrum also shows the excitation of frequency harmonics of the fundamental instability,
particularly at f = 2 f f = 45.8. Considering T I = 0.6 % in figure 11(b), disturbances
centred around f = 22.9 present high amplitude, similar to T I = 0 %. However, unlike
the latter, a larger magnitude occurs for β = 209.4 instead of β = 0. This is expected
as separation is suppressed, reducing the growth rates of 2-D inflectional instabilities,
while streaks develop a high amplitude. Disturbances with f = 0, β = 209.4 also display
high amplitude. These facts parallel the T I = 0 % case and may indicate that vortical
disturbances penetrating the boundary layer further excite the oblique mechanism. This
mechanism is also possibly present for T I = 1.2 %. Although the mean flow is not
inflectional, it is unstable to TS waves, as demonstrated with LST, and a region with a
large amplitude is present in the spectrum (figure 11c) near the predicted frequency of
these waves and at the same β of the highest amplitude stationary disturbances, related
to streaks. Further rises in T I (figure 11d,e,f ) stabilise two-dimensional disturbances
associated with TS waves, and consequently oblique disturbances generated by nonlinear
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interactions between TS waves and streaks. High-amplitude disturbances are concentrated
at low frequencies, corresponding to streaks.

The most energetic structures are extracted with spectral proper orthogonal
decomposition (SPOD) of the velocity perturbations (Lumley 1970; Towne et al. 2018;
Schmidt & Colonius 2020). The streaming SPOD algorithm of Schmidt & Towne (2019)
is employed, reducing memory requirements as it is unnecessary to store all snapshots
simultaneously. The data involve 6600 snapshots with a time step of 9× 10−4 (Nyquist
frequency f = 555.6). The snapshots are split into five blocks (five computed SPOD
modes) with 50 % overlap and a Hamming window. The weight matrix is the distance
between two consecutive wall-normal grid points, and the employed norm measures k′
integrated over the xy plane (Schmidt & Towne 2019). The analysed domain stretches
from the leading edge (x = 0) to xtr , excluding the turbulent flow region from the
SPOD.

The occurrence of modal instabilities (e.g. TS and KH modes) is assessed in figure 12,
which shows the isocontours of the real part of the first SPOD mode of streamwise velocity
perturbation for f = 22.8, β = 0 in the left column. These results are compared with those
obtained with the parabolised stability equations (PSEs) of Fava et al. (2023a,b), shown
in the right column. This PSE formulation allows for a streaky base flow and interactions
between the streaks and modal instabilities. Such capacity is only used for T I = 2.4 %,
where a perturbation expansion with Ns = 4 spanwise harmonics is considered, and
the base flow is a superposition of the spanwise- and time-averaged flow and steady
streaks with β = 104.7, Au = 10 % U∞. Figure 12(h) shows the streak profile. In the
other cases, the spanwise- and time-averaged flow is assumed to be the base flow and
Ns = 0, retrieving the standard PSE of Herbert (1997). Figure 12(a) shows the results
for T I = 0 %, indicating the formation of TS waves upstream of the LSB (green line).
Near the maximum LSB height, the structure displays a high amplitude lobe inside the
LSB, a second lobe at δ∗ (black line) and a third lobe above the latter. This indicates a
KH mode well predicted by the PSE in figure 12(b). The SPOD mode for T I = 0.6 % in
figure 12(c) indicates an inflectional TS mode with a local maximum at the inflection point
location (y = δ∗) and another further away towards the free stream. The PSE result agrees
well with this mode, as shown in figure 12(d). In the T I = 1.2 % case in figure 12(e),
there is only a region with high amplitude (near-wall lobe) close to the end of the domain
(transition location). The PSE predicts a decaying TS wave, as depicted in figure 12(f ),
which is unsurprising as the mean flow is not inflectional. The T I = 2.4 % case is stable
to TS waves, considering only the mean flow. Nevertheless, a wavepacket resembling an
inflectional TS wave appears in the SPOD mode in figure 12(g). The consideration of a
streaky base flow in the PSE, as discussed above, enables an instability with a low near-
wall maximum and peak amplitude at the inflection point generated by the base streak,
as shown in figure 12(h). This mode seems to display mixed contributions from inner and
outer modes, with a predominant contribution from the former for the T I = 1.2 % case
and the latter for T I = 2.4 %.

Figure 13 shows the isocontours of the gain G for steady disturbances from LES,
defined as G = E/E0, where E = ∫ ymax

0 k′(x, y, β, f ) dy, E0 = E(x0) and ymax is the
wall-normal location of the boundary layer edge. Here, G displays low sensitivity to x0 for
the values assessed and x0 = 0.005 is selected. The norm E is similar to that of optimal
perturbation analysis (OPA) (Andersson et al. 1999; Luchini 2000), which is applied
assuming that the mean flow of the T I = 0 % case is the base flow where the streaks
grow. The isolines of G from OPA are presented in figure 13(a) with the isocontours
of G from LES for T I = 0 %. This panel shows a region of high G near the leading
edge with an initial β ≈ 1500, which decays with x . This region can be associated with
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Figure 12. Real part of the first SPOD mode of streamwise velocity perturbation (normalised) for f = 22.8,
β = 0 for (a) T I = 0 %, (c) T I = 0.6 %, (e) T I = 1.2 %, and (g) T I = 2.4 %. PSE results are shown in panels
(b), (d), (f ) and (h). For T I = 2.4 %, the PSE base flow contains a u′-fluctuation with f = 0, β = 104.7, Au =
10 %U∞ with profile Us shown in panel (h). The black and green lines indicate δ∗ and the LSB edge.

the growth of streaks due to the lift-up effect. The maximum G ≈ 10 agrees with that
predicted by OPA for β = 1256.6 at x = 0.07. OPA reaches G = O(1012) for β = 2722.7
further downstream, as also found by Cherubini et al. (2010), due to a high degree of
non-normality of the linearised Navier–Stokes operator. Nevertheless, these gains are not
attained in the LES. Note that the fact that there is non-modal growth in the T I = 0 % case
does not mean that streaks participate in the transition process since the background noise
is very low. The T I = 0.6 %, 1.2 % and 2.4 % cases in figure 13(b,c,d) also indicate streak
growth. The maximum G is considerably reduced for T I = 2.4 % and nearly vanishes
for T I = 4.5 % and 7 % in figure 13(e,f ). This suggests that the streaks barely grow due
to the lift-up effect for T I > 2.4 % since the FST already induces streaks with a large
amplitude near the leading edge. This highlights why the perturbation amplitude in the
boundary layer scales linearly with T I for T I � 2.4 % but sub-linearly otherwise. Lastly,
the T I � 1.2 % cases present a high gain of β = 0 disturbances near the mid-chord region
due to two-dimensional modal instabilities, absent for higher T I .
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Figure 13. Perturbation kinetic energy gain (maximum in the wall-normal direction) from LES for f = 0 and
(a) T I = 0 %, (b) T I = 0.6 %, (c) T I = 1.2 %, (d) T I = 2.4 %, (e) T I = 4.5 % and (f ) T I = 7 %. The ×
markers indicate the (x, β) of the maximum gain of the streaks. The isolines of gain obtained from OPA are
shown in black for (1, 10, 100, . . .).

Figure 14 compares the evolution of |u′| from LES and OPA. The latter is a linear
method, and its results are scaled to match the amplitude of the T I = 0.6 % case at
a given x . There is good agreement between the two methods, considering the initial
streak growth. This agreement improves with increasing f and decreasing β, as shown in
figure 14(g), where there is a close match until x = 0.2. In general, OPA also predicts well
the streak growth for T I � 2.4 % (the scaled OPA curves for T I = 1.2 % and 2.4 % are not
shown for a cleaner figure). The agreement between OPA and LES is worse for T I = 4.5 %
and 7 %, since the latter displays slower growth, suggesting that the lift-up may not be the
leading mechanism of streak generation in these cases. Note that the amplitude obtained
from OPA keeps growing downstream, whereas that from LES saturates. Figure 15 also
indicates close agreement between the |u′| profiles from LES and OPA at x = 0.2. The
agreement reduces towards the free stream as the LES profiles present a higher amplitude
than those from OPA due to the influence of FST.

3.3.3. Secondary instability and breakdown of streaks
Typical events of instability and nucleation of turbulent spots are studied. Figure 16
shows the Q-criterion isosurfaces at time T = 0 and T = 0.1, preceding and during the
turbulent breakdown. The earliest breakdown for T I = 1.2 % occurs on a streak near
z = 0 at T = 0 with a wavepacket present in the region denoted by W in figure 16(a).
The streaks travel at a speed us ≈ 0.67ue, close to the value of Vaughan & Zaki (2011).
Since us ≈ 1, the streak is �x ≈ 0.1 more downstream at T = 0.1 in figure 16(b), where
the turbulent spot develops. The rear location of the wavepacket is fixed at x = 0.38,
while the streak travels through this point. This suggests an influence of TS waves on
the streak breakdown since they reach maximum growth at this location, as depicted in
figure 10(a). As seen in other regions along the span, TS waves without streaks lead to a
downstream breakdown. The wavepacket disappears after the rear of the streak crosses
x = 0.38. For T I = 2.4 %, figure 16(c) shows a pair of streaks at z = 0.055 at T = 0,
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Figure 14. Wall-normal maximum of the absolute value of streamwise velocity perturbation computed with
LES (solid lines) and OPA (circles).

with the streamwise location of their trailing edge marked with a grey line. Figure 16(d)
indicates that they evolve into a wavepacket downstream of x = 0.27 at T = 0.1, suggesting
a secondary instability of this dual configuration. The turbulence spot is significantly more
upstream than the breakdown in other regions along the span. Regarding T I = 4.5 %,
streaks centred at z = 0.04 at T = 0 undergo turbulent breakdown of conical shape at
T = 0.1, as shown in figures 16(e) and 16(f ). This case presents many narrow streaks,
seemingly more susceptible to breakdown, and an elevated spanwise non-uniformity in the
transition line.

Figure 17 displays the structures of the modes analysed in figure 16. For T I = 1.2 % in
figure 17(a), a low-speed streak (grey) lies on the flank of a high-speed streak (black).
The former eventually goes above the latter, triggering an instability in the low-speed
streak, characterised by spanwise waves. This may indicate TS waves triggered by the
wall-normal shear created by the streaks since the mean flow is only weakly unstable.
The configuration evolves to a delta shape at the junction of high- and low-speed streaks,
characteristic of inner modes (Nagarajan et al. 2007; Vaughan & Zaki 2011), which are
predominantly of the varicose type (Dotto et al. 2022). Even though the overview of the
mode structure indicates an inner mode, analyses of the perturbation profiles at x = 0.38,
z = 0.03 suggest that the wavepacket responsible for the early breakdown in figure 16(a)
is an outer mode. This indicates that the inner mode is present more upstream, while the
outer mode dominates at the transition point. Regarding T I = 2.4 %, figure 17(b) shows
that a low-speed streak is beneath a high-speed streak. As the former rises to the top of the
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Figure 15. Wall-normal profiles of the absolute value of streamwise velocity perturbation (normalised by the
maximum) computed with LES (solid lines) and OPA (circles) at x = 0.2.

boundary layer, an outer varicose instability occurs over the low-speed streak, as shown
by Brandt et al. (2004). Structures similar to lambda vortices appear and give rise to a
turbulent spot (Perry et al. 1981; Dotto et al. 2022). Figure 17(c) presents the results for
T I = 4.5 %, where a low-speed streak has high-speed streaks on both flanks and beneath
it. The low-speed streak develops oscillations in the spanwise and wall-normal directions,
corresponding to an outer sinuous instability according to Brandt et al. (2004). The latter
typically occurs due to the spanwise shear and inflection point. The low-speed streaks
break down first in all cases.

The secondary stability analysis over cross-sectional planes of the instantaneous flows
preceding the breakdowns discussed above follows Siconolfi et al. (2015). A 2-D, local
eigenvalue problem is justified as the streamwise flow variations are much slower than
those in the wall-normal and spanwise directions. The spatial approach was employed,
where downstream-propagating waves with a frequency f ∈R are amplified with spatial
growth rate −αi . Appendix B presents further details. Figure 18(a) shows the time
evolution of the growth rates at x = 0.4 for T I = 1.2 %. This location is near the
wavepacket trailing edge, fixed in space while the streak travels. The growth rates
increase with time until T = 0, followed by a drop due to the ensuing transition.
Figure 18(b) presents the spectrum of perturbation kinetic energy from the LES at x = 0.4
for T I = 1.2 % and indicates energetic disturbances close to the frequency predicted
by the secondary stability analysis (LST) at peak amplification ( f = 120) at T = 0.

1009 A52-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

23
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.235


T.C.L. Fava, B.A. Lobo, A.P. Schaffarczyk, M. Breuer, D.S. Henningson and A. Hanifi

–0.4 0

u
1.4

0
T = 0 T = 0.1

x
S

S

S

W W

W

W

z0.03

0.06

0

0.03

0.06

0

0.03

0.06

0

0.03

0.06

0

0.03

0.06

0

0.03

0.06
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

(a) (b)

(c) (d )

(e) ( f )

Figure 16. Analysis of a typical turbulent breakdown of streaks for (a,b) T I = 1.2 %, (c,d) T I = 2.4 % and
(e,f ) T I = 4.5 % visualised with the isosurfaces of Q-criterion (Q = 100) coloured by the instantaneous
streamwise velocity. T is the relative time between snapshots and T = 0 means different initial times for each
T I . The wavepackets and streaks are shown with the symbols W and S. The grey lines in panel (c,d,e,f ) indicate
the streamwise location of the rear end of the analysed streak.
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Figure 17. Isosurfaces of streamwise velocity fluctuations showing the instabilities in figure 16. The
positive and negative fluctuations are shown in black and grey: (a) T I = 1.2 % at T = 0 with u′ = ±0.03;
(b) T I = 2.4 % at T = 0.1 with u′ = (−0.1, 0.12); (c) T I = 4.5 % at T = 0.1 with u′ = (−0.15, 0.09).
The z-axis direction in panel (b) is reversed compared with that in panels (a) and (c).

Figure 18(c) exhibits the growth rates on a plane travelling with the streak for T I = 2.4 %.
The amplification increases as the streak moves downstream, with an exceptionally high
value at x = 0.3, T = 0.1, where the most unstable mode frequency drops, suggesting a
mechanism change compared with more upstream locations. The spectrum in figure 18(d)
displays several regions with highly energetic disturbances near the frequency of peak
amplification ( f = 120) at x = 0.3, T = 0.1. Figure 18(e) portrays the growth rates for
T I = 4.5 %, revealing a rise in amplification as the streaks move downstream. At x = 0.3,
T = 0.1, the frequency of the most unstable mode is f = 115, which also lies near regions
with high energy in the spectrum in figure 18(f ). The fact that the frequencies of the most
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Figure 18. Time evolution of the growth rates obtained with cross-sectional secondary linear stability theory
(LST) (a) at x = 0.4 for T I = 1.2 %, and following a streak for (c) T I = 2.4 % and (e) T I = 4.5 %. Spectra of
perturbation kinetic energy at y = δ∗ from LES (b) at x = 0.4 for T I = 1.2 %, and at x = 0.3 for (d) T I = 2.4 %
and (f ) T I = 4.5 %.

unstable modes in the stability analysis lie close to regions with high energy in the LES
spectrum suggests that the investigated breakdowns may be general events.

Figure 19 shows the comparison between the profiles of the streamwise velocity
perturbations extracted from the LES and those predicted by secondary stability analysis,
considering the most unstable mode at each location and time. Panel (a) presents the
results for T I = 1.2 %. At T =−0.25, the profile at x = 0.13 indicates a streak, whereas
that at x = 0.38 corresponds to a TS wave, well predicted by LST. This streak arrives
at x = 0.38 at T = 0, where the profile displays the characteristics of an outer mode in
agreement with that obtained with secondary stability analysis for f = 120. The phase
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speed is cp = 0.73 ue, close to the cp = 0.75 ue value obtained by Vaughan & Zaki (2011)
for outer modes. Moreover, the peak amplitude occurs at the location of the inflection
point in the wall-normal profile of streamwise velocity, indicating that this instability is
of the varicose type. Less amplified modes in the secondary stability analysis present
cp = 0.54 ue, which agrees with the phase speed of inner modes by Vaughan & Zaki
(2011). The streak has a lower initial amplitude at x = 0.13, T = 0. In this case, the mode
at x = 0.38, T = 0.25 presents an increased near-wall maximum due to the inner mode
contribution and a reduced maximum due to the outer mode contribution.

Figure 19(b) presents the results for T I = 2.4 %. At x = 0.2, T = 0, and x = 0.25,
T = 0.05, the perturbation profiles correspond to outer modes. The secondary stability
results predict these modes well and indicate a phase speed cp = 0.69 ue, in the range
the literature provides for outer modes. The maximum amplitude occurs near the location
of the maximum wall-normal shear and inflection point (y/δ∗ = 1.6), which lie on the
low-speed streak. Although the spanwise inflection point is near the mode maximum
amplitude location, the spanwise shear is low compared with the wall-normal shear. These
facts suggest a varicose type of instability. However, the mode characteristics change
considerably at x = 0.3, T = 0.1, where the peak amplitude moves closer to the wall
(y/δ∗ = 0.56), and the frequency of the most unstable mode according to LST drops
relative to the outer modes upstream. The profile and phase speed cp = 0.54 ue are typical
of an inner mode (Vaughan & Zaki 2011). The inner mode at x = 0.3, T = 0.1 is driven
by the spanwise shear and presents a maximum amplitude at the location of the inflection
point in the spanwise profile of streamwise velocity. These factors suggest a change of the
most unstable mode from an outer varicose instability to an inner sinuous mode as the
streak travels downstream due to the subsiding APG.

Figure 19(c) displays the results for T I = 4.5 %. The profile at x = 0.2, T = 0 indicates
an outer mode well predicted by secondary stability analysis. The mode type remains
the same at x = 0.25, T = 0.05 and x = 0.3, T = 0.1, with phase speed cp = 0.59 ue.
Furthermore, the maximum disturbance amplitude lies near the maximum spanwise shear
and inflection point, suggesting a sinuous mode. The predominance of outer modes for
T I = 4.5 % agrees with the fact that the MFD stabilises the inner mode for increasing T I .
This also indicates the occurrence of bypass transition.

3.4. Remarks on a low-frequency cutoff of the free stream turbulence
The results in § 3.2 indicate that the FST with scales employed here (Λ= O(10−2−10−1))
effectively generate boundary-layer perturbations. However, due to these scales being
smaller than those of atmospheric turbulence on real blades (Λ= O(101) (IEC 2006;
Bertagnolio et al. 2015), a cutoff scale, above which FST does not significantly influence
transition, cannot be numerically established.

Low wavenumbers and, by Taylor’s frozen turbulence hypothesis, low frequencies in
the FST are associated with large eddies or gusts, which modify the flow by a change in
AoA and Rec (Reeh 2014; Reeh & Tropea 2015). Generally, one is typically interested
in studying statistically stationary transition processes for a given flow. Unsteady effects
are not substantial for π f ∗c/U∞ < 0.05 (Leishman 2016), yielding f < 0.016= fc1 here,
where fc1 can be considered the first cutoff frequency. The maximum atmospheric
turbulence energy occurs at f ∗ = 0.01 Hz or f = f ∗c/U∞ = O(10−3) since typically,
c/U∞ = O(10−1) s in wind turbines. Thus, the blade sees a steady flow regarding the
most energetic eddies in the atmospheric turbulence and fc1 is a first frequency cutoff.
Indeed, there is no significant time variation in the pressure distribution due to FST for
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T I � 2.4 %, as shown in Appendix C, which is the range of T I where TS waves may be
relevant.

A higher frequency cutoff fc2 for natural transition is estimated by noting that TS waves
develop for 2π f ∗ν106/U 2∞ � FL , where FL = FL(Rec, ∂p/∂x) is the lowest unstable
reduced frequency (Schmid & Henningson 2001). Moreover, FL = FL(T I ), where FL is a
monotonically increasing function of T I (see figure 10b). Therefore, results for T I = 0 %
provide a lower bound for FL , as sought for estimating fc2 . The inequality is rewritten as

f � fc2 = (2π)−110−6 FL Rec. (3.1)

The latter can be written in terms of the streamwise wavelength (λx ) as

λx � 2π106cs F−1
L Re−1

c , (3.2)

where cs is the phase speed of TS waves. Due to scale reduction, the maximum wavelength
of fluctuations exciting TS waves should be retro-estimated at the leading edge (λL E ).
Goldstein (1983) proposed a model for scale reduction for a flat plate in which

λx ∝
[
2π f ∗x∗/U∞

]−1/2
. (3.3)

The right-hand side of (3.3) evaluated at x∗ = c gives 103 F−1/2
L Re−1/2

c , which is
equivalent to the maximum factor of reduction of λx along the aerofoil. Dividing both
sides of (3.2) by this factor yields

λL E � 2π103cs F−1/2
L Re−1/2

c = λc2, (3.4)

or in terms of the cutoff wavenumber,

kc2 = 2π/λc2 = 10−3c−1
s F1/2

L Re1/2
c . (3.5)

There are two unknowns in (3.5). The first is cs , which may be taken as a lower bound for
the phase speed (e.g. cs = c∗s /U∞ = 0.36). The second is FL , a more complicated quantity
to estimate as previous knowledge of the neutral curve is necessary. The naive assumption
is to consider a fit for FL extracted from the neutral curve (Schmid & Henningson 2001)
for Blasius flow (Blasius 1913), which disregards flow acceleration and curvature. The
expression is given by

FL = 8.5775× 107 Re−1.1243
x , (3.6)

valid for Rex = 9× 104–9× 106. For Rec = 1× 106, FL = 15.4 and λc2 = 0.58. The more
refined method is to obtain the neutral curves of the wind turbine flow with linear stability
analysis, as shown in figure 10(b). Due to an LSB for T I = 0 %, which is not present
for higher T I , FL was extracted for T I = 0.6 %, yielding FL = 17.7 and λc2 = 0.54.
These results are close to those obtained by assuming the neutral curve for Blasius
flow. Interestingly, the largest integral length scale of the FST Λx = 0.211 is lower than
λc2 = 0.54, which may explain the efficiency of the FST in exciting the boundary layer.
Note that the developed cutoff wavenumber estimate is only valid for TS waves and is
based on the two-dimensional Goldstein model. Validation against experimental transition
data is necessary to assess its validity in a complex flow under FST.

4. Conclusions
Laminar–turbulent transition on the suction surface of a section of the LM45.3p blade
(20 % thickness), with chord Reynolds number of 106 and angle of attack of 4.6◦,
was studied with wall-resolved large eddy simulation (LES). The blade was subject to
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anisotropic free stream turbulence (FST) with turbulence intensities T I = 0%, 0.6%,
1.2%, 2.4%, 4.5% and 7 %. The upper bound is selected based on the experimental
observation by Özçakmak et al. (2020). The integral length scales correspond to scaled-
down values from atmospheric measurements.

For T I = 0 %, a laminar separation bubble (LSB) forms in the mid-chord region, and
transition ensues via the breakdown of Kelvin–Helmholtz (KH) vortices. The lift-up
mechanism is very robust at Rec = 106 so that even low levels of FST (e.g. T I = 0.6 %)
suppress the LSB due to the strong streak growth, unlike at Rec = 105 (Fava et al.
2023c). Two-dimensional Tollmien–Schlichting (TS) waves play a clear role in transition
for T I = 0.6 %. Considering T I = 1.2 % and 2.4 %, the flows become weakly unstable
or stable to TS waves in the mean sense. The distortions generated by the streaks are
essential for triggering instabilities leading to transition in these cases. The analysis of
breakdown events indicates transition via inner and outer varicose modes for T I = 1.2 %
and 2.4 %, driven by the wall-normal shear and inflectional velocity profile. However, the
latter case also displays inner sinuous modes related to the spanwise shear and inflectional
velocity profile preceding transition. In summary, the following conclusions can be drawn
regarding 0 < T I � 2.4 %:

(i) a linear receptivity occurs, and optimal perturbation theory describes the initial streak
growth and profiles well;

(ii) transition occurs via two-dimensional TS waves for T I = 0.6 %, and via
predominantly varicose inner and outer modes for T I = 1.2 % and T I = 2.4 %;

(iii) Mack’s correlation between the critical N factor and T I displays good agreement
with the simulations;

(iv) the critical disturbance kinetic energy is proportional to T I−1.80±0.11.

The T I = 2.4 % case represents an intermediate state towards bypass transition. For
T I � 2.4 %, the FST induces high-frequency boundary layer perturbations, although
nonlinear receptivity of the leading streaks is not observed. Particularly for T I � 4.5 %,
the streaks are generated with a high amplitude near the leading edge and grow little due
to lift-up. The subsequent conclusions can be drawn for these cases:

(i) the scaling of the leading streamwise velocity perturbations with T I is sub-linear,
although high-frequency disturbances are possibly nonlinearly generated in the
boundary layer;

(ii) bypass transition occurs with the dominance of breakdowns via outer sinuous modes,
driven by the spanwise shear and inflectional velocity profile;

(iii) the turbulent breakdown is highly non-uniform in the spanwise direction;
(iv) the critical disturbance kinetic energy is proportional to T I−0.90±0.16, an exponent

half of that of the modal regime.

The inception of bypass transition between T I = 2.4 % and 4.5 % agrees with
T I = 3 % found by Brandt et al. (2004) for the Blasius boundary layer and Hosseinverdi
& Fasel (2019) for a flat plate with flow separation. Finally, an estimate for a low-
frequency/low-wavenumber cutoff for the turbulence spectrum affecting transition via TS
waves is proposed. This allows for obtaining an effective T I from atmospheric turbulence
measurements, compatible with wind tunnel data and Mack’s correlation.

Funding. This work was possible with funding from StandUp for Wind, and HPC resources provided by
the North-German Supercomputing Alliance (HLRN) and the Swedish National Infrastructure for Computing
(SNIC).
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Appendix A. Calculation of coefficients and errors of the N factor correlations
The calculation of the regression coefficients was performed according to Neter et al.
(1996) as

(a, b)T = (XT X)−1XT N, (A1)

where N is the vector of critical N factors from the LES and

X=
⎛
⎜⎝

1 − ln (T I1/100)
...

...

1 − ln (T In/100)

⎞
⎟⎠ . (A2)

The errors of the coefficients a and b were estimated as

(σa, σb)
T = diag

[√
σ̂ 2(XT X)−1

]
, (A3)

σ̂ 2 =
∑n

i=1(Ni − Ñi )
2

n − 2
, (A4)

where N and Ñ are the critical N factors from the LES and correlations, respectively.
The procedure is applied to the low-T I range, which contains the points T I = 0.6 %,
1.2 % and 2.4 %, yielding the coefficients a = 2.63 and b= 1.8 with corresponding errors
σa = 0.51 and σb = 0.11. For the high-T I range, containing the points T I = 2.4 %, 4.5 %
and 7 %, the coefficients are a = 1.81 and b= 0.9 with errors σa = 0.50 and σb = 0.16,
respectively.

Appendix B. Operators for secondary stability analysis
The secondary stability analysis of the streaks was carried out with the two-dimensional
eigenvalue problem over the cross-sectional planes (Siconolfi et al. 2015). The method
was obtained by introducing the ansatz q′ = q̂(y, z) exp (iαx − iωt) in the linearised
Navier–Stokes equations (equations for the momentum in x , y, z, and continuity equation)
with non-local terms dropped, where q′(x, y, z, t)= [u′ v′ w′ p′]T is the vector of
perturbations of pressure (p′), and streamwise (u′), wall-normal (v′) and spanwise (w′)
velocities. Here, α = αr + iαi , where αr is the streamwise wavenumber and αi is the
spatial growth rate. Additionally, ω= 2π f ∈R is the angular frequency, an input in the
spatial framework employed here. The resulting generalised eigenvalue problem, solved
for α, q̂ and αq̂, is given by( A 0

0 I

) (
q̂
αq̂

)
= α

( B C
I 0

) (
q̂
αq̂

)
, (B1)

A=

⎛
⎜⎜⎝

A11 U y U z 0
0 A22 V z Dy

0 W y A33 Dz
0 Dy Dz 0

⎞
⎟⎟⎠ , (B2)
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Figure 20. Mean pressure distribution on the suction side (black line) for (a) T I = 0 %, (b) 0.6 %, (c) 1.2 %,
(d) 2.4 %, (e) 4.5 % and (f ) 7 %. The shaded regions indicate one and two standard deviations around the

mean.

B=−

⎛
⎜⎜⎝

iU 0 0 i
0 iU 0 0
0 0 iU 0
i 0 0 0

⎞
⎟⎟⎠ , C=− 1

Rec

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎠ , (B3)

A11 = VDy +WDz − 1
Rec

(Dyy +Dzz
)− iω, (B4)

A22 = VDy +WDz − 1
Rec

(Dyy +Dzz
)+ V y − iω, (B5)

A33 = VDy +WDz − 1
Rec

(Dyy +Dzz
)+W z − iω, (B6)

where Dy and Dz are the derivatives in the y and z directions, obtained with a
fourth-order finite-difference approximation; I and 0 are the identity and null matrices.
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The vector of base-flow variables is given by q= [U V W P]T , where P is the pressure,
and U , V and W are the streamwise, wall-normal and spanwise velocities. Subscripts y

and z indicate derivatives in the y and z directions, respectively. Here, i =√−1 is the
imaginary unity; Rec is the Reynolds number. The boundary conditions are u′, v′, w′ = 0
at y = 0 (wall), y→∞ (free stream). Furthermore, a periodic boundary condition is
imposed in the spanwise direction, such that q′(x, y, z, t)= q’(x, y, z + Lz, t), where Lz
is the spanwise width. The grid comprises 150 and 96 points in the z and y directions,
respectively.

Appendix C. Non-stationarity of the pressure distributions due to the FST
Figure 20 shows the statistics of the pressure distribution on the aerofoil suction side.
The mean distribution is shown with a black line, whereas the regions with one and
two standard deviations around the mean are shown with shades of grey. There is little
non-stationarity for T I � 2.4 %. However, the T I = 7 % case presents a high degree of
non-stationarity, with significant oscillations in the angle of attack and Reynolds number.
However, this is not enough to cause instantaneous flow separation.
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