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Abstract
Mathematical models promise new insights into the mechanisms underlying the emergence of collective behaviour
in fish. Here, we establish a mathematical model to examine collective behaviour of zebrafish, a popular animal
species in preclinical research. The model accounts for social and hydrodynamic interactions between individuals,
along with the burst-and-coast swimming style of zebrafish. Each fish is described as a system of coupled stochastic
differential equations, which govern the time evolution of their speed and turn rate. Model parameters are calibrated
using experimental observations of zebrafish pairs swimming in a shallow water tank. The model successfully
captures the main features of the collective response of the animals, by predicting their preference to swim in-line,
with one fish leading and the other trailing. During in-line swimming, the animals share the same orientation and
keep a distance from each other, owing to hydrodynamic repulsion. Hydrodynamic interaction is also responsible
for an increase in the speed of the pair swimming in-line. By linearizing the equations of motion, we demonstrate
local stability of in-line swimming to small perturbations for a wide range of model parameters. Mathematically
backed results presented herein support the application of dynamical systems theory to unveil the inner workings
of fish collective behaviour.

Impact Statement
Fish collective behaviour is an open area of research that continues to attract the interest of a broad scientific
community and the curiosity of the general public. How and why do fish align their bodies, synchronize
their motion and swim close to each other? And how do they choose one pattern over another? In search
for some answers, we establish an experimentally-validated mathematical model for the collective behaviour
of zebrafish, a popular species in laboratory research. The model accounts for social and hydrodynamic
interactions between animals, and it incorporates key features of the burst-and-coast swimming style of
zebrafish. In agreement with experimental observations, the model predicts a strong preference of zebrafish
to swim in-line, with one fish leading the other. We mathematically demonstrate that the emergence of this
collective pattern is related to its local stability, such that zebrafish interactions will dynamically compensate
for any small perturbation to in-line swimming. Interestingly, the stability of in-line swimming is modulated
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by the distance between the animals, owing to short-range hydrodynamic repulsion. Just as the proposed
model is expected to find application in preclinical research on zebrafish, the presented analytical tools create
an important connection between stability and collective behaviour.

1. Introduction

The majority of fish species live part of their lives in a group; this affords several advantages, which
include enhanced abilities to escape from predators, search for food and find correct migratory routes
(Larsson, 2012). Common to life in a group is swimming together in a school, where fish synchronize
their motion in a crystallized formation of tightly-packed individuals (Miller & Gerlai, 2011). The
mechanisms underlying the formation of these schooling patterns and their potential hydrodynamic
implications have long been the subject of intense debate, which is yet to be resolved (Ashraf et al.,
2017; Partridge & Pitcher, 1979; Weihs, 1973).

While experimental research is the cornerstone against which new hypotheses must be tested, mathe-
matical modelling offers a promising approach for detailing the inner workings of collective behaviour.
Since the seminal work of Aoki (1982), a number of modelling approaches have been proposed to
study collective behaviour (Vicsek & Zafeiris, 2012). Reaching beyond agent-based models implement-
ing behavioural rules in discrete time, several authors have proposed modelling approaches based on
stochastic differential equations, such as Butail et al. (2016), Calovi et al. (2014, 2015) and Zienkiewicz
et al. (2015a,b).

Particularly promising is the recent model by Filella et al. (2018), which considers, for the first time,
the presence of hydrodynamic interactions between swimming fish. These interactions are modelled
by associating each fish with a vortex dipole, which encapsulates both self-propulsion and the velocity
field generated by a swimming fish. The velocity field generated by one fish induces advection and
rotation on other animals in the vicinity, and vice versa, thereby providing a mechanism for bidirectional
hydrodynamic interactions between fish. While paving the way toward the mathematical integration of
social and hydrodynamic interactions, their study was not grounded in experimental observations and
all of the claims were based on numerical simulations.

Here, we seek to address these limitations by tailoring the model of Filella et al. (2018) to real data on
pairs of zebrafish, a species of choice in the study of collective behaviour in laboratory settings (Kalueff
et al., 2013; Orger & de Polavieja, 2017). To achieve this goal, we include realistic turn rate dynamics that
capture the burst-and-coast swimming style of zebrafish (Kalueff et al., 2013). We calibrate the model
on real data from Zienkiewicz et al. (2015a) and demonstrate its predictive power on multiple measures
of collective behaviour. Going beyond numerical simulations, we offer analytical insight into the model
by elucidating the stability of in-line swimming. This swimming pattern has been experimentally and
numerically studied in the technical literature on collective behaviour with multisensory cues, but its
stability has never been analytically investigated (De Bie et al., 2020; Kato et al., 2004; Laan et al.,
2017; Perna et al., 2014; Sadaat et al., 2021).

The rest of the paper is organized as follows: § 2 introduces the modelling framework; § 3 offers
analytical insight into the stability of schooling patterns; § 4 discusses calibration of model parameters
on experimental results; § 5 presents and discusses the results; and § 6 summarizes the main findings of
the work and identifies avenues for future research.

2. Modelling Collective Behaviour of a Zebrafish Pair

We model zebrafish as self-propelled bodies swimming in an unbounded two-dimensional plane.
At time t, fish f ( f ∈ {1, 2}) is identified by the position of its centroid rf (t) and swimming direction v̂f (t)
with respect to a global reference frame (Figure 1a). Working with a Cartesian coordinate system with
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Figure 1. Schematic of an interacting zebrafish pair: (a) generic configuration with streamlines overlaid
and key variables of fish 1 identified; and (b) in-line schooling pattern, where 𝜃c is the common
orientation of the fish and d is their inter-individual distance.

unit vectors î and ĵ for x and y, respectively, we write rf (t) = xf (t) î+yf (t) ĵ and v̂f (t) = cos 𝜃f (t) î+sin 𝜃f (t) ĵ
(Figure 1a).

Toward the analytical treatment of the problem, we hypothesize that each fish has a constant self-
propulsion speed vf . When swimming in a background flow, the velocity of the animal in the global
reference frame is the superposition of self-propulsion and advection. In particular, swimming in a pair
causes the speed of fish f to dynamically change with respect to the fixed coordinate system owing to
the flow created by the other individual in the pair. Specifically, the velocity of the focal fish f is given
by (Filella et al., 2018)

�rf (t) = vf v̂f (t) + Uf (rf (t)), (1)

where a superimposed dot means a time derivative and Uf (rf (t)) is the advection velocity experienced
by fish f at time t owing to the presence of the other fish in the pair.

As a first approximation to the fluid flow generated by the other fish in the pair, we employ the
potential flow framework developed by Filella et al. (2018), Gazzola et al. (2016), Kanso & Tsang
(2015) and Tchieu et al. (2012), wherein vorticity shedding owing to swimming is neglected and the
fluid is modelled as incompressible, inviscid and irrotational. From an application perspective, the most
restrictive of these assumptions are those of irrotationality and no vorticity shedding. Irrotationality will
be violated in any sort of shear flow, which includes flow near solid boundaries, thereby challenging the
use of the model to examine wall-hugging behaviours that could be associated with stress (Kalueff et al.,
2013). Furthermore, neglecting vorticity shedding precludes the possibility to examine hydrodynamic
interactions when the fish are in close proximity, interacting with each other’s wake (Weihs, 1973).

Following the finite-dipole paradigm, originally proposed by Tchieu et al. (2012), fish f in the pair
is represented as a dipole in the far field, wherein the vortices comprising the dipole are positioned
orthogonal to the swimming direction at a distance r0, f . As demonstrated in Figure 1 of Tchieu et al.
(2012), this representation emulates the far-field streamlines around a self-propelled body in an inviscid
fluid. At position rf (t), the other fish, denoted as f̌ , creates the advective field (Filella et al., 2018)

Uf (rf (t)) =
r2
0,f̌

vf̌

𝜌(t)2 [sin 𝜃 f̌ ,f (t)ê
𝜽
f̌ (t) + cos 𝜃 f̌ ,f (t)ê

𝝆

f̌
(t)], (2)
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where 𝜌(t) = |rf̌ (t) − rf (t) | is the distance between the two fish. In (2), the unit vectors ê𝝆
f̌
(t) and ê𝜽f̌ (t)

define a local polar coordinate system centred at fish f̌ , in which ê𝝆
f̌
(t) points toward the other fish in the

pair and forms a right-handed coordinate system with ê𝜽f̌ (t) and k̂ = î × ĵ. The viewing angle 𝜃 f̌ ,f (t) is
the angle between the swimming direction of fish j and ê𝝆

f̌
(t) (Figure 1a). The distance r0, f should be of

the order of the amplitude of the tail beating and its relationship with the speed of the animal provides
the circulation of each vortex in the dipole, 𝛤f = 2πr0, f v0, f .

For the analysis, it is more convenient to express the velocity field (2) in the global Cartesian
coordinate system. From Figure 1a, we deduce

ê𝝆2 (t) = −ê𝝆1 (t) =
Δx(t) î + Δy(t) ĵ

𝜌(t)
, (3a)

ê𝜽2 (t) = −ê𝜽1 (t) =
−Δy(t) î + Δx(t) ĵ

𝜌(t)
, (3b)

where Δx(t) = x1 (t) − x2(t) and Δy(t) = y1 (t) − y2 (t), such that 𝜌(t) =
√
Δx(t)2 + Δy(t)2. Similarly, we

can express the sines and cosines of the viewing angle in (2) in terms of individual orientations as

cos 𝜃 f̌ ,f (t) = v̂f̌ (t) · ê𝝆
f̌
(t) = ±

Δx(t) cos 𝜃 f̌ (t) + Δy(t) sin 𝜃 f̌ (t)
𝜌(t)

, (4a)

sin 𝜃 f̌ ,f (t) = (v̂f̌ (t) × ê𝝆
f̌
(t)) · k̂ = ±

Δy(t) cos 𝜃 f̌ (t) − Δx(t) sin 𝜃 f̌ (t)
𝜌(t)

, (4b)

where the plus (minus) sign is for f equal to 1 (2).
By replacing (3) and (4) into (2), we establish

Uf (rf (t)) =
r2
0,f̌

v0,f̌

𝜌(t)4 [((Δx(t)2 − Δy(t)2) cos 𝜃 f̌ (t) + 2Δx(t)Δy(t) sin 𝜃 f̌ (t)) î

+ ((Δy(t)2 − Δx(t)2) sin 𝜃 f̌ (t) + 2Δx(t)Δy(t) cos 𝜃 f̌ (t)) ĵ] . (5)

To complete the model of the fish pair, we must prescribe governing equations for the orientation
𝜃f (t), f ∈ {1, 2}. Different from the work of Filella et al. (2018), we employ a dynamic model that
captures inherent delays in zebrafish to respond to visual or hydrodynamic input. Based on earlier
models of social interaction, such as those by Calovi et al. (2014, 2015), we propose

�𝜃f (t) = 𝜔f (t), (6a)
d𝜔f (t) = −𝜂f (𝜔f (t) − 𝜔★

f (t) − 𝛺f (t)) dt + dNf (t). (6b)

Here, 𝜂f is the mean reversion rate that defines the characteristic time scale for fish to respond to external
stimuli, thereby condensing neurological processes in decision-making and physical delays in reaction
to external stimuli into a single damping coefficient per unit moment of inertia (in a kinematic model
like in the work of Filella et al. (2018), 𝜂f → ∞); 𝜔★(t) is the imposed turn rate from social interactions;
𝛺f (t) is the imposed turn rate owing to hydrodynamic interactions; and Nf (t) is added noise in the form
of a zero-mean stationary stochastic process that captures non-deterministic forcing from the surround-
ings (called ‘free will’ by Filella et al., 2018). All these contributions are linearly superimposed in the
present model. The modelling choice of including reversion on the turn rate dynamics while assuming
constant speed is a first approximation, motivated by earlier work that demonstrated the need of a rich
dynamics for the turn rate to faithfully reproduce key elements of the behavioural phenotype (Gautrais
et al., 2009; Mwaffo et al., 2015).
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The response function 𝜔★
f (t) accounts for social interactions, which primarily arise from visual cues

and result in the tendency of the animals to align their bodies during swimming (schooling) and swim
in the vicinity of others (shoaling), see, for example, the paper by Miller & Gerlai (2011). We write the
response function for fish f , as originally proposed by Calovi et al. (2014, 2015), as

𝜔★
f (t) = (1 + cos 𝜃f ,f̌ (t))(kv,f vf sin 𝜙f ,f̌ (t) + kp,f 𝜌 sin 𝜃f ,f̌ (t)), (7)

where kv,f and kp,f are gain parameters for alignment and attraction, respectively (Figure 1a), which
summarize multisensory cues that underlie social response. These gains are the means by which one
can simulate social behaviour, in the form of an animal orienting its swimming direction to align with
and approach others.

The prefactor (1 + cos 𝜃f ,f̌ (t)) accounts for the cone of vision of zebrafish (Pita et al., 2015), which
preferentially biases interactions toward animals that are swimming in front rather than those behind.
As discussed by Calovi et al. (2015), this prefactor ‘introduces a strong asymmetry between the force
exerted by f on f̌ and the one exerted by f̌ on f , and hence breaks the (Newtonian) action–reaction
principle which is most familiar in the context of purely physical force, such as gravitation’.

The response function is such that the contribution to the imposed turn rate from the alignment
rule tends to orient the swimming direction of f to align with f̌ . Thus, it is zero when the animals are
swimming in parallel (𝜙f ,f̌ (t) = 0 or π) and it is maximized in magnitude when they are swimming
orthogonal to each other (𝜙f ,f̌ (t) = ±π/2 and 𝜃f ,f̌ (t) = 0). We choose to scale the attraction gain by the
velocity, which is a constant, to acknowledge that faster fish will adjust their swimming direction more
rapidly in response to external stimuli. However, the contribution from the attraction rule is such that
f will tend to correct its swimming direction to approach f̌ : it is zero when 𝜃f ,f̌ (t) = 0 and maximized
in magnitude when 𝜃f ,f̌ (t) = ±π/2. In this model, alignment is taken to be independent of the relative
distance between the animals, while attraction increases the further the animals are from one another.
These approximations are expected to be valid when fish swim within approximately ten body lengths;
otherwise, it may be appropriate to include a decay function that reduces the strength of the interaction
for large distances (Zienkiewicz et al., 2015b).

Within the finite-dipole framework, the turn rate imposed by hydrodynamic interactions 𝛺f (t) arises
from differences in the velocity experienced by each vortex comprising the dipole of fish f . Thus, in
the far-field limit, the gradient of streamwise velocity in the direction orthogonal to v̂f induces the
hydrodynamic turning

𝛺f (t) = −v̂f (t) · [∇Uf (rf (t))v̂⊥f (t)], (8)

where v̂⊥f (t) = k̂ × v̂f (t) is the unit vector orthogonal to v̂f (t) forming a local right-handed coordinate
system and ∇ is the gradient operator in the global coordinate system. With respect to the paper by
Filella et al. (2018), we note the difference in sign between (8) and (5) therein, which arises from
our choice to work with transverse versus aligned dipoles, that is, T-dipoles instead of A-dipoles, as
defined by Kanso & Tsang, 2014. One can verify that the sign is indeed negative by considering a fish
swimming in the x-direction (𝜃f = 0, v̂f = î, and v̂⊥f = ĵ) in a shear flow (Uf = 𝛼Y î with 𝛼 > 0); in this
case, the turn rate in (8) is −𝛼 such that the fish will turn clockwise, as one would expect also based
on the work of Tchieu et al. (2012). For completeness, we report results also for the case of A-dipoles
in the supplementary material. By using the expression of the velocity Uf (rf (t)) in (5), along with the
Cartesian representation of v̂⊥f (t) and v̂f (t), we establish

𝛺f (t) = ±
2r2

0,f̌
v0,f̌

𝜌(t)6 ((−3Δx(t)2Δy(t) + Δy(t)3) cos(2𝜃f (t) + 𝜃 f̌ (t))

+ (Δx(t)3 − 3Δx(t)Δy(t)2) sin(2𝜃f (t) + 𝜃 f̌ (t))), (9)
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where the minus (plus) sign is for f equal to 1 (2). Comparing (9) with (7), we register a contrasting
dependence on the distance between the two fish, whereby social interaction linearly increases with
𝜌(t), while the hydrodynamic turning decreases with 𝜌(t)3.

Added noise in (6b) captures the uncertainty in the behaviour of the animal, which may not necessarily
balance between social and hydrodynamic interactions. Zebrafish locomotion is characterized by a
unique burst-and-coast swimming style in which ‘fish move forward (burst) in a single motion and
glide (coast) to a slow speed, or stop from which they burst forward again’ (Kalueff et al., 2013). This
swimming style contributes to a rich repertoire of locomotory patterns, which include sudden U- and
C-turns that alternate with instances of straight swimming (Kalueff et al., 2013). As a result, uncertainty
in turn rate dynamics cannot be captured by Gaussian white noise (that is, increments of a Wiener
process), as traditionally advocated for other swimming animals (Gautrais et al., 2009).

This issue has been addressed by Mwaffo et al. (2015) by modelling added noise as the sum of
two terms: (i) a Wiener process 𝜎f W (t), where W (t) is a standard Wiener process and 𝜎f is a positive
constant (note that for a standard Wiener process, dW (t) ∼ N (0, dt), where N(𝜇, 𝜎2) is a normal
distribution with mean 𝜇 and variance 𝜎2, so that multiplying by 𝜎f scales the variance of the normal
distribution by 𝜎2

f ), and (ii) a compound Poisson process Jf (t) =
∑Pf (t)

k=1 Zf ,k, where Pf (t) − Pf (s),
for s ≤ t, is a Poisson random variable with parameter 𝜆f (t − s), and Zf ,k ∼ N(0, 𝛾2

f ) (note that the
increment in the compound Poisson process can be written as dJf (t) = ZdPf (t), where Z ∼ N(0, 𝛾2

f )

and dPf (t) ∼ B(𝜆f dt), B(q) being a Bernoulli distribution with parameter q). The Wiener process
represents the baseline uncertainty with animal locomotion. The compound Poisson process allows the
capture of jumps in the turn rate dynamics, which are associated with C- and U-turns. A sample video
of a zebrafish pair swimming is included as a supplementary movie. Overall, added noise is modelled
through three independent parameters: 𝜎f , setting a baseline activity for the animal; 𝜆f , quantifying the
frequency of the jumps; and 𝛾f , measuring the strength of the jumps.

In light of the choice of the form of added noise, (6b) can be viewed as a jump reverting mean
diffusion process (Tankov, 2003), in which the turn rate relaxes toward a time-varying mean, given by
the sum of the turn rates imposed by social and hydrodynamic interactions in (7) and (8), respectively.
The original model by Filella et al. (2018) has neither the feature of reversion nor the presence of jumps.
Hence, at every time, the turn rate of each fish matches the sum of the turn rates imposed by social and
hydrodynamic interactions, subject to added Gaussian white noise (note that in the model by Filella
et al. (2018), 𝜔f (t) = 𝜔★

f (t) + 𝛺f (t) + 𝜎f (dW (t)/dt), where 𝜎f has units rad s−1 rather than rad s−3/2 as
in our study).

3. Analytical Insight into the Model

Predicting the behaviour of a zebrafish pair requires the time integration of (1) and (6). While the
general mathematical treatment of this system may not be feasible, important insight can be gathered by
examining its linearized dynamics about salient configurations that have previously been documented
(De Bie et al., 2020; Kato et al., 2004; Laan et al., 2017; Perna et al., 2014; Sadaat et al., 2021). To further
simplify the problem, we assume the two fish to be identical, such that r0,1 = r0,2 = r0, v0,1 = v0,2 = v0,
kp,1 = kp,2 = kp, kv,1 = kv,2 = kv, 𝜂1 = 𝜂2 = 𝜂, 𝜎1 = 𝜎2 = 𝜎, 𝜆1 = 𝜆2 = 𝜆 and 𝛾1 = 𝛾2 = 𝛾.

Following standard practice in the literature on synchronization of coupled dynamical systems
(Pikovsky et al., 2003), we decompose the dynamics of the fish pair into average and error dynamics.
The former captures the evolution of the centre of mass of the pair and of the average orientation,
whereas the latter describes changes in relative distance and orientation. Hence, we write

xf (t) = x̄(t) ± 1
2Δx(t), yf (t) = ȳ(t) ± 1

2Δy(t),
𝜃f (t) = 𝜃 (t) ± 1

2Δ𝜃 (t), 𝜔f (t) = �̄�(t) ± 1
2Δ𝜔(t), (10)

where the plus (minus) sign is for f equal to 1 (2), a superimposed bar indicates the average dynamics
and the symbol Δ is consistently used to label relative dynamics.
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By using this coordinate transformation, we consider the eight-dimensional state variable z(t) =
[x̄(t), ȳ(t), 𝜃 (t), �̄�(t),Δx(t),Δy(t),Δ𝜃 (t),Δ𝜔(t)]T, where T indicates matrix transposition. The time
evolution of the state is given by

�z(t) = F(z(t), u(t)), (11)

where u(t) ∈ R2 encapsulates added noise to the turn rate dynamics of the animals and the nonlinear
function F : R8 × R2 → R

8 captures the first-order dynamics of the turn rate in (6b) along with the
coupling between the state variables of the two fish through the advection velocity (2), social interactions
(7) and hydrodynamic interactions (8).

The class of nominal solutions about which we perform a linearization is part of the schooling
patterns identified by Filella et al. (2018), wherein fish swim along the same, constant direction, that
is, Δ𝜃 (t) = 0 and 𝜃 (t) = 𝜃c for some 𝜃c. Fish will follow a straight line (Δ𝜔(t) = 0 and �̄�(t) = 0) and
rigidly translate one with respect to each other, as shown in Figure 1b. In this in-line swimming pattern
(sometimes called ‘tandem’), one fish follows the other, such that Δx(t) = d cos 𝜃c and Δy(t) = d sin 𝜃c,
where d is the constant distance between the fish. Without loss of generality, we set 𝜃c = 0, such that
the x-axis of the Cartesian coordinate system is aligned with the schooling direction.

It is easy to verify that for any choice of d, in-line swimming constitutes a nominal solution of (11) in
the absence of added noise. Specifically, both the imposed turn rates owing to social and hydrodynamic
interactions in (7) and (8) are identically zero, such that the orientation of each fish remains constant
(v̂f (t) = î). With respect to the positional coordinates, we observe that Uf (rf (t)) = (r2

0v0/d2) î for
f ∈ {1, 2}, such that each fish will be subject to the same advective velocity, thereby preserving the
relative configuration. The centre of mass of the pair will move at a constant speed given by v0(1+r2

0/d
2),

which yields the increase in speed arising from hydrodynamic interaction observed through simulations
on large groups (Filella et al. 2018).

The homogeneous, linearized dynamics of the system is informative of the local stability of the in-
line configuration. By taking the gradient of the nonlinear vector field in (11) and evaluating it at the
nominal solution, we obtain the following state matrix describing the evolution of perturbations with
respect to the nominal, in-line solution:

�̄x𝛿 (t) = −
2r2

0v0

d3 Δx𝛿 (t), (12a)

�̄y𝛿 (t) = v0

(
1 −

r2
0

d2

)
𝜃 𝛿 (t) +

2r2
0v0

d3 Δy𝛿 (t), (12b)

�̄𝜃 𝛿 (t) = �̄�𝛿 (t), (12c)

�̄𝜔𝛿 (t) = −kp𝜂d𝜃 𝛿 (t) − 𝜂�̄�𝛿 (t) + kp𝜂Δy𝛿 (t) +

(
−
𝜂r2

0v0

d3 +
kp𝜂d

2
+ kv𝜂v0

)
Δ𝜃 𝛿 (t), (12d)

�Δx𝛿
(t) = 0, (12e)

�Δy𝛿
(t) = v0

(
1 +

r2
0

d2

)
Δ𝜃 𝛿 (t), (12f)

�Δ𝜃
𝛿
(t) = Δ𝜔𝛿 (t), (12g)

�Δ𝜔
𝛿
(t) =

(
−

12𝜂r2
0v0

d3 + 2kp𝜂d

)
𝜃 𝛿 (t) +

(
12𝜂r2

0v0

d4 − 2kp𝜂

)
Δy𝛿 (t)

−(kp𝜂d + 2kv𝜂v0)Δ𝜃
𝛿 (t) − 𝜂Δ𝜔𝛿 (t). (12h)

Here and henceforth, a superscript 𝛿 identifies perturbations with respect to the nominal solution.
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Equation (12) demonstrates several interesting features of the model. First, perturbations on the
position of the centre of mass do not enter the dynamics of any of the other state variables. Second, the
relative distance along the schooling direction remains constant, independent of any other state variable.
Third, the perturbation on the relative distance Δy𝛿 (t) depends only on the relative rotation Δ𝜃 𝛿 (t).
Fourth, the response of the fish pair is asymmetric, owing to the presence of social interactions which are
sensitive to the relative orientation of the animals (leading versus trailing fish); asymmetry is evident in
the turn rate dynamics by combining (12d) and (12h) to obtain governing equations for 𝜔𝛿

1 (t) and 𝜔𝛿
2 (t).

To further clarify the structure of the system, we perform a coordinate transformation that accounts
for the specific nature of in-line swimming. Specifically, we define 𝜃 𝛿

★ (t) = 𝜃 𝛿 (t) − Δy𝛿 (t)/d to filter
out rigid-body motion in the definition of the average angle; in fact, in-line swimming would not be
affected if both fish moved along the y-axis while rotating their bodies to preserve straight swimming.
Consistently, we define �̄�𝛿

★ (t) = �̄𝜃 𝛿
★ (t). By using these variables in (12) and ordering the components of

the state vector as z𝛿 (t) = [x̄𝛿 (t), ȳ𝛿 (t),Δx𝛿 (t),Δy𝛿 (t), 𝜃 𝛿
★ (t), �̄�𝛿

★ (t),Δ𝜃 𝛿 (t),Δ𝜔𝛿 (t)]T, we can write
the state matrix of the system in the following block-triangular form:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −
2r2

0v0

d3 0 0 0 0 0

0 0 0
v0
d

(
1 +

r2
0

d2

)
v0

(
1 −

r2
0

d2

)
0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 v0

(
1 +

r2
0

d2

)
0

0 0 0 0 0 1 0 0

0 0 0 0 −kp𝜂d −𝜂
𝜂

2

(
−

4v0r2
0

d3 −
2v0
d

+ dkp + 2kvv0

)
−

v0
d

(
1 +

r2
0

d2

)
0 0 0 0 0 0 0 1

0 0 0 0
−12𝜂v0r2

0
d3 + 2kp𝜂d 0 −kp𝜂d − 2kv𝜂v0 −𝜂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

The stability of in-line swimming to external perturbations is ascertained by examining the spectrum
of the four-by-four block on the bottom diagonal, A22. In-line swimming is asymptotically stable if,
and only if, this sub-matrix is Hurwitz. If A22 is Hurwitz, the orientations converge to a common value
(Δ𝜃 𝛿 (t),Δ𝜔𝛿 (t) → 0), such that the two fish swim along a straight line (𝜃 𝛿

★ (t), �̄�𝛿
★ (t) → 0). The other

blocks have no role on stability, whereby the location of the centre of mass and the relative distance
Δx𝛿 (t) are inconsequential with respect to in-line swimming, and Δy𝛿 (t) converges to a constant value
that depends on the common orientation attained by the fish pair.

While a precise evaluation of the stability of in-line swimming requires the calculation of the
spectrum of A22, important insight can be gathered from the application of the Routh–Hurwitz criterion.
Briefly, application of the criterion requires the construction of an ancillary table of coefficients, which
is computed from the coefficients of the characteristic polynomial (Meinsma, 1995). By counting the
number of sign changes in the first columns of this table, it is possible to exactly count the number of
eigenvalues with positive real part. Going through simple algebra, we obtain the following expression
for the first column of the Routh table R = {R4,R3, . . . ,R0}:

R4 = 1, (14a)
R3 = 2𝜂, (14b)

R2 = −
v0(d2 + r2

0)(kpd4 − 6r2
0v0)

d6 + 𝜂(kpd + kvv0) + 𝜂2, (14c)
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R1 =
2d12𝜂4(kpd + kvv0) − 2𝜂v2

0 (d
2 + r2

0)
2(kpd4 − 6r2

0v0)
2

d6(d6𝜂2 + d6𝜂(kpd + kvv0) − v0 (d2 + r2
0)(d4kp − 6r2

0v))

+
2d6𝜂3(k2

pd8 + v2
0 (k

2
vd6 + 6d2r2

0 (1 − 2dkv) + 18r4
0) + d4kpv0 (d2(2kvd − 1) − 9r2

0))

d6(d6𝜂2 + d6𝜂(kpd + kvv0) − v0(d2 + r2
0)(d4kp − 6r2

0v))
, (14d)

R0 =
2𝜂2v0

(
(d2 + 5r2

0)d
4kp + 6d3r2

0v0kv − 6
(
d2 + 2r2

0
)
r2
0v0

)
d6 . (14e)

In general, it is difficult to tell the sign of the terms in (14), but several interesting limit cases can be
explored. For example, for a sufficiently large d, we discover that there are no sign changes (all terms
being positive), which demonstrates that in-line swimming is asymptotically stable for sufficiently large
separation distances. However, for small values of d, there is one sign change (R1 → −∞), which
indicates the presence of one eigenvalue with a positive real part.

We can also examine the case in which fish interact only hydrodynamically, such that both kp and kv
approach zero. In this case, we register at least one sign change, whereby R0 = −12𝜂2r2

0v2
0 (d

2 + 2r2
0)/

d6 < 0. This suggests that visual cues are needed to ensure the stability of in-line swimming, which
supports the simulation results in Figure 7b of Tchieu et al. (2012) and echo analytical predictions on
large-head microswimmers (Kanso & Tsang, 2015) and suspensions of phoretic particles (Kanso &
Michelin, 2019).

Another interesting case is the limit of large values of 𝜂, which is reminiscent of the set-up by Filella
et al. (2018); in this case, R0/𝜂

2 = −6(d2 + 2r2
0)r

2
0v0 + (d2 + 5r2

0)d
4kp + 6d3r2

0v0kv > 0 is the necessary
and sufficient condition for the matrix to be Hurwitz, because all the other terms are positive. For small
values of d, the leading term is −12r4

0v0, which confirms the instability of in-line swimming, unless kv
and kp are sufficiently large to dominate R0. Predictably, large values of kv and kp will favour stability
for any choice of d. Should hydrodynamic interactions be dismissed by setting r0 = 0, we would always
obtain asymptotic stability.

Another swimming pattern that is often considered in the literature is side-by-side swimming
(De Bie et al., 2020; Kato et al., 2004; Laan et al., 2017; Perna et al., 2014), where the fish swim
parallel to each other with Δx(t) = −d sin 𝜃c and Δy(t) = d cos 𝜃c. For the present model, this swimming
pattern does not constitute a nominal solution: hydrodynamic interactions will have an equivalent effect
as alignment and attraction, thereby causing the fish to approach one another.

The analysis presented thus far relies on the classical finite-dipole paradigm of Tchieu et al. (2012)
to study fish schooling, which was later referred to as the transverse (T) dipole to distinguish from the
aligned (A) dipole (Kanso & Tsang, 2014). As noted by Kanso & Tsang (2014), the two models only
differ in ‘how an individual dipole aligns itself with the local flow gradient’. The T-dipole aligns itself
based on the difference in the flow velocity in the direction transverse to the dipole, while the A-dipole
aligns itself according to the difference in the flow velocity along the dipole direction, similar to the
active swimmers in microfluidic devices considered by Brotto et al. (2013). For completeness, we report
analytical insight into the model also for the case of A-dipoles in the supplementary material.

4. Experimental Data and Model Calibration

We calibrated the model using experimental data from a previous study (Zienkiewicz et al., 2015a);
the same dataset was also used by Butail et al. (2016) and is included in the supplementary material.
The dataset contains 17 different pairs of adult zebrafish with an average body length (BL) of 30 mm
swimming in a circular arena of 0.9 m diameter and water depth of 0.1 m. The shallow depth encouraged
the fish to swim in a quasi-two dimensional plane. Fish motion was filmed at 30 frames s−1 for 20 min,
and a multi-target tracking system (Ladu et al., 2014) was used to track the centroids of each individual.
The first 10 min were treated as a habituation phase, in which the animals explored the novel tank and
acclimatized to the environment.
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The last 10 min of the videos were used for the analysis. Each pair of experimental trajectory data
consists of positions rf (t) and orientations 𝜃f (t) in the instantaneous direction of motion of the two
animals sampled at a time step Δt = 1/30 s. We filtered the data in two steps. Time windows where
the two fish were closer than half a BL from each other were removed to avoid diving instances, which
would violate the assumption of planar swimming. To mitigate the effect on unmodelled hydrodynamic
interactions with the walls, we also removed instances when either fish swam closer than two BLs to
the wall. Overall, these pre-processing steps curtailed approximately half of the dataset.

This same dataset was also used to validate the predictions of the model, by evaluating salient
metrics of collective behaviour that emerge within the pair. Specifically, we considered the average
polarization, which measures the relative orientation of the pair: Pol = (1/T)

∫ T
0 (‖v̂1(t) + v̂2(t)‖/2) dt,

where T is the duration of the observation (Calovi et al., 2014). A polarization value of one indicates
that the swimming directions of both fish are always aligned during he observation window, whereas a
value of zero identifies that the animals are swimming in opposite directions. While polarization helps to
quantify schooling, it does not distinguish between in-line and side-by-side swimming, which we capture
through a pursuit index defined as PI = (1/T)

∫ T
0 ((v̂1(t) + v̂2(t)) · (r1(t) − r2(t))/2𝜌(t)) dt. A value of

1 (−1) indicates in-line swimming, with the first (second) fish swimming in front of the second (first)
fish. A zero value corresponds to the pair swimming side-by-side. The average inter-individual distance
between the pair of fish, Dist = (1/T)

∫ T
0 |𝜌(t) | dt, is used to quantify their shoaling tendency, that is,

their preference to stay close to one another. Finally, we measured the average speed of the centre of
mass Speed = (1/T)

∫ T
0 (‖�r1(t) + �r2(t)‖/2) dt to further detail the effect of interactions on locomotion.

For each fish, we identified eight model parameters (characteristic length, r0; speed, v0; baseline
activity, 𝜎f ; reversion rate, 𝜂f ; jump frequency, 𝜆f ; jump intensity, 𝛾f ; and attraction and alignment gains,
kp,f and kv,f , respectively) from the equations of motion (1) and (6). We performed the identification in
two sequential steps. First, we calibrated characteristic length, r0, and speed, v0, by minimizing the sum-
square-error cost function (SSECF) calculated from the experimentally measured speed and the speed
in (1), defined as SSECF =

∑
k∈Dataf (‖�rf (tk)‖ − ‖vf v̂f (tk) + Uf (rf (tk))‖)2, where ‘Dataf ’ identifies the

subset of indices that remain after the removal presented above for fish f . The optimization was solved
by constraining each parameter within a physically plausible range. Specifically, based on prior data on
fish swimming in isolation and the typical body length of a zebrafish (Ladu et al., 2014), we selected
vf ∈ [0, 0.30] m s−1 and rf ∈ [0, 30] mm. Calibrated parameters are presented in Figure 2a,b.

Second, we identified the remaining six parameters Θf = [𝜎f , 𝜂f , 𝜆f , 𝛾f , kp,f , kv,f ]
T using a maximum

likelihood approach on the turn rate dynamics in (6b). The maximum likelihood estimation was subject
to further data preprocessing, whereby we removed instances when fish were swimming approximately
in-line (AI > 0.75); at these instances, the prefactor in the social interaction (7) would cause excessively
small values of the response function, which would challenge robust identification.

Hence, we estimated the model parameters by minimizing the sum of negative logarithms of the
likelihood function L(𝜔f (t) |𝜔f (t − Δt),Θf ) over experimental time-series using the FMINCON function
in MATLAB (Butail et al., 2016). The likelihood function was constructed as the sum of two normal
probability distributions associated with the two forms of added noise,

L(𝜔f (t) |𝜔f (t − Δt),Θf ) = (1 − 𝜆fΔt)H(𝜔f (t), 𝜇f (𝜔f (t − Δt),Δt), varf (Δt))
+ 𝜆fΔtH(𝜔f (t), 𝜇f (𝜔f (t − Δt),Δt), varf (Δt) + 𝛾f ), (15a)

where

𝜇f (𝜔f (t − Δt),Δt) = 𝜔f (t − Δt) e−𝜂f Δt + (𝜔★
f (t − Δt) + 𝛺f (t − Δt))(1 − e−𝜂f Δt), (15b)

varf (Δt) =
𝜎2

f

2𝜂f
(1 − e−2𝜂f Δt), (15c)

and H(•, 𝜇, 𝜎2) is the probability mass function of N(𝜇, 𝜎2).
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Figure 2. Calibrated model parameters: (a) characteristic length; (b) speed; (c) baseline activity;
(d) mean reversion rate; (e) jump frequency; (f) jump intensity; (g) gain parameter for attraction; and
(h) gain parameter for alignment. The coloured area in each violin plot is the probability density and
coloured circles are individual calibrations. Thick grey bars indicate first and third quartiles; thin grey
bars identify minimum and maximum values; and white circles are the median. Calibrated parameters
for each fish are reported in the supplementary material.

Based on the social model of Butail et al. (2016), we constrained the parameter ranges for the search as
follows. First, we set 𝜂f ∈ [1, 2] s−1, 𝜎f ∈ [1, 5] rad s−3/2 and 𝛾f ∈ [1, 5] rad s−1. Then, we explored the
range in jump frequency of 𝜆f ∈ [0.9, 1.1]𝜆0, f , where 𝜆0, f was an estimate of the frequency of extreme
events in the time-series, defined as the ratio between the number of time steps above three standard
deviations from the mean of the turn rate and the total number of time steps. With respect to interactions
parameters, we explored the broad range kp,f ∈ [0, 100] rad m−1 s−1 and kv,f ∈ [0, 100] rad m−1 to
capture inter-individual variability in social behaviour.

5. Results and Discussion

By applying the calibration procedure explained above, we obtained the complete set of calibrated
parameters, as shown in Figure 2. The values of r0 were one order of magnitude less than the animal
body length (r0 = 3.1 ± 3.2 mm), which corresponded to the typical tail beat amplitude of a cruising
zebrafish (Gazzola et al., 2014). The self-propulsion speed ranged from 2BL to 6BL per second (v0 =
0.094 ± 0.027 m s−1), which suggested variability among animals with respect to their locomotion.
Interestingly, these two variables were highly correlated, such that larger distances between vortices
comprising the dipole will be accompanied by larger speeds, thus implying larger values of the vortices’
circulation, see Table 1. This trend was analogous to the relationship between tail beat amplitude and
the circulation of vortices shed during tail beating in the real experiments by Mwaffo et al. (2017).

The baseline activity (𝜎 = 1.66 ± 0.61 rad s−3/2), mean reversion rate (𝜂 = 1.77 ± 0.32 s−1), jump
frequency (𝜆 = 0.64±0.12 s−1), jump intensity (𝛾 = 2.63±0.77 s−1), and gain parameters for attraction
(kp = 3.08± 3.43 rad m−1 s−1) and alignment (kv = 18.12± 13.12 rad m−1) were comparable with those
of Butail et al. (2016), which did not include a model of hydrodynamic coupling. These parameter
values were not all independent of each other (Table 1). We determined a positive relationship between
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Table 1. Coefficient of determination (R) and associated p-value in parentheses between model variables. Significant correlations at a level of 0.05 are
indicated in bold (should one correct for multiple comparisons using a conservative Bonferroni correction, some significant correlations would become
trends).

r0 v0 𝜎 𝜂 𝜆 𝛾 kp kv

r0 − × × × × × × ×

v0 0.416 (0.015) − × × × × × ×

𝜎 0.670 (0.000) 0.267 (0.127) − × × × × ×

𝜂 −0.059 (0.742) −0.160 (0.367) 0.043 (0.811) − × × × ×

𝜆 0.092 (0.604) −0.075 (0.672) −0.031 (0.862) −0.084 (0.636) − × × ×

𝛾 0.491 (0.003) 0.129 (0.466) 0.754 (0.000) −0.07 (0.692) 0.196 (0.266) − × ×

kp −0.187 (0.291) −0.300 (0.084) −0.175 (0.323) −0.266 (0.129) 0.219 (0.213) −0.065 (0.714) − ×

kv 0.181 (0.307) −0.181 (0.306) 0.528 (0.001) −0.109 (0.542) −0.069 (0.698) 0.161 (0.363) −0.083 (0.640) −
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Figure 3. Predictive power of the proposed model for four metrics of collective behaviour:
(a) polarization; (b) pursuit index (PI); (c) average inter-individual distance; and (d) average speed of
the centre of mass. Circles represent individual trials for real (Exp.) or in silico (In-s.) experiments.
Thick grey bars indicate first and third quartiles; thin grey bars identify minimum and maximum val-
ues; and white circles are the median. Dashed lines show chance levels; a star identifies a significant
difference from chance in t-test comparison at a significance level of 0.05.

baseline activity and jump intensity, which suggested that animals exhibiting higher activity levels
also displayed stronger bursts. We also recorded a positive correlation between r0 and both the noise
intensities, 𝜎 and 𝛾, which suggested that larger animals will tend to be more active and display more
pronounced body movements during C- and U-turns. Finally, we discovered that the alignment gain was
positively correlated with the baseline activity, which suggested that more active animals might exhibit
a stronger social response, perhaps pointing at a deeper association between locomotory activity and
social response that might be mediated by stress (Kalueff et al., 2013).

Overall, the extent to which hydrodynamic interactions improve the quality of the fit can be ascertained
using the Akaike information criterion (Akaike, 1998). Specifically, for the present model in (6b), this
quantity is equal to 52.10 ± 33.33. Should we compute the same for the model by Butail et al. (2016),
which excluded hydrodynamic interactions, we would obtain a strikingly similar result of 46.74±32.54.
Hence, accounting for hydrodynamic interactions does not lead to a tangible improvement on the fit
of the turn rate, although it allows the capture of speed-based interactions that would be otherwise
neglected. Evidence in favour of the existence of speed-based interactions has been documented in a
number of experimental studies on freshwater fish (see, for example, Herbert-Read et al., 2011; Katz
et al., 2011), but their connection to hydrodynamics has remained elusive. The supplementary material
contain calibrated model parameters for A-dipoles, which are highly comparable to those presented
herein.

To demonstrate the model predictive power, we performed a series of in silico experiments, which
employed the calibrated parameters from Figure 2; a sample video is included as a supplementary
movie. This analysis aimed to ascertain whether the model predicts equivalent statistical outcomes
to real experiments, thereby allowing for partial replacement of animal trials. We ran the model 17
times to mirror experimental observations, using identical parameters for each fish in the pair (drawn
from normal distributions approximating those in Figure 2) and random initial conditions (orientations
drawn uniformly in [0, 2π] and distance within 4r0, similar to Tchieu et al. (2012)). For each metric
of collective behaviour, we performed t-test comparisons between chance and either real or in silico
experiments. Chance was computed by randomly shuffling fish across the 17 experimental observations
10 000 times and taking the mean.

As shown in Figure 3, the model was successful in anticipating a strong schooling tendency of
the pair (t(1,16) = 20.67, p < 0.001 (experiments); t(1,16) = 6.09, p < 0.001 (in silico)). During
schooling, animals favour in-line swimming, which was accurately predicted by the model (t(1,16) =
14.74, p < 0.001 (experiments); t(1,16) = 10.15, p < 0.001 (in silico)). Although to a lesser quantitative
extent, the model was also able to anticipate shoaling tendency of the pair (t(1,16) = −31.20, p <
0.001 (experiments); t(1,16) = −3.94, p = 0.001 (in silico)) and the increase in speed arising from
animal interactions (t(1,16) = 3.31, p = 0.004 (experiments); t(1, 16) = 2.12; p = 0.05 (in silico)).
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Figure 4. Stability analysis of in-line swimming as a function of social and hydrodynamic interactions,
in the form of heat maps of the maximum real part of the eigenvalues of A22 in (13) for: (a,b,c)
r0 = 3.1 mm and (d,e,f) r0 = 0 mm (no hydrodynamic interactions). For each of the two scenarios, we
consider three values of inter-individual distances d: (a,d) 0.5 BL; (b,e) 1 BL; and (c,f) 2 BL. Other
simulation parameters are mean values from Figure 2: 𝜂 = 1.77 s−1 and v0 = 0.094 m s−1. White regions
identify stability boundaries and black points are mean values from Figure 2.

Experimental subjects tend to swim within 2 to 3 BLs, which correspond to approximately one-third
of the theoretical predictions, thereby leading to an underestimation of short-range interactions. The
source of the discrepancy lies with the absence of social interactions in the speed dynamics, which
could, however, be included in the model by following Zienkiewicz et al. (2015b). Interestingly, using
A-dipoles does not challenge the predictive power of the model, as presented in the supplementary
material.

Overall, Figure 3 points to a strong tendency of live fish to school in an in-line pattern, which is
accurately captured through in silico experiments. Further insight can be garnered through the analysis
of the eigenvalues of Ain-line,22 in (13), which was derived from linearization of the proposed model.
Specifically, we used the calibrated values of r0, v0 and 𝜂 from Figure 2 to analyse the stability of
in-line swimming with respect to kp, kv and d in Figure 4. Numerical computation of the eigenvalues
confirmed the theoretical proposition from the Routh–Hurwitz criterion that small values of d hinder
stability. For sufficiently large values of d, there was a wide range of combinations of the gains that
exhibited stability. Using calibrated values of kp and kv, we always attained stability for any choice of d
above approximately one BL, in agreement with observations on inter-individual distance in Figure 3. In
contrast to the kinematic model of Filella et al. (2018) that suggests a beneficial role of large values of kp
and kv, we discovered a richer scenario where large values of kp may destabilize the swimming pattern.
A sample video of the effect of perturbations on in-line swimming is included as a supplementary movie.

For completeness, in Figure 4, we also present the results obtained by setting r0 = 0, that is, dismissing
hydrodynamic interactions without modifying any other model parameter. Hydrodynamic interaction
effectively leads to a repulsion zone between animals swimming in-line that would otherwise not be
present. Repulsion has been widely documented in the literature on mathematical models of animal
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groups, but generally attributed to a social response (Vicsek & Zafeiris, 2012), with the exception of
Gazzola et al. (2014) who also documented hydrodynamically-based repulsion. For a given value of
d, we also registered a wider range of gain combinations that guaranteed stability; however, the extent
of the difference became negligible for distances above one body length. Comparable insight can be
gathered for A-dipoles, as presented in the supplementary material.

6. Conclusions

Here, we have presented and analysed a mathematical model of collective behaviour of zebrafish pairs.
The model combines the jump persistent turning walker of Mwaffo et al. (2015) with the interaction
model by Filella et al. (2018) toward a realistic description of zebrafish locomotion and of social and
hydrodynamic interactions. The model consists of a system of coupled nonlinear stochastic differential
equations for the speed and turn rate of each fish. Model parameters were calibrated using the real data
on zebrafish pairs swimming in shallow water of Zienkiewicz et al. (2015a).

The calibrated model was successful in predicting all of the main features of the collective response
of live animals. Not only did the animals exhibit strong shoaling and schooling tendencies, by swimming
in close physical proximity and aligning their bodies, but they also opted for an in-line pattern where
one fish would lead and the other would follow. A contribution of this study was to demonstrate local
stability of this specific collective pattern through a detailed analysis of the linearized dynamics. Above
a critical value of the inter-individual distance, in-line swimming becomes stable for a wide parameter
range. This is in stark contrast with side-by-side swimming, which does not emerge as a viable solution
of the model.

Taken in toto, these results question some of the assumptions that are often used in modelling
fish behaviour (Vicsek & Zafeiris, 2012), which explains the mechanisms underlying schooling (Par-
tridge & Pitcher, 1979; Weihs, 1973) and draws inference of the leader–follower relationship from
experimental observations of their orientation (Krause et al., 2000). First, our theoretical results indi-
cate that repulsion emerges from hydrodynamic interactions, rather than being a social rule pursued
by individuals. Second, the long debate regarding the determinants of schooling patterns, with some
fish occupying frontal positions and other rear ones, may reduce to a simple stability problem for the
group. Neither reduced swimming costs nor foraging benefits are needed for fish pairs to opt for in-
line swimming. Third, the inference of leadership traits from the frequency of instances in which an
animal initiates a turn that is followed by others could be skewed by the stability of in-line swimming.
Specifically, should the animals differ in their noise parameters, we would detect a false leader–follower
association.

The main limitation of the model is that it neglects the reverse von Kármán wake generated by
self-propelled swimmers, which results in a poor representation of the flow field immediately behind
the dipole. The flows around the fore-body and to the sides of the dipole are, however, representative
of those produced by a swimming fish. This is likely relevant in the study of in-line swimming, by
adding further dynamics into the collective response (Liao et al., 2003) and potentially mitigating the
short-range decay of hydrodynamic interactions observed in the present model. While the vortex dipole
model for fish swimming has been used in a variety of analytical models of swimming, there exists a
need for explicit experimental validation.

There are several additional directions for the potential improvement of the model, which include:
(i) the development of a dynamic model for the speed in the form of a stochastic different equation,
similar to that of Zienkiewicz et al. (2015a,b) to overcome the approximation of constant speed and
include additional mechanisms of social interaction; (ii) the extension to hydrodynamic interactions with
walls in the tank and background water currents toward an improved understanding of the transition
from in-line to side-by-side swimming as a function of the flow speed (De Bie et al., 2020); and (iii) the
extension of individual differences in the stability analysis that could help explain the modulatory role
of fish body size on schooling and shoaling (Karakaya et al., 2020; Reebs, 2001).
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