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Utilizing a newly released cognitive Polygenic Score (PGS) from Wave IV of Add Health (n = 1,886), struc-
tural equation models (SEMs) examining the relationship between PGS and fertility (which is approximately
50% complete in the present sample), employing measures of verbal IQ and educational attainment as po-
tential mediators, were estimated. The results of indirect pathway models revealed that verbal IQ mediates
the positive relationship between PGS and educational attainment, and educational attainment in turn me-
diates the negative relationship between verbal IQ and a latent fertility measure. The direct path from PGS
to fertility was non-significant. The model was robust to controlling for age, sex, and race; furthermore, the
results of a multigroup SEM revealed no significant differences in the estimated path coeficients across sex.
These results indicate that those predisposed towards higher verbal IQ by virtue of higher PGS values are
also predisposed towards trading fertility against time spent in education, which contributes to those with
higher PGS values producing fewer offspring at this stage in their life course.
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Fertility in human populations is a complex phenomenon
produced by a multifactorial arrangement of genetic and
environmental antecedents (Tropf et al., 2015). Particu-
lar attention has been paid to the role of cognitive vari-
ables in determining fertility outcomes. Negative associa-
tions between cognitive ability and fertility were first intu-
ited by Galton (1869), when he noted that individuals from
lower socio-economic status backgrounds tended to pro-
duce larger families than those from higher status back-
grounds. Early studies utilizing direct measurements of
cognitive ability (i.e., IQ tests) and sibling number (as an in-
dicator of the reproductive success of the previous genera-
tion) corroborated Galton’s intuition, via the finding of neg-
ative correlations between the two (e.g., Lentz, 1927). These
findings led to the prediction that IQ scores may decline
over the course of generations due to selection pressures
stemming from these negative associations. However, lon-
gitudinal studies comparing cohorts evaluated in the early
decades of the 20th century with those evaluated in subse-
quent decades found the opposite trend, that is, an apparent
increase in IQ (Cattell, 1950), consistent with what is now
termed the Flynn effect.

Interest in the question of the causes and implications
of the negative relationship between IQ and fertility sub-

sequently waned, until the 1990s, when Lynn (1996) pro-
posed that the selection pressure stemming from the nega-
tive association might be reducing the more heritable vari-
ance components of IQ (which he termed genotypic IQ),
the effects of which are being masked by environmental
improvements (such as increased access to micronutrients)
enhancing the more environmentally sensitive variance
components of IQ (phenotypic IQ). Lynn also suggested
that educational attainment (essentially the amount of time
spent in education) may be a major cause of this negative
relationship, as higher ability individuals might trade fer-
tility against the opportunity to acquire skills and knowl-
edge, an effect that should be especially strong among fe-
males, given their relatively narrower fertility window. Con-
sistent with this trade-off model, negative associations have
been directly observed between educational attainment and

received 9 June 2016; accepted 19 September 2016. First pub-
lished online 20 October 2016.
address for correspondence: Michael Woodley of Menie,
Department of Psychology, Technische Universität Chem-
nitz, Reichenhainer Str. 70, 09126 Chemnitz, Germany.
E-mail: Michael.Woodley@vub.ac.be

628

https://doi.org/10.1017/thg.2016.82 Published online by Cambridge University Press

https://doi.org/10.1017/thg.2016.82
mailto:Michael.Woodley@vub.ac.be
https://doi.org/10.1017/thg.2016.82


How Cognitive Genetics Influence Fertility

fertility, both across cultures (Meisenberg, 2008) and time
(Skirbekk, 2008). Meisenberg (2010) utilized structural
equation modeling to analyze factors mediating the rela-
tionship between IQ and fertility among a large, nation-
ally representative sample of the U.S. population. Consis-
tent with the trade-off model, it was found that educational
attainment partially mediated the negative relationship be-
tween the two. Meisenberg furthermore found indications
of more strongly negative correlations between educational
attainment and fertility among the female population.

Recent developments involving genome-wide associ-
ation studies (GWAS) have yielded evidence that cer-
tain single-nucleotide polymorphisms (SNPs; termed ‘hits’)
have robust (genome-wide significant) associations with
individual differences in educational attainment and also
IQ (e.g., Rietveld et al., 2013; Rietveld et al., 2014). In-
creased power has led to the discovery of dozens of these
‘hits’, which when concatenated into polygenic ‘risk’ scores
(PGS), seem to predict a portion of the individual variation
in both educational attainment and IQ across several large
databases (Okbay et al., 2016; Selzam et al., 2016). One po-
tential use for these PGS values is in investigating their role
as antecedents of fertility. Two studies have attempted to do
precisely this. Beauchamp (2016) utilized a large and rep-
resentative sample of the population of the United States
born between 1931 and 1953, sourced from the U.S. Health
and Retirement Study (HRS). It was found using regression
analysis that an educational attainment PGS negatively pre-
dicted fertility (measured as relative lifetime reproductive
success). The magnitude of the association, coupled with
a correction for the ‘missing’ heritability of educational at-
tainment, led Beauchamp to predict that attained education
should decline at a rate of 1.5 months per generation due to
genetic selection. A second study (cf. Conley & Domingue,
2016; Conley et al., 2016), also utilizing data from the U.S.
HRS but this time from samples born between 1919 and
1955, replicated Beauchamp’s finding of negative associa-
tions between an educational attainment PGS and com-
pleted fertility; however, the apparent secular increase in the
strength of the negative phenotypic association between the
two was not paralleled by a corresponding secular increase
in the strength of the genetic association.

Unlike Meisenberg (2010), neither Beauchamp (2016,
cf. Woodley of Menie, 2016) nor Conley and co-workers
(2016) examined IQ directly, nor was the possibility of me-
diation considered. In point of fact, these researchers treat
educational attainment as a phenotype, and as a potential
target for selection. Educational attainment is better con-
ceptualized, however, as an outcome of facultative calibra-
tion during childhood and young adulthood in response
to the action of heritable characteristics such as IQ, with
which it shares ≈60% of its (linkage pruned) genetic vari-
ance (Okbay et al., 2016). Thus, as Lynn predicted, it is likely
the trade-off between the opportunity to acquire skills and
knowledge, and fertility evoked by a high-IQ individual’s ge-

netic affinity for the specific set of environments embodied
in the educational system, rather than a genetic disposition
towards lower fertility per se, that should result in reduced
fertility among such individuals. Consistent with this is the
relatively low additive heritability of fertility in modern
populations (≈0.30; Tropf et al., 2015), which indicates con-
siderable potential plasticity in response to environmental
mediators such as years of schooling. Furthermore, genes
for higher IQ do not seem to suppress intrinsic fertility, as
indicated by the presence of small-magnitude positive phe-
notypic correlations with indicators of reproductive fitness
potential, such as sperm quality (Arden et al., 2009). This
is also consistent with the observation that among Western
population, in the absence of factors such as universal ed-
ucation prior to the 19th century, potential proxies for IQ
such as social status actually seem to have been positively
phenotypically associated with fitness outcomes (Skirbekk,
2008).

In the present study, the question of the potential medi-
ating role of educational attainment on the relationship be-
tween IQ, PGS, and fertility will be considered in relation to
newly released cognitive PGS data from the National Longi-
tudinal Study of Adolescent to Adult Health (Add Health),
as utilized in a recent publication by Domingue and col-
leagues (2015).

Methods
Data

Data for the current study were drawn from the Add
Health, a longitudinal and nationally representative sample
of American youth enrolled in middle or high school during
the 1994–1995 academic year (Harris et al., 2009). Partici-
pants were recruited using a multistage cluster design re-
sulting in the selection of 132 schools (80 high schools and
52 middle schools) stratified by region, urbanicity, school
type, ethnicity, and size. Students at each selected school
were asked to participate in the study, with a total of over
90,000 students completing the in-school portion. A sub-
sample of these students was asked to participate in the
more comprehensive in-home portion of the study. In to-
tal, 20,744 participants aged between 12 and 21 (and 17,700
of their primary caregivers) completed the Wave I in-home
interview, which covered a wide variety of topics, including
physical and mental health, delinquent behavior, physical
development, and family interactions. The second wave of
the study was completed between 1995 and 1996 and in-
cluded 14,738 participants who also completed the Wave
I interview. Wave III of the study was completed between
2001 and 2002, when participants were aged between 18
and 28 years, and included 15,197 of the original partici-
pants. Based on the amount of time that elapsed between
the Wave II and Wave III interviews (approximately 5–6
years), the survey instruments utilized were updated to tap
more age-appropriate topics such as romantic relationships,
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TABLE 1
Descriptive Statistics for the Full Sample and Male and Female Sub-samples

Full sample Males Females

Mean/% SD/N Range Mean/% SD/N Range Mean/% SD/N Range

Fertility measures (Wave IV)
Living children 1.19 1.24 0–7 0.98 1.20 0–7 1.38 1.25 0–7
Pregnancies 1.61 1.73 0–19 1.37 1.78 0–19 1.83 1.66 0–9
Live births 1.09 1.24 0–7 0.89 1.19 0–7 1.28 1.26 0–7

Verbal IQ (Wave I) 97.13 14.43 9–134 97.88 14.57 9–133 96.44 14.27 29–134
Educational attainment (Wave IV) 5.45 1.85 1–8 5.01 1.94 1–8 5.45 1.85 1–8

Less than 8th grade (%) 0.58 11 – 0.55 5 – 0.61 6 –
Some high school (%) 10.34 195 – 12.71 115 – 8.15 80 –
Completed high school (%) 18.45 348 – 22.55 195 – 15.60 153 –
Some vocational school (%) 3.23 61 – 3.54 32 – 2.96 29 –
Completed vocational school (%) 6.68 126 – 4.86 44 – 8.36 82 –
Some college (%) 33.67 635 – 33.15 300 – 34.15 335 –
4-year degree (%) 17.39 328 – 16.46 149 – 18.25 179 –
Graduate school or greater (%) 9.65 182 – 7.18 65 – 11.93 117 –

Polygenic education score (Wave IV) 0.00 1.00 −2.89–3.66 0.00 1.00 −2.89–3.47 0.00 1.00 −2.49–3.66
Statistical covariates

Age (Wave I) 16.02 1.72 12–21 16.08 1.74 12–21 15.97 1.70 12–21
Age (Wave IV) 28.4 1.76 24–34 28.47 1.8 24–34 28.34 1.72 24–33
Race (Wave IV) – – 0–1 – – 0–1 – – 0–1

Caucasian (%) 54.24 1,023 – 496 54.81 – 53.27 527 –
All other races (%) 45.76 863 – 409 45.19 – 46.28 454 –

Sex (Wave I) 0–1 0–1 0–1
Male (%) 47.99 905 – – – – – – –
Female (%) 52.01 981 – – – – – – –

N 1,886 905 981

Note: The wave at which each set of measures were collected are presented in parentheses.

civic participation, and contact with the criminal justice
system. Finally, the fourth and most recent wave of inter-
views was completed between 2007 and 2008, when partic-
ipants were aged between 24 and 34 years. A total of 15,701
participants from the in-home sample completed the Wave
IV interview.

Nested within the full sample of in-home participants is a
sub-sample of over 3,000 pairs of individuals from the same
household (including twin and sibling pairs; for more in-
formation on sampling procedures and the composition of
the sibling sub-sample, see Harris et al., 2006). Members
of the sibling sub-sample who participated in the fourth
wave of the study were also asked to provide a saliva sam-
ple for DNA extraction.1 Approximately 96% of the sib-
ling sub-sample provided saliva samples (for additional de-
tails, see Harris et al., 2013). After a series of quality control
(QC) and quality assurance (QA) steps, genome-wide data
were made available for a total of 1,886 participants (905
males and 981 females; for a more detailed description of
the QC/QA procedures, see McQueen et al. (2015)). The fi-
nal analytic sample was restricted to those individuals with
valid genome-wide information (n = 1,886). Compared to
omitted participants, members of the final analytic sample
had a significantly greater number of children (t = -5.27,
p < .001), pregnancies (or a significant other who had been
pregnant; t = -5.00, p < .001), and number of live births (t =
-5.29, p < .001), but had significantly lower levels of verbal

1 All Wave IV participants (n = 15,701) were asked to provide saliva samples, but
the polygenic educational attainment scores employed in the current study were
only estimated for the sibling sub-sample (for more information, see Domingue
et al. (2015), Harris et al. (2013), and McQueen et al. (2015)).

IQ (t = 4.11, p < .001) and educational attainment (t = 6.29,
p < .001), and were younger (t = 3.41, p < .001). The final
analytic sample also included a significantly greater propor-
tion of Caucasian participants (χ2 = 55.46, p < .001), but
the proportion of male participants was not significantly
different from those Wave IV participants who were ex-
cluded from the final analytic sample (χ2 = 1.85, p = .17).
Means, proportions, minimum and maximum values, and
sample sizes for all measures included in the current study
are presented in Table 1. Descriptive statistics are presented
for the full sample as well as the sex-restricted sub-samples.

Measures

Fertility. Fertility was measured using three items from
the Wave IV interview tapping reproductive success. More
specifically, female participants were asked to report the
number of times they had been pregnant (including a cur-
rent pregnancy and pregnancies that resulted in an abor-
tion, miscarriage, or stillbirth), the total number of live
births that resulted from such pregnancies, and the total
number of living children at the time of the interview. Male
participants were asked a similar set of questions, but the
pregnancy item was modified to reflect the number of times
each respondent had ‘made a partner pregnant’. Female
participants reported a greater number of living children
(M = 1.38, SD = 1.25; t = 6.69, p < .001)2, pregnancies
(M = 1.83, SD = 1.66; t = 5.86, p < .001), and live births

2 The discrepancy between live birth and living children numbers is due to adop-
tions, which are not tracked in Add Health, so cannot be excluded. However, the
discrepancy is small, thus including adoptees among the fertility data is not likely
to significantly confound the results.
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(M = 1.28, SD = 1.26; t = 6.83, p < .001) compared to male
participants (M = 0.98, SD = 1.20; M = 1.37, SD = 1.78; M
= 0.89, SD = 1.19, respectively). The construction of the
fertility measure is discussed in more detail below.

Verbal IQ. Verbal IQ was measured using the Picture Vo-
cabulary Test (PVT), a modified version of the Peabody Pic-
ture Vocabulary Test - Revised (PPVT-R), which was ad-
ministered during Wave I interviews between the ages of 12
and 21. Scores on the PVT were measured continuously and
standardized by age (M = 97.13, SD = 14.43). The differ-
ence in PVT scores between male (M = 97.88, SD = 14.57)
and female (M = 96.44, SD = 14.27) participants was sig-
nificant (t = -2.12, p = .03). Strictly speaking the PPVT test
series measures verbal ability; however, it has been found
to correlate strongly with measures tapping other cognitive
domains, indicating that it is a good measure of general in-
telligence (g) also (Dunn & Dunn, 1997).

Educational attainment. During Wave IV interviews,
participants were asked, ‘What is the highest level of edu-
cation you have achieved to date?’ Responses were coded
categorically as follows: 1 = 8th grade or less; 2 = some
high school; 3 = high school graduate; 4 = some vocational
school after high school; 5 = completed vocational school;
6 = some college; 7 = completed a 4-year college degree;
and 8 = additional college beyond a 4-year degree (M =
5.45, SD = 1.85). Females reported significantly greater lev-
els of educational attainment relative to males (t = 5.11, p
< .001).

Polygenic educational attainment score. During Wave
IV interviews, saliva was collected using the Oragene col-
lection method and genotyping was conducted with the
Illumina HumanOmni1-Quad v1 platform (Harris et al.,
2013; McQueen et al., 2015). After QC procedures, valid
data were available for 940,862 SNPs (for more informa-
tion, see McQueen et al. (2015)). Using information from
the genome-wide database, polygenic educational attain-
ment scores (PGS) were calculated for each participant.
More specifically, SNPs included in the genetic database
were matched with SNPs identified in a large-scale GWAS
of educational attainment (Rietveld et al., 2013). Each of
the identified SNPs were then multiplied by the effect size
estimated in the GWAS, summed, and then z transformed
(M = 0, SD = 1) to create the PGS (for additional details,
see Domingue et al. (2015)).

Statistical covariates. Three demographic covariates
were also included in the estimated models. First, Wave I
age was measured continuously in years (M = 16.02, SD =
1.72) and was not significantly different between males and
females (t = -1.43, p = .15). Second, race was measured
dichotomously such that 0 = Caucasian (54.24%) and 1 =
all other races (45.76%). The distribution of the examined

race categories was not significantly different across sex
(χ2 = 0.22, p = .64). Domingue et al. (2015) found that
the PGS predicted both educational attainment and verbal
IQ to an approximately equal degree in both Whites and
Blacks. Race is nevertheless controlled in the present anal-
ysis, as it is a potential source of confounding population
stratification on the distribution of PGS and the outcome
measures. Third, sex was included in all models analyzing
the full sample and was coded 0 = female (52.01%) and
1 = male (47.99%).

Plan of Analysis

Models were estimated in three steps. First, zero-order cor-
relations were estimated in an effort to examine the poten-
tial bivariate associations. The second step of the analysis
involved a series of measurement models aimed at identify-
ing a fertility factor. Confirmatory factor analysis (CFA) was
used to identify the latent fertility measure using the three
indicators from Wave IV (total number of pregnancies, live
births, and children). Since the CFA included only three
indicators, the resulting model was just-identified (i.e., the
number of estimated parameters was equal to the degrees of
freedom), resulting in uninterpretable fit parameters (e.g.,
χ2 = 0.00, p = 1.00). Despite this limitation, the magni-
tude (and accompanying p values) of the standardized fac-
tor loadings can be used as a secondary indicator of the ex-
tent to which the estimated model taps the underlying la-
tent construct of fertility. Since the results of preliminary
analyses revealed that all of the indicators included in the
fertility measurement model significantly differed between
males and females, a series of multi-group CFA (MGCFA)
models were estimated to test for measurement invariance
across sex. Comparative model fit was estimated using like-
lihood ratio tests (LRTs), the results of which are distributed
in χ2 units.

The third and final step of the analysis involved the es-
timation of a series of structural equation models (SEMs)
examining the direct and indirect pathways between the
PGS, educational attainment, verbal IQ, and fertility. Based
on the primary objectives of the current study, four spe-
cific pathways were examined. First, the direct pathway be-
tween the PGS and fertility was examined. Second, in an
effort to identify the potential mechanisms that ultimately
connect previously observed associations between PGS and
fertility, two indirect pathways were examined, with ver-
bal IQ and highest level of educational attainment included
as potential mediators. An additional indirect pathway, in
which educational attainment mediated the association be-
tween verbal IQ and fertility, was also examined. Third, in
an effort to identify potential mechanisms that ultimately
connect PGS and educational attainment, verbal IQ was
also entered into the SEM as a potential mediating variable
between the PGS and highest levels of educational attain-
ment. All models included controls for age, race, and sex (in
models examining the full analytic sample). In an effort to
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FIGURE 1
(Colour online) Heat map displaying zero-order correlation coeffi-
cients for study measures.
Note: Pearson correlation coefficients presented. Darker colors
indicate larger correlation coefficients. PGS = polygenic score.
***p < .001.

examine the potential moderating effects of sex, additional
multi-group SEMSs were also estimated. The resulting in-
direct effects for males and females were compared using
difference tests and z scores. Directly in line with previ-
ous research (MacKinnon et al., 2002; MacKinnon et al.,
2004; Preacher & Hayes, 2008), the standard errors, and
corresponding confidence intervals, for the indirect path-
way models were estimated using bootstrapping procedures
with 5,000 replications.

All models were estimated using Mplus 7.4 (Muthén &
Muthén, 2008–2012). Measurement models were estimated
using a maximum likelihood estimator with robust stan-
dard errors (MLR), while SEMs (due to the presence of
a categorical educational attainment measure) were esti-
mated using a weighted least squares estimator with robust
standard errors (WLSMV), and missing data were handled
using full information maximum likelihood (FIML) esti-
mation. Model fit was assessed using χ2, the comparative
fit index (CFI), the Tucker-Lewis Index (TLI), and the root
mean square error of approximation (RMSEA). The follow-
ing conventional cut-off values were used to evaluate ac-
ceptable model fit: CFI ≥ 0.95; TLI ≥ 0.95; and RMSEA ≤
0.06 (for more information, see Hu and Bentler (1999)).

Results
Bivariate Correlations

The results of the zero-order correlations are presented as
a heat map in Figure 1, along with the corresponding coef-
ficients and accompanying significance levels. In an effort
to aid in interpretation, darker colors indicate larger cor-
relation coefficients. As indicated in the figure, all of the

examined study variables were significantly (p < .001) as-
sociated with one another at the bivariate level. The fertil-
ity measures were all strongly associated with one another,
with correlations ranging between r = 0.76 (the association
between pregnancies and live births) and r = 0.99 (the as-
sociation between number of children and live births). In
addition, the fertility measures were negatively associated
with verbal IQ, educational attainment, and the PGS, pro-
viding preliminary evidence that the association between
genetic influences and fertility may be mediated by educa-
tional influences. Finally, verbal IQ, educational attainment,
and the PGS were all modestly associated with one another.

Measurement Models

The next step in the analysis involved the estimation of a
series of measurement models assessing the latent fertility
measure. The first measurement model included the full an-
alytic sample and allowed the three fertility indicators to
freely load on a single latent factor. As mentioned above,
due to the limited number of indicator variables, this model
is just-identified and yielded perfect (yet trivial) fit indices.
Despite this limitation, a number of findings from the anal-
yses provide tentative evidence that the indicator variables
are tapping a single underlying latent construct. First, the
results of the zero-order correlations indicated that the fer-
tility measures were all strongly correlated with one an-
other. Second, the standardized factor loadings from the
measurement model were large, ranging between 0.760 (to-
tal number of pregnancies) and 0.997 (total number of live
births), and statistically significant (p < .001). Third, a sup-
plemental measurement model (results not presented, but
available upon request) in which the resulting latent fertility
factor was regressed on the statistical covariates (age, race,
and sex) was estimated in an effort to increase overall de-
grees of freedom, allowing for the estimation of fit indices.
Despite a significant χ2 estimate (which is sensitive to sam-
ple size), the resulting model provided an adequate fit to the
data (χ2 = 26.58, df = 6, p < .001; CFI = 0.98; TLI = 0.95;
RMSEA = 0.04).

Based on these findings, a series of MGCFA models
were estimated to test for measurement invariance across
sex. Subsequently, restrictive models were tested against
the configural model (i.e., all parameters freed across both
groups) using LRTs. The resulting models indicated both
metric (�χ2 = 4.47, df = 2, p = .11) and scalar invariance
(�χ2 = 6.76, df = 4, p = .15). However, constraining the
residual variances to equality (i.e., residual variance invari-
ance) significantly worsened overall fit (�χ2 = 14.00, df =
7, p = .05). Finally, constraining the variance of the fertility
factor to equality across groups (i.e., factor variance invari-
ance) did not worsen fit (�χ2 = 8.55, df = 5, p = .13), but
constraining factor means to equality resulted in worsened
fit (�χ2 = 47.74, df = 6, p < .001). Based on these results,
the residual variances of the indicators and the means of
the fertility factor were freely estimated across sex, but all

632 TWIN RESEARCH AND HUMAN GENETICS

https://doi.org/10.1017/thg.2016.82 Published online by Cambridge University Press

https://doi.org/10.1017/thg.2016.82


How Cognitive Genetics Influence Fertility

FIGURE 2
Structural equation model for the full sample.
Note: Standardized coefficients presented with robust standard errors in parentheses. Solid paths were significant at the p < .05 level
and dashed path coefficients had accompanying p values that were greater than .05. The model was estimated using a weighted least
squares estimator with robust standard errors and included age, race, and sex as covariates.

other parameters were constrained to equality. The result-
ing MGCFA fit the data closely (χ2 = 8.55, df = 5, p = .13;
CFI = 0.99; TLI = 0.99; RMSEA = 0.03).

Structural Equation Models

The next step in the analysis involved the estimation of a
series of SEMs aimed at examining the direct and indirect
pathways between the study measures. The SEM examining
the full analytic sample, along with standardized path coef-
ficients and accompanying robust standard errors, is pre-
sented in Figure 2. Since only theoretically relevant paths
were estimated, the resulting model was over-identified, ef-
fectively allowing the estimation of fit indices (df = 11), with
the resulting model providing an adequate fit to the data (χ2

= 28.23, df = 11, p < .01; CFI = 0.99; TLI = 0.99; RMSEA =
0.03). The results indicated a negative, but non-significant
association between the PGS and fertility (β = -0.045, p =
.11), but positive and significant associations between the
PGS and both verbal IQ (β = 0.19, p < .001) and educa-
tional attainment (β = 0.11, p < .001). Educational attain-
ment was also significantly associated with fertility (β =
-0.28, p < .001), indicating that participants with higher
levels of education had overall lower rates of fertility. The
association between verbal IQ and fertility was also nega-
tive, but only marginally significant (β = -0.05, p = .049).

Finally, the association between verbal IQ and educational
attainment was positive and significant (β = 0.39, p < .001).

The next step of the analysis involved the estimation of
a multiple group model in an effort to examine direct and
indirect pathways among the male and female sub-samples.
The multiple group model fit the data closely (χ2 = 30.28,
df = 22, p = .11; CFI = 0.99; TLI = 0.99; RMSEA = 0.02)
and the results are presented in Figure 3. The top panel of
the figure presents the results for the male sub-sample. The
overall pattern of results converged with findings from the
full sample. The association between the PGS and fertility
remained non-significant (β = -0.07, p = .07), but the as-
sociations between the PGS and both verbal IQ (β = 0.21,
p < .001) and educational attainment (β = 0.11, p = .004)
were both positive and significant. In addition, the associa-
tion between educational attainment and fertility was neg-
ative and significant (β = -0.24, p < .001) and the associ-
ation between verbal IQ and educational attainment was
positive and significant (β = 0.40, p < .001). The primary
divergence from the pattern of findings observed in the full
sample was a non-significant association between verbal IQ
and fertility (β= -0.05, p = .27). The results from the female
sub-sample are presented in the bottom panel of the figure
and were highly similar to the findings from the male sub-
sample. Once again, the association between the PGS and
fertility was non-significant (β = -0.03, p = .51), but the
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FIGURE 3
Structural equation model for the male and female sub-samples.
Note: Standardized coefficients presented with robust standard errors in parentheses. Solid paths were significant at the p < .05 level
and dashed path coefficients had accompanying p values that were greater than .05. All models were estimated using a weighted least
squares estimator with robust standard errors and included age, race, and sex as covariates.

associations between the PGS and both verbal IQ (β = 0.18,
p < .001) and educational attainment (β = 0.11, p < .001)
were significant. Furthermore, the associations between ed-
ucational attainment and both fertility (β = -0.32, p < .001)
and verbal IQ (β = 0.40, p < .001) were significant. Similar
to the results from the male sub-sample, the association be-
tween verbal IQ and fertility was non-significant (β = -0.06,
p = .07).

The final step of the analysis involved the estimation of a
series of indirect pathways aimed at examining the poten-
tial mechanisms that mediate the association between PGS
and both educational attainment and fertility. The results of
the indirect pathway models are presented in Table 2. The
model examining the full sample provided an adequate fit
to the data (χ2 = 28.23, df = 11, p = .003; CFI = 0.99;
TLI = 0.99; RMSEA = 0.03) and revealed that verbal IQ
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TABLE 2
Indirect Path Coefficients for the Full Sample and the Male and Female Subsamples

Male–female
Full sample Males Females comparison

Coef p value Coef p value Coef p value z score p value

Pathways examining educational attainment
Direct pathway

PGS ✶ Educational attainment 0.122 .000 0.116 .003 0.126 .001 − 0.661 .509
(0.070; .175) (0.037; .191) (0.055; .201)

Indirect pathways
PGS ✶ Verbal IQ ✶ Educational attainment 0.083 .000 0.090 .000 0.078 .000 0.490 .624

(0.063; .107) (0.062; .125) (0.046; .111)
Pathways examining fertility

Direct pathways
PGS ✶ Fertility –0.049 .060 − 0.071 .064 –0.028 .427 − 0.828 .407

(−0.100; .004) (−0.145; .004) (−0.099; .043)
Verbal IQ ✶ Fertility –0.004 .057 − 0.003 .289 –0.005 .091 0.422 .673

(−0.008; .000) (−0.009; .002) (−0.010; .001)
Indirect pathways

PGS ✶ Verbal IQ ✶ Fertility –0.011 .067 − 0.010 .293 –0.012 .127 0.201 .841
(−0.024; .000) (−0.031; .007) (−0.030; .002)

PGS ✶ Educational attainment ✶ Fertility –0.033 .000 − 0.026 .010 –0.040 .002 0.845 .398
(−0.051; −.019) (−0.047; −.008) (−0.069; −.017)

Verbal IQ ✶ Educational attainment ✶ Fertility –0.008 .000 − 0.006 .000 –0.010 .000 1.873 .061
(−0.010; −.006) (−0.009; −.004) (−0.013; −.007)

Note: Unstandardized coefficients presented with bias-corrected 95% confidence intervals (5,000 bootstrap replications) in parentheses. The presented z
scores (along with accompanying p values) test the difference between the direct and indirect effects across males and females. Models were estimated
using a weighted least squares estimator with robust standard errors and included age, race, and sex (in the full model) as covariates. PGS = polygenic
score.

significantly mediated the association between the PGS and
educational attainment (b = 0.083, p < .001). Educational
attainment (b = -0.033, p < .001) also significantly medi-
ated the association between PGS and fertility, while the
indirect pathway involving verbal IQ approached signifi-
cance (b = -0.011, p = .067). Finally, educational attainment
also significantly mediated the association between verbal
IQ and fertility (b = -0.008, p < .001). The multiple group
model also provided an adequate fit to the data (χ2 = 37.39,
df = 25, p = .053; CFI = 0.99; TLI = 0.99; RMSEA = 0.02).
The results for the male sub-sample revealed that verbal IQ
significantly mediated the association between PGS and ed-
ucational attainment (b = 0.090, p < .001). In addition, ed-
ucational attainment significantly mediated the association
between PGS and fertility (b = -0.026, p = .010) and ver-
bal IQ and fertility (b = -0.006, p < .001). The association
between PGS and fertility was not mediated by verbal IQ
(b = -0.010, p = .293). The results from the female sub-
sample were similar, with verbal IQ significantly mediating
the association between PGS and educational attainment
(b = 0.078, p < .001), but this did not significantly medi-
ate the association between PGS and fertility (b = -0.012, p
= .127). Finally, educational attainment significantly medi-
ated the association between PGS and fertility (b = -0.040,
p = .002) and the association between verbal IQ and fer-
tility (b = -010, p < .001). The difference between the ob-
served indirect effects for the male and female sub-samples
were compared using a z score and are presented in the final
columns of the table. The results of the difference tests re-
vealed non-significant differences between all of the exam-

ined indirect effects, indicating that the examined pathways
were not significantly moderated by sex.

Discussion
The results of the SEMs were consistent with the expecta-
tion that verbal IQ should mediate the relationship between
PGS and educational attainment. The direct effect of IQ on
educational attainment is furthermore consistent with the
expectation that the latter is (in part) an outcome variable
of the former, rather than the other way around. This in-
ference of causation accords with the finding that the di-
rect effect of education on IQ is at the level of specific cog-
nitive skills and competencies, rather than at the level of g
(Ritchie et al., 2015), which is the more genetically substan-
tive variance component of IQ (Rimfeld et al., 2015). Hence,
the path PGS ✶ IQ ✶ Educational attainment would appear
to be justified in as much as the PVT test functions in these
models as a good proxy for g (e.g., Dunn & Dunn, 1997).
The presence of direct paths from PGS to both verbal IQ
and educational attainment are furthermore consistent with
the existence of substantial shared genetic variance between
the two measures (Okbay et al., 2016).

Also consistent with expectations is the finding that edu-
cational attainment mediates the relationship between ver-
bal IQ and the latent fertility measure. Importantly, the
PGS did not significantly directly predict fertility once the
pattern of mediation was taken into consideration. In this
sample, the genetic disposition towards a given level of IQ
does not therefore entail a direct fitness penalty. Instead, the
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negative correlation with fertility is largely a function of in-
dividuals with different cognitive genotypes actively seek-
ing out different degrees of exposure to education, which is
in turn traded against fertility. The significant direct path
from verbal IQ to fertility (which was only found in the
mixed-sex model) furthermore suggests the independent
action of additional unmodeled IQ-dependent factors on
fertility.

The results of the SEMs were robust in controlling for
age, race, and sex (in the first model). The results of a multi-
ple group SEM furthermore revealed no significant indica-
tions of dimorphism in the strength of the path coefficients,
which runs contrary to the expectation that females should
be more sensitive to the effects of education on fertility.

One difference between the present study and the study
of Beauchamp (2016), in particular, concerns the nature of
the PGS variable. In the case of the present study, the PGS
variable derives from the study of Rietveld et al. (2013), who
found three loci to be reliable predictors of educational at-
tainment. The PGS variable employed by Beauchamp was
sourced from a more recent and much larger GWAS analy-
sis (Okbay et al., 2016), which found associations between
educational attainment and 74 loci — a considerably larger
number. Examining the pattern of mediation using the
more recent PGS would be an important step in determin-
ing the robustness of these results.

Another important difference between the present study
and those of Beauchamp (2016) and Conley et al. (2016)
concerned their use of a sample that was in completed fertil-
ity (e.g., the participants of the sub-sample of the HRS uti-
lized by Beauchamp were aged between 50 and 70 years).
The mean age of our Wave IV participants by contrast is
28.4 years (with ages ranging from 24 to 34 years). Fertility
is typically complete by the mid-40s for both males and fe-
males in the West (although males can continue to produce
children into their sixth decade of life, in practice relatively
few of them do so, with only around 2.5% of males continu-
ing or starting to produce children after the age of 45; Bos-
chini et al., 2011). At age 29, males in the United States have
completed approximately 51.5% and females 50.8% of their
fertility (see Martinez et al., 2012, Tables 3 and 4, pp. 15–16).
This is important as it has been noted that incomplete fer-
tility inflates the negative association between fertility and
IQ, largely because those with higher IQ are typically older
when they start producing offspring, thus a larger propor-
tion of high-IQ individuals will register as childless in their
20s than in their 40s (Neiss et al., 2002; Vining, 1982; 1995).
It is thus possible that the present results may have been
somewhat different had the sample been in completed fer-
tility. The effect of education as a mediator might weaken, as
those with higher IQs (and who have spent greater amounts
of time in education) will have had an opportunity to repro-
duce, whereas other factors, such as income and also ideol-
ogy, might also come to play additional and independent
roles in determining fertility outcomes at completed fertil-

ity (Meisenberg, 2010). It is also expected that the sex dif-
ference would be more prominent at completed fertility as
the larger variance in male reproductive years enables those
with a higher IQ to continue reproducing for longer. Higher
IQ males are furthermore more tolerant of hypogamy (mar-
rying down) than are females of equivalent ability (Johnson
et al., 2012); hence, higher IQ males are less likely than fe-
males of equivalent ability to be childless (Kanazawa, 2014).
This has the effect of attenuating the negative IQ fertility as-
sociation among males at completed fertility to a greater de-
gree than among females (Woodley of Menie et al., 2016).
We nevertheless expect the basic pattern of mediation de-
tected in the present study to persist at completed fertil-
ity. This expectation is consistent with Meisenberg’s (2010)
finding of a role for educational attainment as a mediator of
the phenotypic IQ–fertility relationship in a representative
sample of the U.S. population much closer to having com-
pleted its fertility (aged between 39 and 47 years).

This study is the first to consider the role of mediation in
the relationship between educational attainment PGS and
fertility, based on the various causal and meditational path-
ways linking IQ to fertility that have been proposed in pre-
vious phenotype-only research. Future efforts should there-
fore focus on replicating the present findings using other
databases in which PGS data along with measures of IQ, ed-
ucational attainment, and completed fertility are available.
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