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STABILITY CRITERIA FOR
CONTRACTIVE SEMIGROUPS

VIA MAXIMALITY PROCEDURES

MlHAI TURINICI

An abstract metrical version of the well-known Ekeland and

Br^ndsted maximality principle is used to derive a number of

stability criteria for a class of (function) contractive semi-

groups on (complete) metric spaces, extending a number of

classical contributions due to Bre'zis and Browder.

0. Introduction

One of the most important problems concerning a wide class of

evolution processes acting on a (complete) metric space is that of finding

sufficient "local" conditions in order that a "global" stability property -

involving a certain class of subsets of the ambient metric space - be

obtained. To attack this problem, the basic instrument is the differential

inequalities technique; see, as a classical reference, the excellent 1970

Bhatia and Szegb survey [/]• Recently, a second way of investigating the

same topic has been founded by the 1976 Brezis and Browder paper [6] in

which a general ordering principle - discovered by the authors - is used to

derive a number of important results. The present note may be considered

as being included in this last category; more exactly, our main aim is to

state and prove a number of stability criteria for a class of (nonempty)

subsets of a metric space, with respect to a certain family of contractive

semigroups acting on that space, the basic tool of our approaches being a
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maximality principle on ordered metric structures extending - from an

abstract metric viewpoint - a similar one to Eke I and and Br^ndsted's [76],

["7], It must be observed at this moment that this maximality principle also

contains the above quoted differential inequalities procedure as a common

basis for studying such a class of problems; we refer to the author's

paper [32] for more details concerning these aspects.

1. A maximality principle

Let X be an abstract nonempty set and let - be a (partial)

ordering on X . For any subset Y of X and any couple x, y of Y

with x 5 y , let Y(x, 5) (respectively, Y(x, y) ) denote the subset of

all z in Y with x < 3 (x < z S y) . A subset Y of X will be

called a chain if and only if, for any x, y € Y , either x £ y or

y - x ; also, an enumerable subset (or, in other words, a sequence)

Y = {y ; n € N) of X will be called (strict) monotone if and only if

[y . < y .) y . £ y . , whenever i < j , i, j (. N (here < denotes the
•*• 0 '• 3

strict ordering on X induced by - ). Let d be a metric on X . Let

us denote (for any subset Y of X and any element x in X ) by

d(x, Y) the usual distance betveen x and Y (the infimum of all

d(x, y) , y € Y ). At the same time, a subset Y of X will be termed

strong order-compact if for any monotone sequence [y ; n € N) of Y

there exists a subsequence (y , •.; n € N) of Y and an element z of Y

with y / v •*• z as n •*•<*> and y 2 s , all n (. N . The other

notational conventions are more or less standard.

Now, with these preliminaries, the following maximality principle may

be stated and proved.

THEOREM 1. Suppose the ordered metric space (X, d, 2) and the

subset Y of X are such that

(i) Y is strong order-compact.

Then, for every x in Y there is a Y-maximal element z in Y with

x s z (that is> for every x i Y there is an element z € Y with x 5 z

and, in addition, for any y € Y , the relation z < y does not hold).

Proof. Let C be a (nonempty) chain in Y . We claim that the
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following property holds:

(1) for any z > 0 there exists x = X ( E ) in C such that y, z

in C and x 5 y 2 z imply d[y, C(z, 5)) < e .

Indeed, suppose (l) is not valid. Then, there must be a number £ > 0

such that, for every x in C , a couple y, z in C may be found with

x 2 y < z and d[y, C{z, 2)) 2 e (of course, in such a situation

y < z ). Let x in C ; by this assumption, we get a couple y , 3.. in

C with xl 5 y1 < 31 and d Q ^ , C[z^t 5)) 5 e . Put \ = x
2 '' t y t h e

same procedure, a couple J/p> z in C may be chosen with x * y < z

and d\u~, C[z , 2j) 2 £ , and so on. Consequently, we inductively get a

strict monotone sequence [y ; n € N) in C with

d{yn, yj i e , all n, m € ff , n < m ,

contradicting (i) and (l) is proved. In such a case, it is not hard to

build up a monotone sequence (x ; n € N) in C satisfying the condition

(2) n € N , y, z € C and x^ < y < z imply d{y, C{z, <)) < (%)" .

Now, let y € C[x x,.) be given; by (2), an element y € c[x 5) may

be found with d[y , y ) < % . Without any loss of generality one may

suppose j,' € c(x , 1 ) in which case, again by (2), an element

J/, € C[x <) may be chosen with d[y y ) < (%) and so on. By

induction, we get a monotone sequence [y ; n € N) in C satisfying

so that it appears as a monotone Cauchy sequence in Y and therefore, by

(D > y •*• e as « •*• °° and t/ S c , all n € ff , for some e in ^ .

Now, let z in C be arbitrary and fixed. Without loss of generality one

may suppose y 5 z , for all n € N in which case, by (2), a monotone

sequence [z ; n € N) in C(z, 5) may be constructed with
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d{yn, zn) < (*)" , a l l n € N ,

and therefore z •*• o as n •*• °° which implies, again by (•£,!, z £ c all

n € ff , and, in particular, s 5 e , proving C is bounded above in Y .

By the classical Zorn theorem [2/, p. 33] corresponding to any x in Y

there is a Y-maximal element 3 in Y with x - z , and this completes

the proof. //

Now X, d and £ being as before, let us call a subset Y of X

order-admissible if for any 1/ of I there exists z in X with

2/ < s . Then, as an immediate - and important - consequence of the above

result, we have

THEOREM 2. Suppose the ordered metric space (X, d, s) and the

nonempty proper subset Y of X are such that condition (i) plus

(ii) Y is order-admissible

hold. In this case3 for every x € Y there is an element z i X\Y with

x < z .

Proof. As Theorem 1 applies, for the arbitrary fixed element x of

Y a y-maximal element y in Y may be found with x 5 y . Furthermore,

given y in Y there is, by (ii), an element z in X with y < z and

this will complete the proof because, evidently (by the y-maximality of y

in Y ) the relation z € Y is impossible. //

A partial indication about the power of this maximality principle

follows from the considerations below. Again let X, d and 5 be endowed

with their usual meaning. The considered ordering 5 will be termed self-

closed if, for any monotone sequence [x ; n 6 Ii) in * and any element

x of AT with x •* x as n -*• °° we have x < x , all n € N ;

correspondingly, a subset Y of X will be called order-compact if any

monotone sequence in Y has a (monotone) subsequence converging to some

element of Y . In such a case, if we suppose condition (i) is replaced by

the pair of stronger conditions

(Hi) 5 is a self-closed ordering,

(iv) Y is order-compact,

the corresponding variant of Theorem 1 appears as a direct extension of a
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similar one of the author's [32] and is proved by an ordinary induction

argument. Moreover, it was shown the above quoted author's result may be

considered as an abstract metric variant of Eke I and's as well as

BnaSndsted's approaches [75, 16, 17, 7, 9] (see also Brezis and Browder [6]

and Turinici [37]) or, equivalently - under a pattern developed by Bourbaki

[4] and refined by Brtfndsted [8] - of Caristi's fixed point theorem [72]

(see in this direction Browder [77], Kasahara [20], Kirk [22], Pasicki

[26], Siegel [29], Turinici [33], Wong [39] for a number of related view-

points concerning this topic) so that, the maximality principle we

presented before also extends all these contributions. On the other hand,

a sufficient condition assuring the validity of (iv) is evidently

(iv)' Y is compact

proving Theorem 1 also may be interpreted as a partial metric extension of

Theorem 2.2 established by the author [30] through a direct "intersection"

technique (see also Wallace [37] as well as Ward [38]). Finally, Theorem

2 may be considered as a "threshold" theorem, largely used in the

formulation of the main results, as we shall see below.

2. The main results

In what follows, a precise statement of the results discussed in the

introduction will be given. Let f : R+ •*• R+ be a given function: it

will be called normal, provided that

(3) f(t)f(s) > fit+e) , all t, 8 6 J?+ ,

and the associated function f* : R •*• R defined by

W /*(*) = sup(f(s); 0 < a < *) , t € R+ ,

exists. In the same context, a function h : R+ -*• R+ will be termed

f-adnrissible, if it satisfies

(5) f{s)h(t-s) 5 hit) - h(s) , t, s (. R+ , t > s ,

(6) hit) > 0 = ft(0) , all t > 0 ,

and the initial function / is said to be proper if the class A - of all

admissible function h : R •*• R is not empty. Concerning these notions,

it should be noted that, in many practical situations, a normal function is

also a proper one: for example, if we suppose the normal function /
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sa t i s f i e s , instead of (3), the stronger condition

(3) ' fit)fis) = fit+s) , all t, 8 € i?+ ,

as well as the supplementary hypothesis

(7) fit) > 1 = fiO) (< 1 = fiO)) , all t > 0 ,

then, for every X < 0 (> 0) the function h : R+ •* R+ defined by

hit) = A(l-/(t)) , t € R , is a /-admissible one, while in the case of

an arbitrary normal function f satisfying the second part of (7), a

standard /-admissible function is that defined by the above procedure with

X = 1 .

In what follows, iV, d) is a complete metric space and / : i?+ -»• R+

a normal and proper function. By a /-contractive semigroup (in Brezis and

Browder's terminology) or, equivalently, a f-contractive semidynamical

system (in Bha+ia and Szego's terminology) on V we mean a mapping

(£, v) t- Sit, v) = Sit)v from R x V into V satisfying

(8) S(O)y = v , all v € V ,

(9) d[s(t)u, S { B ) V ) < fis)d[s{t-s)u, v) , t > e > 0 , u, v t V ,

and, in the same context, given a function h : R -»• R , a nonempty subset

V of F will be called h-stable with respect to S provided that

(10) d{sit)u, W) S hit) , all t €'R+ , u I W .

A satisfactory motivation for introducing these notions will be offered

later; for the moment, we are only interested to state and prove ah

useful stability criterion involving these elements (in fact, the first

main result of the present note), a criterion that may be formulated as

follows.

THEOREM 3. Suppose the elements f,S,h and W defined by the

above conventions are such that h € A~ and

(v) any sequence [v ; n £ N) in W for which there is a

monotone sequence [t ; n € li) in R+ with t -*• t as

n + - for some t € i?+ and d{s{tm-tn)vn, vj 5 Y»(*„-*„) ,

n, m € N , n < m , for some y > 0 has a subsequence

converging to some v of W satisfying in addition
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d[s[t-tn)vn, v) < yh[t~tn) , all n € N .

Then, under the specific supplementary hypothesis

(11) lim inf [l/h(t))d[s{t)v, w) 5 1 , all v € W ,
t-K)

the considered subset W of V appears as a h-stable one with respect

to S ; that is, (10) holds.

Proof. Suppose y > 1 is an arbitrary fixed number and let X

denote the cartesian product R x W endowed with the "product" metric

e[{t, u), (s, v)) = \t-s\ + d(u, v) , (t, u), (e, v) € X ,

and the ordering £ defined by

(t, w) £ (e, u) if * 5 s and d(S(s-t)w, u) 5 yMs-t)

(the fact that 5 is indeed an ordering on X follows directly from

(5), (8) and (9)). Now suppose a € R is arbitrary fixed and let Y

denote the cartesian product [0, a] x W ; it immediately follows by (v)

coupled with our conventions that Y appears as a strong order-compact

subset of X . In such a case, Theorem 1 being applicable, given the

element (0, u) in Y , a ^-maximal element (s, v) in Y may be found

with (0, u) £ (s, v) . Suppose s < a ; for any r € (s, a] and

W € W , the relation (s, v) £ (r, u) does not hold so that we must have

d[s(r-s)v, w) > yh(r-s) , s < r £ a , w € W ,

and this gives (denoting t = r - 8 and taking the infimum with respect

to u € W )

[l/h(t))d{s(t)v, W) > y , 0 < t < a-e ,

a contradiction to (ll). Therefore, e = a , or, in other words, given

u € W there is a t> € W satisfying (0, u) 5 (a, u) , that is,

d[S{a)u, v) £ YM<2) , a relation equivalent in fact with (10), because

Y > 1 and a (. R+ were arbitrary. //

Again let / : i?+ -»• R+ be a normal and proper function, 5 a

/-contractive semigroup on V , h : R+ -*• R+ a function satisfying (6) and

W a nonempty subset of V . Let a(3) denote the function from V into
R+ (R+ u {+00}) defined by
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(12) aU) = inf {x/h{t))d{s(t)u, w) , u € V ,
t>0

(13) B(«) = llm inf (l/ft(t))d(S(t)u, ff) , u i V ,

and put also

(lU) a = sup(a(w); u € w) , g = sup(B(u); M € «/) .

Evidently, a(u) 2 g(u) for all u t V , and this immediately gives

a — g . A natural question appearing in these circumstances is that of

finding sufficient conditions in order that the reverse inequality he also

valid. In this direction, as a complement to Theorem 3, the second main

result of the present note is

THEOREM 4. Suppose the elements f, S, h and W are such that

h € Ar, and condition (v) holds. Then the reverse inequality g < a will

also hold so that> necessarily, a = B .

Proof. The expected relation will he trivially satisfied when a is

infinite so, without loss of generality, one may suppose a is finite. In

this case, Y > a heing arbitrary fixed, let again X denote the

cartesian product B * W metrized and ordered as in the previous result;

given a (t, u) in X there is, by the choice of y , a r > 0 and a

v 6 W satisfying d[s(r)u, v) < yh(r) so that (putting e = t + r ) we

may find a (s, v) in X with (t, u) < (8, v) (here < indicates the

strict ordering on X induced by 5 ). Furthermore, given a > 0 and

defining Y as the cartesian product [0, a] * W it follows by this

argument Y is order-admissible and Theorem 2 applies; in other words,

given u € V there is, by that result, a (e, v) in X\Y with

(0, M ) < (s, u) (note that, in such a case, s > a since, otherwise,

8 5 a would imply (s, v) € Y , a contradiction). In other words, to

every u € W and a > 0 there corresponds a V € W and a s > a

satisfying d[s(s)u, v) 5 yh(s) ; from this relation we immediately derive

(l/h(8))d(S(s)u, w) 2 y and therefore f5 5 Y • As Y > a was arbitrary,

we get 6 5 a and the proof is complete.

3. Some particular cases

The importance of the results we presented above follows, among other

things, from the fact that, in certain standard contexts, they are
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particularly involved in a number of classical questions pertaining to

stability theory (mainly flow-invariance theory) of dynamical systems and,

in a series of problems belonging to convex as well as nonaonvex analysis.

We start our considerations by observing that, evidently, condition (v) is

the key of all arguments we developed in the preceding section so it seems

to be natural to express it in a more practical form. To this end, {V, d)

being a complete metric space, suppose the elements /, S, h and W

introduced in the general conventions adopted before are such that

(vi) h 6 A- and h(t) •* 0 as t •* 0 ,

(vii) S(t)v •*• v as t •*• 0 , all v € V ,

(viii) W is a closed subset of V ,

then we claim condition (v) will be satisfied. Indeed, let the sequence

(u ; n € N] in W and the monotone sequence [t • n € N) in R+ with

t •*• t as n -*• °° for some t € R , satisfy

(15) d[s[tm-tn)vn, vj 5 yh{tm-tn) , «, m € N , n < m ,

for some y > 0 ; by (8) and (9) we derive (remembering the definition (1»)

of the associated function)

d[v , v ) s d{s[t -t )v , v ) + d[s(t -t )v , v )
*• «+p ' n+qJ *• *• n+p n' « ' n+p} *• v n+q n> n' n+qJ

+ d[s[t -t )v , s[t -t )v )v v n+p n> n' *• n+q n> w
s y[h[t -t )+h[t -t )) + fit -t )d[s[t -t )v , v )1 *• v n+p w "• n+q nJ' K n+q n' K K n+p n+qJ n' n'

5 y[h[t -t )+h[t -t )) + f*{t)d(s[t -t )v , v )1 *• v n+p n' K n+q n'' J v l n+p n+qJ n' n> '

n, P, <t * N , V > <J ,

and therefore, a standard argument (see, for example, Lemma 1 of Bre'zis

and Browder [6]) assures us by (vi) and (vii) that [v ; n € N) appears as

a Cauchy sequence in W and by (viii) that V •*• v as n •*•<*> for some

V € W , showing the first part of (v) holds. Now, again by (8) and (9),

the relations (15) also give
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d(s[t-tn)vn, vj 5 d[s{t-tn)vn, S{tm-tn)vn) + d{s{tm-tn)vn, vj

< f{tm-tn)d(s{t-tm)vn, vj *yh{tm-tn)

- f*(t)d[s{t-tjvn, vn) * yh[t-tn) ,

a l l n, m € N , n < m ,

so that, passing to limit as m •*• °° , the second part of (v) follows and

our claim is proved. Now, as a second step of our considerations, it must

be emphasized that a fundamental choice of the generating normal and proper

function / is that expressed by

(16) /(*) = e^ , t € R+ , for some w € if ,

in which case the associated function /* is

(IT) f*(t) = eat , t € R+ , where a = max(a>, 0) .

As a notational simplification, we shall adopt the convention that any

/-notion be indicated as a u-notion; with this convention, it is now

evident that a standard to-admissible function is

(18) h(t) = (6/u>)(eWt-i) , t € s+ , (o # 0 ,

= &t , t € R+ , co = 0 ,

6 > 0 being a positive number (let us remark at this moment the

supplementary condition (vi) also holds). Suppose further S is a

to-contractive semigroup on V satisfying (vii). In this case, as an

important application of the first main result, we have

THEOREM 5. In the above circumstances, let the closed subset W of

V and the number 6 > 0 be such that

(19) lim inf (l/t)d[S(t)v, w) £ 6 , all V € W ;

then W appears as a h-stable subset with respect to S (the function h

being expressed by (18);.

Proof. By the arguments we indicated before, condition (v) will be

satisfied. On the other hand, evidently,

h(t)/t -• 6 as t •* 0 ,

and this immediately implies condition (ll) is in fact equivalent to (19),

completing the proof. //
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At this point we mention that, as important special cases of (vii),

one may consider

(ix) t t- S(t)v is continuous on R+ for all v € V

as well as

(x) S(t)v -*• v as t + 0 , uniformly with respect to v € W

in which case, Theorem 5 reduces to Bre"zis and Browder's result [6, Theorem

2] (see also Eke I and [17]) and respectively, to the author's result [34]

(note that, in a close connection with these references it must be quoted

in addition Bhatia and Szego's contribution [1, Chapter IX] as well as the

classical Nemytskii and Stepanov one [25, Chapter V]). Moreover, it was

shown by the author that in the case V is a Banach space and the

(o-contractive semigroup 5 possesses a strong infinitesimal generator

A : V •* V ; that is, for any V (. V ,

Av = lim {l/t){S{t)v-v) exists,
t-HD

then (19) may be written in the form

(20) lim inf (l/t)d{v+tAv, W) < 6 , all V € W ,
t-K)

and in such a case Theorem 5 appears as an abstract metric variant of

Martin's invariance result [23] (see also in this direction, Brezis [5],

Nagumo [24], Pavel [27], Yorke [40]) being also interpreted either from a

"geometric" viewpoint (Bony [3], Crandall [13], Redheffer [2S]) or from an

"inwardness" one (Caristi [12], Halpern [/«]).

Now, passing to the second part of our considerations, assume that,

under the general hypotheses (vi) and (vii), the function / satisfies the

second part of (7) and the functions h and f are such that

(xi) f(t)/h(t) •* 0 as t + °° .

We claim in this framework the function 6 defined by (13) is constant on

V ; indeed, u, v € V being arbitrary fixed, we have, by (8) and (9),

t [i/Ht))d{s(t)u, w) s {f{t)/h(t))d{u, v) + [i/h(t))d[s(t)v, w) , t > 0 ,

and, conversely,

[l/h(t))d[s(t)v, W) £ [f(t)/h[t))d{u, v) + {l/h(t))d{s{t)u, W) , t > 0 ,
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so passing to lim inf as £-»•<» in both sides our claim will be

established. Moreover, from these conditions it also follows the

considered /-contractive semigroup S possesses a unique stationary point

z € V (that is, S(t)z = z , all t € R+ ) ; in fact, again by (8) and (9)

combined with the classical Contraction Mapping Principle it is not hard to

build up a mapping t *- z(t) from (0, °°) into V uniquely determined by

the property

S(t)z{t) = z(t) , all t > 0 ,

in which case, taking into account (3),

d{z(t), z(t/2)) =d[s(t)z(t), S(t/2)z(t/2)) < f(t/2)d{s(t/2)z{t), z{t/2))

= f{t/2)d{s(t/2)z(t), S(t/2)a(t/2)) < f(t)d{z(t), a(t/2)) ,

all t > 0 ,

proving (by a standard argument) the considered mapping is constant on

R* = (p/2 ; p, n € N) , hence (by a limit process involving also condition

(vii)) constant on R+ and our assertion is proved. In such a situation,

as an important application of the second main result, we derive

THEOREM 6. Under the conventions we accepted before, there exists a

unique stationary point z = z(S) in V of the considered f-contractive

semigroup S on V satisfying in addition

(21) sup inf [l/h(t))d{s(t)u, w) = [l/h(«>))d(z, W)
uiW t>0

for any closed subset W of V .

Proof. By the above conclusions, for any u € V ,

0(u) = Biz) = llm inf {l/h(t))d[s(t)z, w) = (l//i(«))<i(a, W)

(remember that, by (5), the function h is monotone increasing on R and

therefore, h{°°) exists), so, by Theorem k, the proof is in fact

completed. //

Concerning the elements f and h involved in this result, it must

be mentioned that, an important - and useful - special case of them is

represented by the choices (l6) (with (0 < 0 ) and (l8) respectively, in

which case, (21) becomes
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eU)t)(21)' sup inf d[S{t)u, J/)/(l-eU)t) = d(-z, W)
t>0

and the corresponding variant of Theorem 6 is identical with a result

established by Bre"zis and Browder [6, Theorem 3] and having as a direct

consequence a very elegant proof of the well-known drop theorem (see

Corollary 7 of the above quoted Brezis and Browder paper as well as

BrcSndsted [7], Danes [74] and Turinici [35]) a result that has been

successfully applied to convex (and nonaonvex) analysis (Bishop and Phelps

[2], Holmes [79, Chapter III]) to normal solvability theory (Browder [70],

ZabreTko and Krasnosel'skiT [47]) and to time optimal control theory

(Vrabie [36]).

At the end of our exposition, /, S and h having their general

significance, let us call a family [w.; t € i?+) of nonempty subsets of

h-stable if and only if

(10)' d[s(t)u, W ) 5 h{t) , all a, t € R , u (. W ;

then - by the use of an appropriate ordering introduced on the cartesian

product R x V - a number of "time-dependent" stability criteria in the

above sense may be stated and proved, extending in this way - from a

"dynamic" viewpoint - the results we presented in the last two sections;

some aspects of this problem will be discussed in a forthcoming paper.
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