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NATURALITY AND INDUCED REPRESENTATIONS

SIEGFRIED ECHTERHOFF, S. KALISZEWSKI, JOHN QUIGG AND IAIN RAEBURN

We show that induction of covariant representations for C*-dynamical systems is
natural in the sense that it gives a natural transformation between certain crossed-
product functors. This involves setting up suitable categories of C*-algebras and dy-
namical systems, and extending the usual constructions of crossed products to define
the appropriate functors. From this point of view, Green's Imprimitivity Theorem
identifies the functors for which induction is a natural equivalence. Various special
cases of these results have previously been obtained on an ad hoc basis.

1. INTRODUCTION

Induced representations and the imprimitivity theorems which characterise them
are a fundamental tool in the representation theory of dynamical systems and crossed
products. In the powerful formulation of Rieffel and Green, induction is done by tensoring
with a Hilbert bimodule, and the imprimitivity theorem tells us how to expand the left
action to make this bimodule an imprimitivity bimodule. In recent applications, it has
been necessary to know that this induction process is compatible with other constructions
involving crossed products. Verifying such compatibility can be painful: it is often obvious
that everything must work because "induction is natural", yet technically hard to sort
out the details. And afterwards one is left feeling that one must have missed the point:
the techniques are vaguely familiar even if the particular application isn't.

We have found that it is more satisfactory to phrase our questions and results directly
in terms of Hilbert bimodules, rather than in terms of induced representations themselves.
Thus in [10] we viewed a Hilbert A-B bimodule X as an arrow from A to B, and said
that a diagram

(1-1) Y[ [W
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of Hilbert bimodules "commutes in the strong sense" if Y ®c Z = X ®B W as A-
D bimodules; if so, the Rieffel induction processes TT >-¥ X- \n&(W- Ind n) and IT t-t
y-Ind(Z-IndTr) yield representations which are systematically equivalent in a way com-
patible with intertwining maps, direct-sum decompositions and continuity.

Here we make more precise the idea that we have been verifying the naturality of
induction. Category theory tells us exactly what mathematicians should mean when
they talk about naturality, and how we need to set things up to make sense of it. Here
we build a category in which the objects are C*-algebras, in which the morphisms are
given by Hilbert bimodules, and in which the commutativity of a diagram like (1.1) says
precisely that Y ®c Z = X <B>B W. We then apply this framework to the induction
process arising from Green's imprimitivity theorem [7, Proposition 3], proving that that
theorem actually gives a natural transformation between certain crossed-product functors
which take values in this category. This theorem includes as special cases a number of
results in the recent literature which could be paraphrased as saying "Green induction is
compatible with Morita equivalence".

Part of our point here is that taking the trouble to formulate theorems in this categor-
ical framework will result in a theory which is more robust and more directly applicable.
However, many applications require us to consider coactions or twisted crossed products,
and setting up the appropriate categories, functors, and naturality theorems for these
situations can take a good deal of technical effort. So in order to illustrate our approach,
we concentrate here on one naturality theorem which requires only standard techniques,
and leave equivariant versions involving coactions and twists to a more comprehensive
sequel. We have tried hard to make this paper accessible to anyone familiar with the
basic material on Hilbert modules and Morita equivalence implicit in the formulation of
Green's theorem; this can be found, for example, in the early chapters of [16].

We begin in Section 2 by discussing our category C. The objects in C will be C-
algebras, a morphism from one C*-algebra A to another B will be given by a Hilbert
A-B bimodule X, and the composition of morphisms will be given by the balanced
tensor product of bimodules. There is asymmetry here: X will be a right Hilbert B-
module, and A will act by adjointable operators on X, in the sense that there is a
nondegenerate homomorphism K : A —>• C(XB) describing the action. We call such a
bimodule X a right-Hilbert bimodule to stress that the Hilbert module structure is on
the right. [These and related objects have been called Hilbert bimodules (for example, in
[14]), or C*-correspondences (for example, in [13]), but we have preferred to stick with
the name used in [10] to stress that the Hilbert-module structure is on the right.] The
morphisms will actually be isomorphism classes U-^B] of these right-Hilbert bimodules;
this is necessary, because, for example, we expect BBB to give the identity morphism on
B, so A%B and A(X ®B B)B should define the same morphism in C. In Section 2 we also
show that the isomorphisms in C are exactly the (isomorphism classes of) imprimitivity
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[3] Naturality and induced representations 417

bimodules, and prove that every morphism [AXB] in C can be factored as [ C ^ B I O ^ ] , where

CYB is an imprimitivity bimodule and <p : A -» M(C) is a nondegenerate homomorphism.

In Section 3 we show how to view the crossed-product construction as a functor. We
first have to add actions to the objects and morphisms of C to build a category A(G)
whose objects are dynamical systems associated with a fixed locally compact group G:
forming the crossed product then gives a functor (A, a) t-¥ A xa G from A(G) to C.
Because the objects in C are C*-algebras rather than isomorphism classes of C*-algebras,
we have to be careful to nominate a particular C*-algebra as the crossed product. We
discuss our nominee and its relationship to the universally defined crossed product which
we usually prefer. Functoriality requires that we give a parallel construction of crossed
products of Hilbert modules; the construction we have chosen is different from that of [2]
and [1] and may be of some independent interest.

Our main theorem is proved in Section 4. Green's construction associates to each
object (A,a) in A(G) and each closed subgroup H of G a right-Hilbert (A xaG)-
(A xa H) bimodule X§(A,a); his Imprimitivity Theorem says that X§(A,a) is also a
(C0(G, A) ®tt®T G)-(A xa H) imprimitivity bimodule. Our theorem says that the assign-
ment (A,a) i-4 [Xjj(.4,a)] is a natural transformation. To prove this, we have to show
that every morphism in A(G) gives rise to a certain commutative diagram in C. We do
this by factoring the morphism into an ordinary homomorphism and an imprimitivity
bimodule; handling the homomorphism is straightforward, and we deal with the imprim-
itivity bimodule by adapting a powerful linking-algebra technique from [6, Section 4].
We find it intriguing that ideas developed to meet the demands of nonabelian duality are
now feeding back into the theory of ordinary crossed products — both in the technical
sense, as in our use of the linking-algebra technique, and in the motivational sense, in that
we were led to formulate our theorem through our attempts to handle more complicated
problems involving coactions.

2. T H E CATEGORY C

Let B be a C*-algebra. A Hilbert B-module is a vector space X which is a right
B-module equipped with a positive definite B-valued sesquilinear form (•, -)B satisfying

(2.1) (x, y-b)B = (x, y)B b and (x, y)B = (y, x)B

for all x,y € X and b e B, and which is complete in the norm ||x|| = | |(x,x)B\\ . For
the general theory of Hilbert modules, we refer to [11] or [16].

DEFINITION 2 .1 : Let A and B be C*-algebras, and let XB be a Hilbert module
which is full in the sense that (X, X)B = B. We say that X is a right-Hilbert A-B
bimodule if it is a nondegenerate left A-modu\e satisfying

(2.2) a-(x-b) = {a-x)-b and (a • x,y)B = (x,a' • y)B
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for all a € A, x, y G X, and b 6 B. (This is equivalent to having a nondegenerate

homomorphism K: A -> C(XB) and putting a • x = K(O)X.) An isomorphism of right-

Hilbert bimodules is a bijective linear map $: AXB —> AYB such that

(i) $(a • x) = a • <&(x),

(ii) <3>(z • b) = $(x) • b, and

(iii) ($(xMy))B = (x,y)B.

(Property (ii) is redundant — it follows from (iii) by considering ||<3>(:r • b) — <3>(a;) • 6||2 —
but we include it to emphasise that $ is a bimodule homomorphism.)

E X A M P L E 2.2. If B is a C*-algebra, then B becomes a right-Hilbert B-B bimodule by
putting

a • b • c = abc and (a, b)B = a*b

for a,b,c £ B. More generally, if ip: A -t M(B) is a nondegenerate homomorphism, then
BB becomes a right-Hilbert A-B bimodule with left action given by

a- b = ip(a)b.

The morphisms from A to B will be the isomorphism classes of right-Hilbert A—
B bimodules (denoted with square brackets); we need to pass to isomorphism classes
to show that composition of morphisms has the necessary properties. Two ordinary
homomorphisms may give the same morphism in C, but only if they differ by an inner
automorphism:

PROPOSITION 2 . 3 . Let cp and ip be nondegenerate homomorphisms of A into

M(C). Then [ip] = [ip] in C if and only if there exists u £ UM{C) such that ip — Aduoip.

PROOF: If ip = Adu o ip, then the map c •-> uc is a Hilbert-module automorphism
of Cc which intertwines the left actions coming from ip and tp.

For the converse, suppose [</?] = [rp] in C, so there exists a linear bijection L: C -* C

such that

L(cd) = L(c)d, L(c)*L(d) = c'd, and L(<p{a)c) = rp(a)L{c)

for each c,d € C. Define R: C -* C by R(c) = L~l(c')*. Then the first two of these
properties imply that (L, R) is an invertible double centraliser of C, so there exists an
invertible element u of M(C) such that L(c) = uc for all c. Since

u-xc = L~\c) = L-l(c")" = R(c'Y = (c'u)* = u'c,

it follows that u is unitary, and L(tp(a)c) = Tp{a)L(c) implies that ip = Adu o (p. D

To define composition we use the internal tensor product of Hilbert modules. Let
AXB and BYQ be right-Hilbert bimodules. Then the algebraic tensor product X Q Y
becomes a not-necessarily-complete right-Hilbert A-C bimodule with actions given by

a-(x®y)=a-x<S>y and (
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and a not-necessarily-definite C-valued inner product given by

(x ® y, z <g> w)c = (y, (x, z)B • w)c

[11, Proposition 4.5]. Modding out by the elements of length 0 and completing gives a
right-Hilbert A-C bimodule X ® B Y in which x • 6® y = x ® b • y. We emphasise that
it is not obvious that the action of a € A on X © Y extends to X ®B Y; this requires a
complete positivity argument as in [11, p. 42]. Note that X ®B Y is full, since X and Y
are:

(X ®B Y,X®B Y)c = (Y, (X,X)B • Y)c = (Y,B- Y)c = 7^Y)~C = C.

We call X ®BY the balanced or internal tensor product.

PROPOSITION 2 . 4 . There is a category C in which the objects are C* -algebras,
and in which the morphisms from A to B are the isomorphism classes of (full) right-
Hilbert A-B bimodules. The composition of [X]: A ->• B with [Y]: B -* C is the
isomorphism class of the internal tensor product bimodule A(X ®B Y)C; the identity
morphism on A is the isomorphism class of the right-Hilbert bimodule AAA-

REMARK 2.5. In any category, Hom(A, B) has to be a set for each pair of objects A
and B. This is not obviously true in C unless we limit the size of the bimodules involved.
We can do this by considering only C*-algebras and Hilbert modules with dense subsets
whose cardinalities do not exceed a fixed large cardinal. For example, we could consider
only separable C*-algebras and bimodules. In practice, these issues should never present
an unassailable problem, and we shall ignore them.

P R O O F OF P R O P O S I T I O N 2.4: We first claim that the composition of morphisms
is well-defined. Suppose we have right-Hilbert bimodule isomorphisms <£: AXB —¥ \ZB

and \ t : BYC -* BWC. Then $ <g> * : X © Y -* Z ® B W is easily seen to preserve the
actions and inner product, so extends to an isometric bimodule map $ ®B *&• The map
"fc"1 ® B $ - 1 is an inverse for $ ® B *&, which is therefore a right-Hilbert A-C bimodule
isomorphism of X <S)B Y onto Z ®B W.

Next we establish that composition of morphisms in C is associative; it suffices to
show that X <S>B (Y <g>c Z) and {X <3>B Y) <8>c Z are isomorphic for any right-Hilbert
bimodules AXB, BYC, and C%D- But straightforward calculations show that the usual
linear isomorphism of X © (Y © Z) onto [X © Y) © Z respects the module actions and
right inner products, so extends to the desired isomorphism.

Finally, note that the maps a<g>x >-* a-x and y <S>a i-> y • a extend to isomorphisms
A ®A ^ - X and Y <8>A A = Y for any right-Hilbert bimodules AXB and BYA. Hence
[AAA] is an identity morphism from A to A in C. D

It is implicit in Connes' definition of Morita equivalence [3, p. 155] that a morphism
[X] is invertible in C precisely when X is an imprimitivity bimodule. This seemed obvious
to us at first but we found it surprisingly hard to prove.
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By saying that a right-Hilbert bimodule A%B is an imprimitivity bimodule we mean
that X is also a (full) left-Hilbert i4-module in such a way that

A(x,y)-z = x-{y,z)B and A(x • b, y) = A{x, y • b*).

Equivalently, AXB is an imprimitivity bimodule if and only if the canonical map a: A —>
C(XB) induced by the left action of A on XB is an isomorphism of A onto the algebra
K.(XB) of compact operators on XB [16, Proposition 3.8].

PROPOSITION 2 . 6 . Suppose AXB is a right-Hilbert bimodule. Then [X] is an
isomorphism in the category C if and only if X is an A-B imprimitivity bimodule.

One direction of Proposition 2.6 is easy: if A%B is an imprimitivity bimodule, and

BXA is its reverse bimodule, then the maps x ® y i-> A(x, y) and x <g> y !-»• (x, y)B are
isomorphisms of X <g># X onto AAA and X ®A X onto BBB, respectively (see [16, Propo-
sition 3.28]), and hence [X] is an inverse for [X] in C.

For the other direction we want to use a representation-theoretic argument, so we
briefly discuss how right-Hilbert bimodules can be represented by bounded operators.
These ideas are fairly standard: the analogues for imprimitivity bimodules appear in [5,
Section 2].

DEFINITION 2.7: A representation (nA,^x,nB) of a right-Hilbert bimodule A%B

is a triple consisting of nondegenerate representations TTA and nB of A and B on Hilbert
spaces HA and ~HB, respectively, together with a linear map •nx: X —> B^H.B^%A) such
that

(i) TTX (a • x) = -nA (a)wx (z),

(ii) nx{x • b) = nx(x)7rB(b), and

(iii) irB{(x,y)B) =nx(xynx(y)

for all a S A, x,y € X, and b £ B. (Again, property (ii) follows from property (iii),

but we include it so the definition explicitly says that vr preserves the Hilbert-module

structure oi X.)

EXAMPLE 2.8. Suppose A^B is a right-Hilbert bimodule and nB is any nondegenerate
representation of B on a Hilbert space %B. The induced representation irA = X -Ind ixB of
A acts in TiA - X®BUB according to nA(a){x®£) = (a-x)®£ [16, Proposition 2.66]. We
claim that there are bounded operators irx(x) £ C(HB, "HA) such that nx{x)€ = x<2>£, and
that (7r,4,7rx,7ra) is then a nondegenerate representation of AXB on {HA^B). Indeed,
it is easy to check that TTX(X) is bounded:

the relation •KA{O)'^X{X) = nx(a • x) is immediate from the definition of TTA\ the relation
7TX(X)TTB{b) — nx(x • b) follows from the balancing property (x • b) <2> £ — x ® 7rB(6)£ of
the tensor product; and the definition of the inner product on X ® B HB implies that
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In this example, the representation ITA is by definition the restriction of a repre-
sentation 7T£ of the algebra C(XB) of adjointable operators on X (strictly speaking,
ft A — ""£ ° «)• The following observation will be useful in the proof of Proposition 2.6.

LEMMA 2 . 9 . Let XB be a right Hilbert module, let %B be a faithful representation
of B on HB, and consider the representation {I^C^X^B) of the right-Hilbert bimodule
C{X)XB discussed in Example 2.8. Then TTC is faithful, and

rx(x)irx(yy | x,y € X}.

PROOF: By definition, K.(XB) is the closed span of the rank-one operators {©i,y |
x, y € X} [16, Definition 2.24], so it is enough to show that irc(&x,y) = ^x(x)nx{y)*-
We can verify this by applying both sides to vectors of the form x ® £, which densely
span X ®B HB- We then have

)(z ®£) = ©x,v(z) ® £ = x • (y, z)B ® f = x ® 7r((y, z)B)i

= x ® irx(y)*Trx(z)€ =

as required.

Since nB is faithful and X is a K.(XB)-B imprimitivity bimodule, the induced
representation -n^. is faithful (this follows from the Rieffel correspondence [16, Propo-
sition 3.24]), and hence so is its extension nc to C(XB) = M{K.(XB)). D

PROOF OF PROPOSITION 2.6: We have to show that if there is a right-Hilbert
bimodule BYA such that X®BY — A&A and Y®AX = BBB as right-Hilbert bimodules,
then X is an A-B imprimitivity bimodule (and in fact Y will then be isomorphic to X).
We choose a faithful nondegenerate representation TTB of B on 7is, and use the inducing
construction of Example 2.8 to give a representation {^A,^X,^B) of AXB on (HB^A)

with HA = X®BHB- We shall prove the result by showing that the presence of Y implies
that IT A is an isomorphism of A onto the image span{7rx(a;)7rx(y)*} of the algebra K(XB)
of compact operators.

We begin by noting that because A acts faithfully on itself and AA-A — X <3B Y, A
must act faithfully on X: if a • x = 0 for all x, then a • ( i® y) = 0 for all y, whence 06 = 0
for all b e A, and a = 0. Thus K: A —> C(XB) is injective, and the injectivity of nc

implies that irA = nc° K is faithful. To show that TTA has the right image, we construct
a representation (nB,a, TTA) of Y on (HA^B)-

Let p:Y-¥ B(HA,Y®A ~HA) be the representation induced from nA, given as usual
by PivK = V ® C- By assumption, there exists a right-Hilbert bimodule isomorphism
$: Y®AX -> B, which we use to define a unitary U: Y^AUA = Y®AX®B'HB -> ~HB

by
U(y ® x
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Now we define
a(y) = Uop(y).

For y e Y, b G B, and x <g> £ € %A we get

• y

and we also have

a(2/)V(z) = p(yyU'Up(z) = «)

for all y, 2 € K, since p has right coefficient map -KA. Thus (7rB,a,TT^) is indeed a right-

Hilbert bimodule representation of Y. In particular, we have irA(A) — a{Y)*a{Y).

It only remains to show that a(Y)' = nx{X). For this we observe that for y € Y,

x € X, and £ € HB we have

crft/WCzK = cr(y)(x ® 0 = 7rfl(*(y ® x))£,

hence <7(y)7rA-(X) = TTB(^(Y ®A X)) = wB(B). Using nA{A) = a(Y)'a(Y), it now

follows that

*x(X) = TTX(A • X) = TTA(A)WX(X) = a(Yya(Y)nx(X)

= a(r)'7rB(S) = a[Y • B)' = a(Y)'.

This completes the proof of Proposition 2.6. •

PROPOSITION 2 . 1 0 . For every morphism [AXB] in C, there exists a C-algebra.

C, a nondegenerate homomorphism cp: A —> M(C), and an imprimitivity bimodule CYB

such that

{AXB} = [CYB}O[<P} in C.

In other words, such that AXB = A(C ® C Y ) B as a right-Hilbert bimodule.

PROOF: Let C = K.{XB) and let Y = X viewed as a C-B imprimitivity bimodule

(see [16, Proposition 3.8]). Since C{XB) =* M{K{XB)) [16, Corollary 2.54], we can

view the canonical nondegenerate homomorphism K: A -+ C(XB) as a nondegenerate

homomorphism ip : A —¥ M (K-(XB)) • The map c ® y i-¥ c • y extends to an isomorphism

of C <8>c Y onto X. D
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3. C R O S S E D - P R O D U C T F U N C T O R S

Our next goal is to formalise the idea that assignments like {A,a) >-> A x Q G are
functors into C; this requires that we construct an equivariant category A{G) in which
the objects are dynamical systems (A,G, a).

DEFINITION 3 .1 : Let G be a locally compact group, let AXB be a right-Hilbert
bimodule, and let a and /? be (strongly continuous) actions of G on A and B. An (a,/?)-
compatible action of G on X is a homomorphism 7 of G into the group of invertible linear
transformations on X such that

(i) j,(a • x) = a3(a) • y,(x)

(ii) -ya(x-b)=%(x)-0,(b)

(Hi) <7.(s),7.(y)>B = &«s,y>fl)
for each s e G, a £ A, x,y € X, and 6 € B\ and such that each map s i-> 7s(:r) is
continuous from G into X. (As usual, (ii) follows from (iii).) Two (a,/?)-compatible
actions 7 and 77 on X and Y are equivariantly isomorphic if there exists an isomorphism
$ of X onto V such that $(ys(x)) = ri,($(x)) for each s € G and x 6 X.
EXAMPLE 3.2. If (j4,a) and {B,0) are actions of G, and <p: A —» M(B) is equivariant
in the sense that ip(as(a)) = /3s(ip(a)), then f3 is an (a, /^-compatible action of G on the
bimodule ABB of Example 2.2.

PROPOSITION 3 . 3 . Let G be a locally compact group.

(i) There is a category A(G) in which the objects are C*-algebras with actions
ofG, and in which the morphisms from (A, a) to (B,/3) are the equivari-
ant isomorphism classes of (full) right-Hilbert A-B bimodules with {a,@)-
compatible actions ofG. The composition of [X, 7]: (A, a) —• {B,(3) with
[Y, rj\: (B, /?) —• (C, e) is the isomorphism class of the tensor product action
(X ®B Y, 7 <8>B V); the identity morphism on (A, a) is [(A,a)(A, a)(^,o)]-

(ii) [(.4,a)(-X\7)(£,/j)] is an isomorphism in A(G) if and only if AXB is an im-

primitivity bimodule and ot,(A{x,y)) = z»(7>(z)>7s(y))-

(iii) For every morphism [(A,a)(X,l)(B,p)] in A(G), there exists an isomor-
phism [(c,e)(Y, rj)(B,p)\ and an a-e equivariant noudegenerate homomor-
phism ip: A —> M(C) such that

{X,y] = [Y,r,}o[<p,e} in A(G).

PROOF: Adding actions to Propositions 2.4, 2.6, and 2.10 is routine, except possibly
in statement (iii). In the proof of Proposition 2.10, we took C = K.(XB) and <p = K: A —t
C(XB) = M(C), so we need to show that 7 induces an action on K(XB)- But for each
T € C{XB), es(T): x y~¥ 7J(T(771(z))) is an adjointable operator with ea(T)' = e,(T'),
and in fact T •-> es[T) is an automorphism of C(XB)- A quick calculation shows that

(3-1) e.Gd(*,»»=jc<7.(s),

https://doi.org/10.1017/S0004972700022449 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700022449


424 S. Echterhoff, S. Kaliszewski, J. Quigg and I. Raeburn [10]

so e3 restricts to an automorphism of IC(XB). Since G acts continuously on X, e gives
an action of G on /C, and (3.1) says that (c,e){X, I)(B,0) is an isomorphism in A(G). Now
recall that K(as(a))(x) = aa(a) • x = ja(a •y~1(x)) to see that tp is a-e equivariant; it
is then easy to check that the isomorphism c<giyt-yc-yofC ®c Y onto X is e ® t]~^y
equivariant. D

To construct the crossed product of a system (A, G, a), we begin with the vector
space CC(G, A) of continuous functions / : G -* A of compact support. This is a *-algebra
with the operations

/ * 9(a) = f f(t)at(g(t-ls)) dt and /•(*) = a.
JG

A covariant representation of (A, G, a) on H is a pair (TT, U) consisting of a nondegenerate
representation IT: A -> B^H) and a unitary representation U: G —> £/(%) such that
7r(as(o)) = Usn(a)U* for s € G and a € A Routine calculations show that there is a
^representation IT X U of CC(G, A) on %, called the integrated form of (TT, t/), such that

TX £/(/)£= / ir(f(s))U3tds
JG

for all ^ e %. (Inserting the vector ^ is technically helpful because it makes the integrand
norm-continuous.) Since ||TT X U(f)\\ ^ fG | |/(s)| | ds for every / , we can define a semi-
norm on CC(G, A) by

|» = sup{||7r x f/(/) | | : (TT, U) is a covariant representation of (A, G, a )} ;

it is a norm because the regular representation TT x A on L2(G, %*) is faithful on CC(G, A)
if Tt is faithful on A. [There is ostensibly a set-theoretic problem here since it is not
obvious that we are taking the supremum over a well-defined set of real numbers. But
the numbers of the form ||TT X U(f)\\ do form a subclass of R, and every subclass of a set
is again a set [12, Proposition 4.6].]

We now define the crossed product A xa G to be the completion of CC(G, A) in
the norm || • ||,. (For this to be a construction of a particular C*-algebra rather than
an isomorphism class of C*-algebras, we must be clear that forming completions is a
construction, but this can be achieved by defining the completion of a normed space X
to be the closure of X in its double dual.) Notice that every representation ir x U of
CC(G, A) is by definition continuous for || • ||,, and hence extends to a representation of
A xa G, which we continue to denote by TT X U.

REMARK 3.4. In [15], a crossed product for the system (A,G,a) is any C*-algebra B
equipped with a nondegenerate homomorphism i^ • A —> M(B) and a strictly continuous
homomorphism IG- G —> UM(B) satisfying

(a) (IA^G) is covariant, in the sense that i,i(as(a)) = ic(s)i/i(a)iG(s)* for all
a € A and s G G;
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(b) if (TT, U) is a covariant representation, there is a nondegenerate representa-
tion <p = ip^y of B such that TT = <poiA and U = <p o ic; and

(c) the elements iA x iG( / ) = fG i/t(/(s))iG(s) ds for / € CC(G, A) span a dense
subspace of B.

From our present perspective, we can view these axioms as properties which allow us
to identify isomorphic copies of A xa G. To be more precise, if (B, IA^G) is a crossed
product in the sense of [15], then we claim that iA X «G extends to an isomorphism of
A xa G onto B.

To see this, first represent B on Hilbert space, so that by (a), (iAtiG) becomes a
covariant representation of (A,G,a). It follows from the definition of || • ||, that %A X IG
extends to a representation of A xaG, and then (c) implies that %A X %G maps A x a G onto
(the represented copy of) B. Now choose any covariant representation (TT, U) of (A, G,a).
Then by (b), TT X [/(/) = <p*tU(iA x iG(f)) for / € CC(G, A), and hence for all / e A xQG.
But this implies ||vr x U(f)\\ ^ \\iA x »G( / ) | | , and hence that | | / | | . ^ H^ x iG(/) | | - Thus
i/i x %c is injective, which proves the claim.

We next seek to define crossed products of right-Hilbert bimodules. There are several
possible approaches; for example, we could deduce much of the following proposition
from the construction of [2, Section 5] for imprimitivity bimodules by first factoring the
right-Hilbert bimodule as in Proposition 3.3(iii). We have opted for a direct treatment
partly because it is more elementary, and partly because we feel that the details should
be available. This is also the approach used by Kasparov to construct crossed-product
Hilbert modules for the study of the i^i^-theory of group C*-algebras in [9, Section 6,
Definition 1].

PROPOSITION 3 . 5 . Let 7 be an (a,P)-compatible action of G on a right-
Hilbert bimodule A^B- There exists a right-Hilbert (AxaG)-(B x0G) bimoduleX x7G,
which contains CC{G, X) as a dense subspace, and which satisfies

(3.2) f-h(s)= f f{t)-lt(h(rls))dt,
JG

(3.3) h • g{s) = f h(t) • /3t(g(t-ls)) dt, and
JG

(3-4) (h, k)BxgG (s) = f ft-, ((h(t), k(ts))B) dt

for f e CC(G, A), h,ke CC{G, X), and g g CC{G, B).

LEMMA 3 . 6 . Let -n x U be a representation of B x$ G on a Hilbert space H.

Then for each h,k£ CC(G, X) and £, 7/ € H, (3.4) satisfies

(v x U((k,h)BxG)Z 177) =

where uhti = fG h(s) ® U£ds € X ®B U.
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P R O O F : We have

(TT x U((k,h)BxG)S | 77) = (Jc*((k,h)BxG(s))UsZds I T?)

= f f(u;7r{(Ht),Hts))B)U^\V)dsdt

= f J {AW)M*))B)UA I Utrj) dsdt

= f f (h(s) <8> U,i I k(t) ® Utr^j dsdt

= ( f h(s) 9 Usf,ds I I k(t) <8»

D
P R O O F OF PROPOSITION 3.5: We begin by showing that CC(G, X) can be com-

pleted to give a Hilbert B x^G-module X x7G satisfying (3.3) and (3.4). Straightforward
calculations show that (3.3) and (3.4) make CC(G,X) into a pre-inner product B x0 G-
module, so we need only verify that the sesquilinear form of (3.4) is positive definite.

To do so, fix, for the remainder of the proof, a faithful representation TTXC/ of BxpG
on a Hilbert space H. Then for each £ €H, Lemma 3.6 gives

M W) ^ 0,
which shows positivity. For definiteness, suppose h £ CC(G,X) satisfies (h,h)BxG = 0.
Then Lemma 3.6 gives (n x U((h,h)BxG)£ \ () = (u \ w) = 0 for each f e W, so that
w = fG h(s) <g> Us£ds = 0 for each f. Thus,

( y h(s) <8>U,Sds\x®<;) = (JGn((x,h(s))B)UaZds \ c) = (TT X U(gt)t \ C) = 0

for each ^ , ( € ? < and x £ X, where <7z(s) = (x,h(s))B defines gx e CC(G,X). It follows
that 51 = 0 for all x e X, whence h = 0 in CC(G, X).

We next show that the (B xp G)-valued inner product on X x 7 G is full. Since
CC(G, B) has an approximate identity for Bx0G, since {X, X)B is dense in B, and since B
acts nondegenerately on B XpG, functions of the form /* (x, y)B g, where / , g e CC(G, 5)
and x, y G X, span a dense subspace of B x0 G. Now letting (x • f)(s) — x • (/(s)) define
x • f S GC(G,X), a straightforward calculation shows that (x • f,y • g)BxG = f* (x, y)Bg,
so that (CC(G, X),Cc{G,X))BxG is dense in B x0 G.

We now claim that (3.2) makes X xyG into a right-Hilbert (A xQ G)-(B x0 G)
bimodule. Again, checking the algebraic conditions of Definition 2.1 at the level of Co-
functions is routine; we need to show that \\f • h\\ ^ | | / | | \\h\\ for / € CC{G, A) and
h 6 CC(G, X) to see that this extends to an action of A xQ G on X x 7 G.
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To show this, we begin by defining actions of A and G on CC(G, X) by

(ah)(s)=a-{h(s)) and (t •/»)(«) =7t(M*"1*))-

Now we use these actions to define

a-h®S and Vt{h® f) = t • h® £;

we claim that p(a) is bounded on CC{G, X) © H, and hence extends to an operator on
(X x 7 G) ®BX0G 'H- Again using Lemma 3.6, and writing Ui for u)hitii, we have

a • hi(s) ® C/,^ ds | / a • A,-(a) ® £/.<,• ds)

X=l

where the inequality holds because .A acts boundedly on X ® B ?{ via the induced repre-
sentation X-Ind7r.

It is straightforward to check that each Vt is unitary, and then that (p, V) is covariant
for (A, G, a); p is nondegenerate because A acts nondegenerately on X, so we get a
nondegenerate representation p x V of A xa G on (X x1 G) ®BXG "H.
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Now for / e CC(G, A), h e CC{G, X), and (€H,we have

= J p(f(t))Vt(h®Qdt=(J

so

(n x U{(f -h,f- h)BxG)S | 0 = (/ • h ® $ | / • h ® 0
= {pxV(f)(h®0\pxV(f)(h®0)

It follows that | | / - / i |K
Finally, to see that the action of A xa G on X x7 G is nondegenerate, note that for

h € CC(G,X), the Cauchy-Schwarz inequality gives

= \\(h,h)BxG\\

< f\\(h,h)BxG(s)\\ds
JG

JG JG

so \\h\\ ^ \\h\\\- Now standard arguments show that we can choose / € CC(G, A) to
make \\h — f • h\\i arbitrarily small: take / of the form s H ox(s) as a runs through an
approximate identity for A and x runs through an approximate identity for CC(G). D

EXAMPLE 3.7. Suppose (A, a) and (B, /?) are objects in A(G), and <p : A -> M(B) is
a nondegenerate homomorphism such that tp o a$ = ft o ip. Then the crossed-product
morphism ABB xG is the completion of CC(G, B) in the norm coming from B x0 G, and
hence is precisely ( B x j G)BX0G'> the left action is given by a nondegenerate homomor-
phism tpxG : AxaG -4 M(B xpG). Equation 3.2 shows that for functions / e CC(G, A)
and g € CC(G, B), we have

((<P x G)(f)g)(s) = f >p{f(t))(}t(g(t-1s)) dt.
JG

PROPOSITION 3 . 8 . Tie maps defined by

(A, a) M- AxaG and [(x,a)(^,7)(B,/5)] •->• [AXG(X X7 G ) B X G ]

give a functor from A(G) to C.
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PROOF: We first show that the map on morphisms is well-defined. Suppose

<p: X -»• Y is an isomorphism of right-Hilbert A-B bimodules which is equivariant for

(a, /?)-compatible actions 7 and 7? of G. Then $(/i)(s) = <p(h(s)) is easily seen to give a

bijective map $ : CC(G, X) —• CC{G, Y) which respects the right-Hilbert bimodule struc-

tures (Equations 3.2-3.4) and hence extends to a right-Hilbert (A xa G)-(B x0 G) bi-

module isomorphism of X x 7 G onto Y xvG. Example 3.7 shows that identity morphisms

go to identity morphisms.

It only remains to see that the assignment [X, 7] •-> [X x 7 G] respects composition
of morphisms; that is, if (AXB,J) is (a, /3)-compatible and (BYC,TJ) is (/3, e)-compatible,
we need to show that

(X x7 G) ®flxG (Y xv G) 3 (X ®B Y) x ^ G

as right-Hilbert AxaG-Cx£G bimodules. [An analog of this result appears in [8, Lemma

3.10], in the context of not-necessarily-full Hilbert modules.]

The rule

= f h(t)®TH(k{rl8))dt
JG

defines a linear map from CC(G,X)oCc(G, Y) to CC(G,X<8>BY) which preserves the pre-
right-Hilbert bimodule structures. In order to see that ^ extends to an isomorphism of the
completions, we need only verify that \P has dense range for the inductive limit topology.
For this, let x e X and / € CC{G, B), and define h € CC(G, X) by h(s) = x • f(s). Then
for k 6 CC{C, Y) we have

s) = x® f(t)-r]t(k(r1s))dt
Jc

= x®(f.k)(s).

Now, we can approximate k by f • k in the inductive limit topology, and taking A; of

the form k(s) = yg{s) for y € Y and g € CC(G) we can thus approximate the function

s i-> (x®y)g(s). But such functions have inductive-limit-dense span in CC{G,X®BY)- D

4. NATURALITY IN GREEN'S IMPRIMITIVITY THEOREM

Suppose that a is an action of a locally compact group G on a C*-algebra A, and
H is a closed subgroup of G. Takesaki showed in [17] how Mackey's construction of
induced representations of groups could be modified to induce covariant representations of
(A, H, a) to representations of (A, G, a). Subsequently Green showed how the integrated
forms of Takesaki's induced representations could be obtained using Riefiel's abstract
induction by Hilbert bimodules [7]. To construct his (A xa H)-(A xa G) bimodule
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X%(A,a), Green completed the CC(G, A)-CC(H, A) bimodule CC(G,A) in which

f-x(t)= f f(s)aa(x(s-lt))A(s)^ds
JG

x • g(t) = f x{th)ath(g{h-l))&{h)-ll2dh
JH

/ (
JG

for x e CC{G, A), f € CC{G, A) C A xa G, g € CC{H, A). The representation of A xa G
induced from a representation n of A xQ H is then by definition the representation
Xfi-lnd 7T acting in X% <8>AxHUn-

Imprimitivity theorems tell us how to recognise induced representations. In Rief-
fel's modern formulation, we recognise a representation which has been induced from H
by the presence of an auxilary representation of CQ(G/H). In Green's realisation, this
representation comes from the action of C0(G/H) on CC(G, A) given by

c-x(t) =c{tH)x(t),

and the crucial properties of this action are that it commutes with the left action of A
on X§ and is covariant for the left action of G: more formally,

c • (iA{a) • x) = iA(a) -{c-x) a n d iG(s) • (c • (ia(s)* • x)) = T3(C) • x ,

where we have extended the left action of A xaG on Xfi to M(A xaG) and r is the action
of G on C0(G/H) given by T3(c){t) = c(s~lt). In other words, the left actions combine to
give an action of (A <g> Co(G/H)) xQKlT G on X%(A, a), and it is the content of Green's
Imprimitivity Theorem that X°- is an ((A <8>Co(G/H)) xa®T G)-(A xa H) imprimitivity
bimodule. Note that the left action of A xa G on Xfi factors through the left action of
(A®CQ(G/H)) xatSTG via the canonical map of A xG into M{{A®CQ{G/H)) xae>TG).

THEOREM 4 . 1 . Suppose H is a closed subgroup of a locally compact group G.
Then the assignment (A, a) *-* [X°-(A, a)] is a natural transformation between the func-
tors (A, a) >-* AxaG and (A, a) (-»• A xa H from A(G) to C, and a natural equivalence
between the functors (A, a) t-¥ (A® C0(G/H)) xQg,T G and (A, a) •-»• A xa H from A{G)
toC.

Before we begin the proof, we point out that we have implicitly asserted in the
statement of the theorem that the crossed products A xa H and (A®CQ(G/H)) xa®T G
define functors on A(G). The first case is quite easy: we just need to check that restricting
every action in sight from G to H is a functor from A(G) to A(H), and then compose this
with the crossed-product functor from A(H) to C. For the second, we need to prove that
(A, a) t-> (A®Co{G/H),a®T) is a functor from A(G) to itself, or, more generally, that
for any given action e of G on a C*-algebra C, (A, a) i-> (.4 ®min C, a <2> e) is a functor.
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This is non-trivial: a morphism [AXB, 7] goes to a morphism [X <g> C, 7 ® e] based on the
external tensor product A®C(X ®C)B®C of bimodules (see [16, Corollary 3.38]). But all
the details are routine, so we shall omit them.

A natural transformation T between two functors F, G : A —>• B assigns to each
object A of A a morphism T(A) : F(A) —t G(A) such that, for every morphism <p : A —> B
in A, the diagram

F{A) ^ ^ G{A)

F{B) - ^ G(B)

commutes in B. The transformation T is a natural equivalence if T(A) is an isomorphism
for all objects A. Green's Theorem tells us that [ X ^ ( J 4 , a)] is a morphism from A xaG
to A xa H and an isomorphism from (A <g> C0(G/H)) xQ(glT G to A xa H, so we need to
show that for every morphism La)(-^i7)(B,fl] in the category A{G), the diagrams

AxaG

(4.1)

and

(A®Co(G/H))xa0TG

(4.2) (X®CO(G/H))XI9TG\

(B ® C0{G/H)) X0QT G

commute in C.

PROOF OF THEOREM 4.1: We establish the commutativity of both (4.1) and (4.2)

by factoring [X, 7] = [Y, rj\ o [ip,£•], as in Proposition 3.3(iii), where [,Ce)(Y,v)(B,0)] is an

isomorphism in A(G) and <p : A -* M(C) is an a-e equivariant nondegenerate homo-

morphism. We shall prove the commutativity of (4.1) by showing that we have two

commutative diagrams

•sy (^ \ A y M

^ Q _̂7 / f i . " Q •*••*•

(4.3) pxcl LxH

CXcG 13^ CxeH
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and

(4.4) VX,G| I VX,W

Because taking crossed products is a functor, this will then give

[AXC(X X 7 G)BXG] = [Xa
H(BJ\ o [CxG(Y x , G)BxG]

= [AxH(XxyH)BxH]o[X%(A)},

as required.

The commutativity of (4.3) amounts to:

LEMMA 4 . 2 . Suppose {A, a), (C, e) are objects in A(G) and tp : A -» M(C) is a
nondegenerate homomorphism such that <p o a = e ° (p. Then

X%(A, a) ®AxH (C x£ H) ^ X%(C, e) S (C x£ G) ® C x G X%{C, e)

as right-Hilbert (A xQ G)-(C x£ H) bimodules.

P R O O F : The second isomorphism is standard. For the first, define

V:CC(G,A)®CC(H,C)^CC(G,C)

by

= / 'p(x(th))etfl(g(h-l))A(h)-1'2dh.
J

The usual change-of-variables arguments show that ^ is right CC(H, C)-linear (though
strictly speaking it is not necessary to prove this). The map tp x H is given by

(4.5) (<p x H(f)g)(h) = [ <p{f(k))ek(g(k-lh)) dk;
JH

using this identity, some convoluted calculations involving several changes of variables
show that

( i ® g), *(y <8> f))Cc(HiC) = {V x H({y, x)Cc{H,A))g)'f

for x,y 6 CC(G,A) C X%(A) and g,f e CC(H,C). Thus * converts the inner product
on the internal tensor product X%(A) <8AXH (C X H) to the usual one on C xc H.

To see that ^ has dense range, and hence extends to an isomorphism of right-Hilbert
bimodules, it is enough to approximate elements in CC(G, C) of the form y • f, where
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y € CC(G, C) and / G CC{H, C), with elements in the range of *P. Moreover, a partition
of unity argument shows that functions of the form 11-> <p(x(t))£t(c) for x € CC(G, A) and
c & C span an inductive-limit dense — and hence norm-dense — subspace of CC(G,C),
so we can assume that y has this form. But now a routine calculation shows that if
g(h) — cf(h), then \£(z<g><7) = y-f in CC(G,C); this implies that the range of \t is dense.

Another calculation using the analogue of (4.5) for the homomorphism tp x G shows
that this isomorphism respects the left action of A xa G. D

To prove the commutativity of (4.4), we use a device from [6, Section 4]. Recall that
if AXB is an imprimitivity bimodule, then the linking algebra is the collection of 2 x 2
matrices

L{X) ~<\Z :):aeA,b£B,x,zeX},

with multiplication and involution given by

'a x\ (a! x'\ _ (aa' + A{x,z!) a
,z b) \z' b'j '" \(z • a'+ b • z')~ {z,x')B

and

This has a unique complete C*-norm, obtained, for example, by identifying L(X) with the
C*-algebra K{X @ B) of compact operators on the Hilbert module direct sum (X © B)B

(see [16, p.50]). The matrices

(A) 0\ fo 0 \

define full projections in M(L(X)) which allow us to identify A, B and X with corners
in L(X); we can then use the projections p, q to break up a Hilbert L(X)-module into
modules over A and B. Our key technical result describes some relations among these
submodules. It is a mild generalisation of [6, Lemma 4.6].

PROPOSITION 4 . 3 . Suppose AXB and CYD are imprimitivity bimodules, and
Z is a right-Hilbert L(X)-L(Y) bimodule. Then

(i) pZp = PL(X)ZPL(Y) is a right-Hilbert A-C bimodule;

(ii) qZq = qL{x)Zqu.Y) is a right-Hilbert B-D bimodule;

(iii) pZq = PL(x)ZqL{Y) is a right-Hilbert A-D bimodule;

(iv) there is an isomorphism $ : X®BqZq —¥ pZq of right-Hilbert A-D modules

such that $ ( i ® z) — x • z;

https://doi.org/10.1017/S0004972700022449 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700022449


434 S. Echterhoff, S. Kaliszewski, J. Quigg and I. Raeburn [20]

(v) there is an isomorphism $ : pZp®cY -> pZq of right-Hilbert A-D modules
such that $(to ® y) = w • y.

REMARK 4.4. Together, the last two parts of Proposition 4.3 say that the diagram

pZp

commutes in C. If we had such a proposition when X and Y are just right-Hilbert
bimodules, and the linking algebras are by definition L(K(X)XB) and L(IC(Y)YD), we
could avoid having to factor our morphisms. However, we need to know that X and
Y are imprimitivity bimodules to identify the corners pL(X)p and pL(Y)p with A and
C. Since C in particular occurs in the middle of the internal tensor products in (v), it is
hard to see how this hypothesis might be avoided.

LEMMA 4 . 5 . Suppose E W F is a right-Hilbert bimodule and P e M(E), Q €
M(F) are full projections. Then PWQ is a right-Hilbert PEP-QFQ bimodule.

PROOF: Since PWQ is certainly a PEP-QFQ submodule, and since

(PWQ, PWQ)F = Q{PW, PW)FQ c QFQ,

we only have to check nondegeneracy of the left action and fullness on the right. For
nondegeneracy, we use the fullness of P to see that PEP • WQ = PEP • EWQ =
P(EPE) • WQ is dense in PWQ. For fullness, we use the fullness of P again to see that

(PWQ,PWQ)F = Q(PE W,PE- W)FQ

= Q(W, EPPE- W)FQ = Q(W, E • W)FQ

is dense in QFQ. D

PROOF OF PROPOSITION 4.3: For (i), apply Lemma 4.5 with P — Pnx) £
M(L(X)) and Q = pL(Y) € M(L(Y)), and note that A = PL(X)P and C = QL(Y)Q
because X and Y are imprimitivity bimodules. Parts (ii) and (iii) follow similiarly.

For part (iv), we first note that because (x, z) •-» x • z is bilinear, there is a well-
defined map $ on the algebraic tensor product X © qZq with the required property. We
next verify that $ preserves the inner product: if x, x' € X and z, z' 6 qZq, then the
inner product (X,X')B is given in L(X) by (x, x')B = x'x'; more formally,
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Thus

(x®z,x'<S> z')D = (z, (x,x')B • z')D

= (z,(x'x')-z')D

= (x- z,x' • z')D

and $ extends to an isometry of X ® B qZq into pZq. To see that $ has dense range and
is therefore onto, note that L{X) acts nondegenerately on Z, so

range $ D pL{X)q • qZq = PL(X)q • q(L(X) • Z)q = p(L(X)qL(X)) • Zq

is dense because q is full.

For (v), note that the D = qL(Y)q-valued inner product is given by the product in

L(Y), so

(w ®y,w'<8> V')D = (y, (w, w')c • y')D

= y'(w,w')L{Y)y'

= (w-y,w'-y')L(Y),

which is {w • y,w' • y')o because w • y and w' ® y' belong to pZq. Thus w ® y t-¥ w • y
extends to an isometry $, as claimed, and ^ is surjective because p is full and L(Y) acts
nondegenerately on Z. D

BACK TO THE PROOF OF THEOREM 4.1. Consider the action 6 = I _ n I of

G on L(Y); by Green's theorem, Z = X%(L(Y)) is then a right-Hilbert (L(Y) xs G)-
(L(Y) x6 H) bimodule. To show that (4.4) commutes, we aim to apply Proposition 4.3
to Z, but this requires that we first identify L(Y) x$ G with L(Y xv G), and similarly
for H. Now the dense subalgebra CC(G,L(Y)) consists of 2 x 2 matrices with entries
in CC(G,C), CC(G,Y), et cetera, and the diagonal corners have their usual *-algebraic
structures as subalgebras of C xe G and B x@ G. The norms are the same too: every
covariant representation of (L(Y), 6) restricts to a covariant representation of (B, 0), and
the inducing construction of Example 2.8 shows that every covariant representation of
(B,P) extends to a covariant representation of (L(Y),6). So we have embeddings of
C xeG and B x@G as corners in L(Y) XgG. The bimodule crossed product Y x , G also
embeds: because B xG embeds isometrically, the norm of a function

^ ) € CC{G,L{Y)) C L(Y) x G

is just | | ( / , / ) B X G | | - These embeddings combine to give an isomorphism of L(Y x , G)
onto L(Y) xsG, as desired. (This observation is not new: in [2], Combes defines Y xvG
to be the corner in L(Y) xs G.) In exactly the same way, L(Y x , H) = L(Y) xs H.
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We next have to identify the corners pX$(L(Y),6)p and qX%[L{Y),6)q with
X%(C,e) and X%(B,0). But viewing elements of Cc(G,L(Y)) C Xg(L{Y),5) as ma-
trices of functions, and similarly for CC(G,L{Y)) c L{Y) xs G and CC(H,L{Y)) C
L(Y) xs H, gives the desired identifications. It now follows from Proposition 4.3 that

(Y xv G) ®BxG X%{B,0) a pX%(L(Y),6)q 3 Xg(C,

as right-Hilbert (C xe G)-(B x0 H) bimodules. In other words, (4.4) commutes in the
category C.

We have now established the first part of Theorem 4.1, the natural transformation
between the functors (A, a) >-¥ A xa G and (A, a) >-> A xQ H. For the second part,
we have to prove that (4.2) commutes. We follow the same procedure as before: factor
a given morphism [,4X3,7] as [cVs,'7] ° [v.e]i anc* prove that two separate diagrams
commute. To see the commutativity of

(A®C0(G/H)) xa^G X"(A'a\ AxaH

(v>®id)xG vxH

) ^^K CxeH,

we merely note that the isomorphism of Lemma 4.2 respects the left action of Co(G/H),
and hence is also an isomorphism of right-Hilbert ((A ® C0(G/H)) xa^T G)-(C xE H)
bimodules. To see that

(C®C0{G/H))xe9rG ^ % Cx£H

(y®Co(G/ff)) x^rG I I**""

(B®C0(G/H)) x^rG ^ ^ 4 B x0H

commutes, we again apply Proposition 4.3 to Z = Xjj(L(Y),6), this time viewed as a
L((Y <g> CQ{G/H)) X^T G)-L(Y XV H) imprimitivity bimodule. To do so, we have to
identify L((Y ® C0(G/H)) x ^ T G) with (L(Y) ® C0{G/H)) XSIS>T G, but there is no
essential difference in the argument.

This concludes the proof of our main theorem. D

REMARK 4.6. As an example of how the present set of ideas can simplify things, no-
tice that the commutativity of diagram (4.4) implies that for each covariant representa-
tion p x V of B Xp H, the representation (Y xv G)-Ind(lnd^(p x V)) is equivalent to
Ind^((K xvH)-lnd(pxV)). This is the content of [4, Theorem 3], or at least the content
of its proof (the twists in that theorem go along for free by [4, Remark (2) on p. 174] and
[7, Corollary 5]). The point is that the arguments we give here are more elegant as well
as more powerful.
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