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HURWITZ GROUPS OF INTERMEDIATE RANK
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Abstract

This paper is concerned with (2, 3, 7)-generated linear groups of
ranks less than 287. In particular, sixty new values of n are found,
such that the groups SL,, (¢) are Hurwitz for any prime power q. This
result provides the next step in deciding which classical groups are
Hurwitz.

1. Introduction

A group is called (2, 3, 7)-generated if it can be generated by two elements such that they
have order 2 and 3, respectively, and their product has order 7. Finite (2, 3, 7)-generated
groups are also known as Hurwitz groups. In other words, the Hurwitz groups are precisely
the non-trivial finite homomorphic images of the triangle group

72,3, ) =X, Y | X>=Y>=XY) =1).

The problem of determining which groups are quotients of 7'(2, 3, 7) has attracted many
researchers. We just mention a recent survey [10], where an overview of the known results
is given. Particular attention is paid to the case of classical groups over various rings,
especially over finite fields or the ring Z of integers; see [3, 6, 7]. As is shown in [3], many
linear classical groups of rank less than 18 are not Hurwitz. On the other hand, for all
sufficiently large ranks, the groups SL,(g), Sp,,(q), SU2,(q) and ern(q) for any prime
power g, and SU>,,+1(g) and 22,41 (¢) for any odd prime power g, are known to be Hurwitz;
see [6, 7]. For example, Lucchini, Tamburini and Wilson proved the following theorem
[7, Corollary 1].

THEOREM 1.1 (see [7]). (1) Foreach prime power q and each integern > 287, the group
SL, (g) is a Hurwitz group.
(2) For each integer n > 287, the group SL,(Z) is (2, 3, 7)-generated.
In fact, the above theorem was a consequence of the following — more general — result,

which was established in [7, Theorem A]. Given a ring R with identity, let E, (R) denote
the group generated by the set of elementary matrices

{I+reij:reR, 1<i,j<n, i#j}

Here, I is the identity n x n matrix and the e;; denote as usual the elements of the standard
basis of the matrix algebra Mat(n, R).

Letry,...,rm € R. By R, . ,,, we denote the subring of R (maybe without unity)
generated by 71, ..., ry, (that is, the set of all (finite) Z-linear combinations of monomials
r{” c r,]f,’”, ki+...4ky>1.fR=R, _,,,wesaythatry,...,r, generate R.
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Hurwitz groups of intermediate rank

THEOREM 1.2 (see [7]). Let R be a ring that is generated by elements t1, ..., ty,, where
2t — t12 is a unit of R of finite multiplicative order. Then E, (R) is (2, 3, 7)-generated for
anyn = 287 + 84(m — 1).

In the case of intermediate ranks, however, the problem remains open. The statement
of Theorem 1.1 is not the best possible and, as the authors of [7] have already noted in
the remark at the end of [7, Section 4], a more careful inspection of their proof shows that
SL,(g) and SL,,(Z) are (2, 3, 7)-generated for any ~ in the set

S={ldm+d:m=>6,de D}U{42+d :d € D}, (1)
where
D = {36,42,57,77, 115, 135, 136, 142, 144, 165, 180, 187, 195, 216}.
There are 93 integers less than 286 in the set S. These are:

78, 84, 99, 119, 120, 126, 134, 140, 141, 148, 154, 155, 157, 161, 162, 168,
169, 175,176, 177, 178, 182, 183, 184, 186, 189, 190, 196, 197, 199, 203, 204,
207,210,211, 213, 217, 218, 219, 220, 222, 224, 225, 226, 227, 228, 229, 231,
232,233,234, 237,238, 239, 240, 241, 242, 245, 246, 247, 248, 249, 252, 253,
254,255,256, 258, 259, 260, 261, 262, 263, 264, 266, 267, 268, 269, 270, 271,
273,274, 275,276,277, 278, 279, 280, 281, 282, 283, 284, 285.

The aim of the present paper is to investigate groups of other intermediate ranks. Our
main result is the following theorem.

THEOREM 1.3. Let R be a ring that is generated by an element t. Assume that 1 belongs to
the subring of R generated by 2t — t>. Let n be in the set
{49, 57, 63, 64, 70, 77, 85, 91, 92, 93, 98, 100, 105, 106, 108, 112, 113,
114, 121, 127, 128, 129, 133, 135, 136, 142, 147, 149, 150, 156, 163, 164,
165, 170, 171, 172, 180, 185, 191, 192, 193, 198, 200, 201, 205, 206, 208,
212,214, 216, 221, 235, 236, 243, 244, 250, 257, 265, 272, 286}.

Then E, (R) is (2, 3, 7)-generated. In particular, the groups SL, (Z) and SL,(q) for any
prime power q are (2,3, 7)-generated.

Using a slightly different technique, which goes back to [7], M. C. Tamburini indepen-
dently obtained a special case of Theorem 1.3 for n = 49, in work that is as yet unpublished.

Another purpose of this paper is to provide general results about new ways of building
linear representations of 7'(2, 3, 7) from the known ones. For this reason, we state some
auxiliary lemmas in a slightly more general form than we actually need here. They will be
used in a future research on low-rank Hurwitz groups.

2. Obtaining new representations via handles

Let R be a commutative ring with unity. We are mostly interested in two cases, namely,
R =Z and R = Iy, a finite field with g elements. Let X, where |X| = n, be the canonical
basis for the free R-module (X) = R" consisting of row vectors of size n. In what follows,
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we consider the action of Sym(n) on ¥ and GL, (R) on (X) on the right. We will identify
Sym(n) with the subgroup of GL,,(R) consisting of permutational matrices.

A very efficient tool for building new permutational representations of 7'(2, 3, 7) using
coset diagrams is due to Higman. Further developments of these ideas can be found in the
papers by Conder [1] and Stothers [9]. They used different language, but the terminology
introduced by Conder is now common. For this reason, we refer to [1], where the notion of
a handle appeared for the first time.

DEFINITION 2.1. Let ¢ : T(2,3,7) — Sym(n) be a permutational representation of the
group T'(2,3,7),and leti € {1, 2, 3}. An ordered pair (a;, a2), where ay, ay € X, a; # ay,
is called an i-handle for  if:

(i) ¥ (X) fixes both a; and ay;
(i) a1(y X)Y () = a.
We write (ag, a2); to indicate that the pair (ay, ap) is an i-handle.
The key step was the following result.
LEmMMA 2.2 (see [1]). Suppose that |X| = n and |X'| = n/, and that ¥ and ' are disjoint.
Let
¥ :T@2,3,7 — Sym(@n) and ' :T2,3,7) — Sym®’)
be two transitive permutational representations of T (2, 3, 7). Assume further that (a1, az);
and (a}, ay);, where ay, ay € ¥ and ay, ay € X', are i-handles for \ and ', respectively.
Then, putting
V(X)) =y (XY (X)(@rap(aay) and §Y) =y @)Y (Y),

we define a transitive representation 1} :T(2,3,7) —> Sym(n +n’).

REMARK 2.3. More precisely, Conder [1] also considered representations of the group
T*2,3,7)=(X,Y,S | X>=Y>=(XY) = 8§ = (XS)*> = (¥YS)* = 1),

which contains 7T (2, 3, 7) as a subgroup of index 2. For this reason, he used representations
whose coset diagrams have a vertical axis of symmetry, and imposed a certain symmetry
condition in the definition of a handle. However, this symmetry is irrelevant to representa-
tions of 7'(2, 3, 7), and an analysis of Conder’s proof shows that Lemma 2.2 remains valid
if handles are defined as above. See also an alternative approach in [9].

Later, Lucchini, Tamburini and Wilson [6, 7] extended the notion of a 1-handle to the
case of linear representations. We modify their definition slightly to include a more general
case.

DErFINITION2.4. Lety : T(2,3,7) — GL, (R) be arepresentation of the group 7'(2, 3, 7).
An ordered pair (ay, az), where ay, ay € X, ay # a, is called a handle for i if
(1) ¥ (X) induces the identity on (aj, a>) and fixes (¥ \ {a1, a2});
(i) a1y (Y) = ar and
(EN{ahy¥) € (E\{az2}). )

REMARK 2.5. Instead of condition (ii), a stronger condition was used in [6, 7], namely that

(ii") ¥ (Y) acts as (a1, az, az) for some a3 € ¥ and fixes (X \ {a1, a2, a3}).
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Clearly, any 1-handle in the sense of Definition 2.1 is also a handle in the sense of
Definition 2.4.

The following lemma describes how to build new representations using handles. In
contrast to [6, Lemma 1, case (1)], where two handles are required, we need only one.

LEMMA 2.6. Let : T(2,3,7) —> GL,(R) be a representation of the group T (2,3, 7),
and let (a1, az) be a handle for . Assume that by, by € (X \{a1, a2}), and that the following
properties are satisfied:

(1) V¥ (X) fixes by and by;
(i) by (Y) = bo.

Let U € GL,,(R) be the matrix that induces the identity on (X \ {ai1, az}) and acts on a;
and ay as follows:

a U = —ay + by; aU = —apy + by.

Then U and v (X) commute, U and U+ (X) are involutions, am{ Uy (X)) (Y) is conjugate
oy (X)y(Y). In particular, we can define anew representationy : T (2,3,7) — GL,(R)
by setting ¥ (X) = Uy (X) and (YY) = ¥ (Y).

Proof. Clearly, U is an involution. Now, note that U (X) and ¥ (X)U acton (X \ {ay, a2})
in the same way as ¥ (X) does. In addition, fori =1, 2:

a;Uy(X) = —a; + b;; aiy (X)U = —a; + b;.

Therefore, U (X) = ¥(X)U and (Uy (X))? = U (¢ (X))? = 1.
Next, for any v € (X \ {a1, a2}) we have vU ¥ (X)¢¥ (Y) = vy (X)¥ (Y) and

vy (XY (YY) € (X \ {a1, ax )y (X)) (Y) S (B \ {ar, a2}) ¥ (Y)

3
C(EN{ahv () (T \ {a2}), ©)
whereas
Uy(X)Y(Y) a1 — —az + by = axpr (Y); 4)
YXYX) a1 = ax = ay(Y). (5

Let ¥’ be the basis of R" obtained from ¥ by substituting —a; + b> for ay. By (2), we have
axy(Y) € (X \ {az}). This inclusion and (3)—(5) imply that the matrix of U (X)y(Y)
with respect to the basis X’ coincides with the matrix of v (X) (Y) with respect to . This
completes the proof. O

REMARK 2.7. If by = by # 0, then assumptions (i) anfl (i) qf Lemma 2.6 imply that
the subspace (b1) is (¥ (X), ¥ (Y))-invariant; hence it is (¥ (X), ¥ (Y))-invariant. Since we
are mostly interested in irreducible representations, we will consider only the case when
b1 # by.

REMARK 2.8. A special case of Lemma 2.6, namely when b1 = t¢| and by = tc; for some
handle (cy, ¢2) with ¢1, ¢ € ¥ and for some ¢ € R, appears in [2, 6, 7].

The following lemma gives us some useful information about the behaviour of the
commutator

[V (), ¥ (V)] = (X)) XD (D).
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LEMMA 2.9. Under the assumptions of Lemma 2.6, set C = [1/;(X), 1ﬁ(Y)] and
C = [¥(X), ¥ (Y)]. Then the following statements hold.

() ay is fixed by C and C.

(ii) Setaz := ay¥(Y), ag := a3y (X), by := b1y (Y1) = by (Y) and bs := b3y (XY)
= b1y (Y XY). Suppose further that

a3, a4 € X\ {ay, az} (6)

and
(X \ a1, a2, as}) is fixed by Y (Y); (7
(X \{a1, a2, a3, as}) ¥ (X) € (X \ {a1, a2, a3}). ®)

Then
b3 € (¥ \{a1, az, a3}). 9)
Finally, under the above assumptions we have vC = vC for any v € X \ {ay, a4}, whereas

a1C = asy(Y);

asC = as;
a1C = —asy(Y) + b1y (Y 'XY) = —a|C + bs;
arC = —a3 + by (Y) = —ayC + b3.

Proof. (i) Recall that (X ~!) = ¥ (X), U~! = U and the matrices U and y (X) commute.
Thus C = ¥ (X)Uy (Y "HU W (X)y(Y). Now we have

vX) oy h oy )
a) —> ay —— ay — a] —> ay,

¥ (X) U y(rh U vX)  yQI)
GmH—ay+— —ay+by —" —ay+b— a] — a; —> ap,

which proves part (i).
(ii) To prove inclusion (9), recall that a, a>, a3 € ¥ and they are pairwise distinct. Write
b3y = aja) + wpap + azaz + w,

where w € (X \ {ay, az, az}). By the definition of a3 and b3, Definition 2.4 and assumption
(7), we have

b1 = b3y (Y) = aza; + ajaz + a3 + w(Y),

by = b3y (Y?) = aar + azaz + ajaz + wyr (¥Y?),
where wi/ (Y) and wi (Y?) are in ( \ {a1, a2, a3}). Since by, by € (T \ {ai, as}) by the
assumptions of Lemma 2.6, we conclude that «; = ap = a3 = 0; that is, inclusion (9)
holds.

Now we are ready to prove the main claim of statement (ii). The case v = a3 has already
been settled in part (i). Take v € X \ {ay, az, a4}. First, we show that

vy (X) € (2 )\ {ar1, a2, az}), (10
and, in particular, that

v (X) € (B \ {a1, az}). (1)
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For v # as, both inclusions are obvious by statement (8). If v = as, then v/ (X) = aa.
Therefore, (11) follows from (6). Since ¥ (XY') has order 7, we have as = a3y (X) # a3,
which — together with (6) — implies that inclusion (10) holds in this case, too.

By inclusion (11),

vOU =vy(X)  and  vpOUP ™) = vy (XY™
forany v € X\ {ay, az, a4}, while (10) and (7) imply that
V(XY™ € (2 \{a1, a2, a3}) € (T \ {a1, a2}).
Therefore,
v OUY (Y~ HU = vy (XY~
and
vC = vy (X)UY(Y HUY(XY) = vy (XY 'XY) = vy (X 'Y 1 XY) = 0C.
Finally, we have

X y-! X Y
ap M 1//}(_)) az — W ) 1//( )a4tp(Y)

X))  yTh oy )
a4 ——> a3 +—— dap —— d) —— as;

X y-! X Y
a8 @ % a3 W s a4+ 5 B a4+ 5y P s + by (;

(X) U (r—h 1, U _
alLalr—>—a1+b1 lpr—> —az + b1y (Y 1)r—)—a3—i—b11/f(Y )
(X
MY —as oy 0 P8 —agy () + by (v XY):
for the second occurrence of U in the last chain, we use (9). The proof is complete. O

LEMMA 2.10. Under the assumptions and notations of Lemma 2.9, suppose further that:
(1) {a1,as} € A C X, where both (A) and (X \ A) are invariant under C;

(i) |A| = s and C acts on A as a cycle of the following shape: (ay, ..., as, ...);
(iii) b3z and bs are in (£ \ A); k s—k

(iv) both vectors bsC k _ by and b3C*~* — bs are annihilated by the matrix f(C), where
the polynomial f is given by

f@) =G =D/ — 1) for some .
Then C™ = C'*.
Proof. By Lemma 2.9, C and C act in the same way on (X \ A). Since (X \ A) is invariant
under C, we find that
vCY = vC* for any v € (X \ A) and for any £ > 0. (12)

By (i), A = {a1C_S+k'H BN, S TR ale}, and a1Ck = a4. Using Lemma 2.9, we
obtain a;C = —a;C + bs, aleC = —a1C* 4 b3, and a,C!'C = a1 CIHVif 1 £ 0,k
mod s. Therefore, alCl Cl = alc“”, provided that i = O or i > 1 and the sequence
I,1+1,...,1+i — 1 contains no number congruent to 0 or & (mod s). Taken together

https://doi.org/10.1112/51461157000001145 Published online by C3@lyidge University Press


https://doi.org/10.1112/S1461157000001145

Hurwitz groups of intermediate rank

with equation (12) and assumption (iii), this implies that, for j =0, ..., s —k — 1, we have
aC/C* =a;C/C/IC =aiC5/
= (—ai1C + bs5)C* 77V = —q,CCF1C Tk 4 psCs—7 !
— _alckés—j—k +bscs—j—1 — (a1Ck+1 _ b3)C~S—j—k—1 +bscs—j—l
=a C) — bR pses i
=a,C7/ + (=b3 + bsC*C* 7K1,
while for j =1, ..., k, we have
a|C/C* = a\CICKI ST = g C* s+
— (_Cllck+l + b3)és—k+j—l — _alckﬂ-lés—k—léj _I_b3cj‘—k+j—1
— _alcséj +b3cS7k+j7] — _alé] +b3cS7k+j7]
= (a1C — bs)C/ ™1 4 b3 =1 = €I — bsCI 71 4 b3+
=a;C/ + (—bs + b3C° 0 i1,
In addition, assumptions (i) and (iii) imply that both —b3 + b5 Ckand —bs + b3C** are in
(2 \ A). Therefore, for any j we have
alcfé“:aleJrujC"‘-/, (13)
where «; is a non-negative integer, u; is annihilated by f(C), and
uj € (S\ A). (14)

Let ®,4(z) denote, as usual, the dth cyclotomic polynomial. Over any field of character-
istic 0, we have

7 —1= 1_[ D,4(z)

dlrs
-1
=[]e«@]] %(z)( I %(z)) h(z)
dl|s d|r d| ged(r,s)
= — DI = DEE) — 1) lh(g)
= (" = 1) f(2)h(2),

All the polynomials ®, are polynomials with integer coefficients, and thus # is too. There-
fore, the decomposition

T —1=E" =1 f(@h()
holds over every~ring with unity. Now, using (13), (14), assumptions (i) and (iii), and the
fact that C and C act in the same way on (X \ A), we deduce that
alCH(C™ — 1) =a1CI(C* = I) fF(C)h(C)
=u;C% f(C)h(C)
=u;C% f(C)h(C)
=uj f(C)h(C)CY
=0.
Hence, C" induces the identity on (A). Clearly, C™* does the same. Therefore, Crs =(C’s
on R". ]
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LeEmMA 2.11. Conditions (iii) and (iv) of Lemma 2.10 are satisfied, for example, if bz = tc3,
bs = tcs with {c3,cs} € A" C (2 \ A), C acts on A’ as a cycle of length r = |A'|, and
one of the following conditions holds:

(i) r=sand C5Ck = c3, where k is the same as in Lemma 2.10;

(i) ged(r,s) = 1.

Proof. Clearly, in the first case, f(z) = 1 and —b3 + bsCk = —bs + b3C5F = 0. In the
second case, f(z) =14z +...+ 7 ! Hence

1 _1
b3f(C) = erg,Ci =t Z V= ersci—i-k
i=0 i=0

veEA

= bsC* £(C).
In a similar way, b3C* X £(C) = bs f(C). O

3. Some generation lemmas

In this section we prove several auxiliary results about generating sets for the groups
Alt(n) and E,,(R). The technique is due to A. Lucchini, M. C. Tamburini and J. S. Wilson;
see, for example, [6, 7]. Most of the statements in this section may be regarded as non-trivial
refinements of similar results in [6] and [7].

LEMMA 3.1. Let H be a subgroup of Alt(k) x Alt(m), where k > max{m, 4}. Let m;,
i = 1, 2, be the natural projections from Alt(k) x Alt(m) to Alt(k) and Alt(m), respectively.
Assume that m1(H) = Alt(k). Then H = Alt(k) x B, where B = my(H). In particular,
Alt(k) x (1) < H.

Proof. We have ker my N H < H. Consequently, 1 (ker o N H) < i (H) = Alt(k). The
assumption that k > 4 implies that Alt(k) is simple; therefore, either: (i) i (kermy N H) =
(1), or else (ii) my(kermo N H) = Alt(k). But kermy N H < Alt(k) x (1). In particular,
kermy, N H = my(kermy N H) x (1). Thus, in case (i) we have ker mo N H = (1), and
|H |

Alt > H)|=H>—— = H)| = | Alt(k)|,

| Alt(m)| = |m2(H)| = |H| ket A H| |1 (H)| = | Alt(k)]
a contradiction of the assumptions of the lemma.

In case (ii), we have Alt(k) x (1) = kermoNH < Hand |H| = |kermyNH|-|m(H)| =

| Alt(k)| - | B|. Now the claim follows from the trivial inclusion H C Alt(k) x B. U

As we agreed before, Sym(n) is identified with the group of permutation matrices. If
o € Sym(n), the corresponding permutation matrix ) ;_, ¢; ;o is denoted by g,. We write
I for the k x k identity matrix. Let » € R. Recall that by R, we denote the subring of R
(maybe without unity) generated by r: that is, the set of all sums ¢ir + cor® + ... + ¢r',
where [, c1, ..., ¢; are integers. If R = R,, we say that r generates R.

LEmMA 3.2. Forn 2> 3, we have SL,(R1) < E,(R). In particular, E, (R) contains Alt(n)
and all diagonal matrices with entries =1 and determinant 1.

Proof. The ring R; is isomorphic to either Z or Z/mZ. Therefore, SL,,(R;) = E,(R1) <
E, (R), provided that n > 3 (see [4, 1.2.11 and 4.3.9]). O
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LeEmMA 3.3. (i) Let Q be the block diagonal matrix

Q = diag(P, I,—p—2), (15)
where
-1 0 n r
P = 0 -1 s1 ... s ,
0 I,

andri, s;i € R, fori = 1,...,h. Let E be the group generated by Q and Alt(n). Then we
have E < E,(R).

(ii) Letn > h + 5. Suppose that for some jo, 1 < jo < h, the element rj, generates R
and sj, = 0. Then

I, +rejj—rejx € E (16)
for any r € R and any pairwise distinct i, j, k, where 1 < i, j, k < n.
(iii) Letn = h + 5 and jy be as above. Set
p=rjj2—r1—...—1p) a7
and assume that 1 € R,. Then E = E,(R).
Proof. (i) By Lemma 3.2, diag(— 1>, I,—2) € E,(R) and Alt(n) < E,(R).
Now, the identity

h h
Q =[]t +rieviva) [ [Un + siezita) diag(—Ia, I,-2)
i=1 i=1
implies that Q € E, (R). Thus, E < E,(R).
(i) Without loss of generality, we may assume that jo = 1. (Otherwise, replace Q by its
conjugate g;.' Ogs,, Where o1 = (3, jo+2)(h+3, h+4); note that o1 € Alt(n) if jo > 1.)
In particular, s1 = 0. Let oo = (3, h 4+ 3)(h + 4, h + 5). A direct calculation shows that

h h
Qg(;zl 080, = <1n —2e11 —2exn +rie;z + Zriel,i+2 + Zsiez,i+2>

i=2 i=2
h h
x <1n —2e11 —2ex +riep 3 + Zriel,i+2 + ZSi€2,i+2>
i=2 i=2
= In +rie13 —riei 3.
Consequently,
I, +rie;3 —riejpy3 € E. (18)
Conjugation by g4,, where 03 = (h + 3, 3, 2), gives us
I, +riejp —rie13 € E. (19)

Taking o4 = (1,2)(h + 4, h + 5), we have the following identity:

h+3 h+3 h+3
[ln + Y weni . gy, (In + Zﬁieli)ga4:| =L+ Y apiei, (20)
i=2 i=3 i=3

which is valid for any ay, ..., @p43, B3, .. ., Br+3.
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Starting from the matrices (18) and (19), and repeatedly applying identity (20) several
times, we see that I, +r1je13 —rljel,h+3 € E forevery positive integer j. Butr) generates R,
and therefore I, +rej3 —rej 43 € E forany r € R. Since n > 5 and Alt(n) is (n — 2)-
transitive, by conjugating by a suitable g, we find that (16) holds for any r € R and any
i,j,k,wherei # j,i #kand j # k.

(iii) Asin part (ii), we may assume that jo = 1. Now consider o5 = (1, 3, h+3). We have
h h
0¢,, 0805 = <In —2en —2en +ries+ Yy rieniv2 + Zsiez,i+2>
= i=2
X (In —2e33 — 2exx +rie3 i3 + Z rie3i+2 + Z Siez,i+2>
i=2 i=2
h
= I, —2e11 — 2e33 — rie3 + Y _(ri + rireniqa + rienny3

h i=2

+ Z rie3i+2 +7r1e3h+3.
i=2
Therefore, I, + 2rie;s — Z?:z ririeliya — rlzel,h+3 = (Qg;sl QgOS)2 € E. Multiplying
the matrix (Qg,. o) ggs)2 by a suitable product of matrices of the form (16), namely by

h
(In = 2r1e13 + 2r1e1543) [ [ + ririeriva — ririenngs),
i=2
we see that E contains
I + pein+3, 21

where p is defined by (17). Hence E also contains

I+ peia = g5 (In + perni3) 8o (22)

where 0 = (2, h + 3)(h + 4, h +5). As above, starting from the matrices defined by (21)
and (22), and repeatedly applying (20), we deduce that I, + p’e; y4+3 € E forany j > 1.
The assumption that 1 € R, implies that [, +-e; 13 € E.By (16), I, +rejp—rej 13 € E
for any r € R. Using a special case of (20), we have

I+ reins =l +rein —retnss. g, (n +e1.h43)80,] € E.

Conjugating by suitable permutational matrices, we find that E contains I, + re;; for any
r € Rand any i, j, where | < i # j < n. Thus it coincides with E,, (R). O

Now we consider the situation described in Lemma 2.6, and we introduce some further
notation. From now on, we assume that ¢ : 7(2,3,7) — Sym(X) € GL,(R) is a
transitive permutational representation of 7'(2, 3, 7), and that {a;, a;} € X is a 1-handle
with respect to ¥. Suppose that by, by € (X \ {ai, az}), where by # b>, and they satisfy
assumptions (i) and (ii) of Lemma 2.6. Thus we may apply Lemma 2.6 to define a new
linear representation . Let I';, T’y C ¥ be the supports of b and b respectively; that is,
['; is the smallest subset of the basis X such that b; € (I';). Since ¥ (X) fixes both by and
b and acts as a permutation on X, we have I'; ¢ (X) = I';, i = 1, 2. Finally, we define '
as follows:

F={vel U, vy(X) # v} (23)
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LEMMA 3.4. Under the assumptions and notations of the preceding paragraph, suppose
further that for some Ay C X, the following conditions are satisfied:

(i) [Aol =3
(i1) Aq contains at least two points from an orbit of W (Y) and Ay \ T contains an orbit
of ¥ (X) of length 2;
(iii) Alt(Ao) is a subgroup of (W (X), ¥ (Y)).
Let A be a maximal subset of ¥ with respect to the following properties:
Ao S A and  Al(A) < (G (X), P (V). (24)
Then Ay (Y) = A and (A\T)yY(X) C A.
Proof. Assumption (i) yields A N Ay(Y) # @. Recall also that ¥(Y) = ¥ (Y). By
condition (i), |A| > |Ag| = 3 and |AY(Y)| = |A| > 3. This, together with (24), implies
that
Alt(A U Ay (Y)) = (Alt(A), Alt(Ay(Y)))
= (Alt(A), ¥ (Y ™) Al(A)P (V) < (¥ (X), ¥ (V).

By the maximality of A, we have A = Ay (Y).

Now let {wy, w2} € Ap\TI be an orbit of ¥ (X) of length two, which exists in accordance
with condition (ii). Take v € A \ T". Clearly, if v = w or v = wy, then v/ (X) € A. Thus
we may assume that v # wp, wy. Hence (v, wi, wa) € Alt(A).

Recall that a1 and a; are fixed points of ¥ (X), while wj and w; are not. We may also
assume that ¥ (X) does not fix v; otherwise vy (X) € A by trivial reasoning. By the choice
of wy, wyp and v, we have v, wy, wy ¢ I'. By the definition of T,

Mul,=Tu{vel Ul vy (X) =v}.

Therefore, the above observations imply that v, wy, wy ¢ I‘] ulpu {al, az}. In partlcular
none of v, w; and w» lies in the support ofallﬁ(X) = aﬂ//(X by or azl//(X) = azlp(X )
(the corresponding supports are I'1 U {a;} and "y U {a»}, respectively). Therefore,

FX Y, wi, w)P(X) = Y (XD, wi, w)Y(X) = (Vi (X), wa, w).

Note that w1 and wy lie in the support of (vi/ (X), wo, wy) andin A. Since |A| = |Ag| = 3
we find, using (24), that

Alt(A U vy (X)}) = (Alt(A), 0y (X), wa, wy))
<A{AI(A), (X1 Al(A) (X)) < (¥(X), ¥ (Y)).

By the maximality of A, we have v/ (X) € A. O
COROLLARY 3.5. Under the assumptions of Lemma 3.4, suppose further that yr is a transitive
permutational representation, and that |\I'1| = |I2| = 1. Then (Y (X), ¥ (Y)) contains
Alt(X).

Proof. If|I"1| = |I'2| = 1, then it follows from (23) that " is empty. Let A be a maximal set
with respect to the property described in (24). By Lemma 3.4, Ay (Y) = A and Ay (X) =
A. By the transitivity of (¢ (X), ¥ (Y)) on X, we have A = X. O

The above corollary has already appeared as a part of the proof of [7, Theorem A],
although it is not stated explicitly there.
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4. Proof of the main theorem

Proof of Theorem 1.3. We start from twenty basic permutational representations, which are
labelled A, ..., T. The corresponding generators X 4, Y4, ..., X1, Y1, together with their
degrees and available handles, are listed in Appendix A. The first fourteen representations
(A, ..., N) are extracted from Conder’s list of coset diagrams [1]. The remaining ones are
actually mentioned in [9], although the generators are not written there explicitly.

Here we present the general scheme of the proof, while all the necessary computational
details can be read from Appendix B. The calculations were performed using the MAGMA
package. Related libraries are provided in Appendix C.

Let n be one of the numbers listed in the statement of Theorem 1.3, and let

Y=A{vr, ..., v}

To simplify the descriptions of permutation generation below, we identify ¥ with {1, ..., n}
in a natural way. Connecting some of the basic diagrams as described in Lemma 2.2, we
build a permutational representation ¢ : 7(2,3,7) —> Sym(X) of degree n with at
least two 1-handles, say {a1, a»} and {c1, c2}. We use the following notation. For example,
G(1)E(2)D means that the representations G and E are joined via 1-handles, and the
resulting representation is connected to D via 2-handles. For a basic representation O of
degree d,

[k,k+d—1] [k, k+d—1]
XID Y:D

and

denote the results of the natural embeddings of Xgp and Ygp, respectively, into
Sym({vk, ..., vk+d—1}). Set also X, = ¥ (X) and ¥, = ¥ (Y). Thus, in the above
example the corresponding Hurwitz generators can be written as

Xor = X041(25, 68) (26, 69) X113 700 (52, 71) (55, 74) X 71921,
Yop = Yg’42]Y1[~;43’70]YL[>71’92]»
while the free handles are (a1, ay) = (1, 2); and (c1, ¢2) = (13, 14);.

Let ¢ be an element of R that satisfies the hypothesis of Theorem 1.3. In particular, one
can take t = 1if R = Z, and any generator t # 2 of IF, if R = F,. Letting by = f¢y and
by =tcy, we apply the transforma'gion described in Lemma 2.6, and we obtain new Hurwitz
generators ¥ (X) = Uy (X) and ¥ (Y) = ¢ (Y) = Y,. Set

G = (Y (X), ¥ (Y)).

We claim that in each case under consideration, G = E, (R). Clearly, ¥ (Y) and ¥ (XY) are
even permutations, as their orders are odd. So ¥ (X) is also even. Notice that U is a product
of two elementary matrices and a diagonal matrix with entries &1 and determinant 1. Thus,
by Lemma 3.2, E,, (R) contains ¥ (X), ¥ (Y) and U. Hence, G < E, (R).

Our next aim is to prove the converse inclusion in each case. Reading the data from
Appendix B, we see that in each case the assumptions of Lemmas 2.9 and 2.10 are satisfied.
In fact, conditions (7) and (8) hold automatically, since ¥ is a permutational representation
acting on X such that ¥ (Y) permutes ai, a2 and a3, and 1 (X) permutes a3 and a4 and fixes
ay and ar. Let C = [y (X), ¥(Y)] and C = [1/;(X), 1/;(Y)] be the commutators introduced
in Lemma 2.9. Using Lemmas 2.10 and 2.11, we find d such that C? = C? and the support
of C? is large enough. Set S| = C¢ and S, = Yn_lCd Y,, and let K be a subgroup of
Sym(n) = Sym(X) generated by S; and S,. Let A be the largest orbit of K, and let A
be the union of all other non-trivial orbits (that is, orbits containing at least two points). We
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denote by S;, i = 1,2, the restriction of S; to Ag. It turns out that in all the cases below,
both S; and S, are even permutations. If A; is not empty, then the restriction of S; to A
is given by S; S‘l_ ! Since S1 and S, as powers of commutators, are even, both Sy S'l_ and
525‘2_1 are also even. Therefore, K < Alt(Ag) x Alt(Ayp). Set K = (81, S5). In each of
the cases under consideration, we will find an element W of K, some power of which is
a cycle of a prime length £ with |Ag|/2 < £ < |Ag| — 3. The first inequality guarantees
that K is primitive on Ag, and hence the second inequality, combined with a well-known
theorem of Jordan [5] (see [11, p. 39]) implies that K = Alt(Ay). It turns out that in all the
cases under consideration, |A{| < |Ag|. If A; = @, then Alt(Ag) = K = K. Otherwise,
Alt(Ag) < K, by Lemma 3.1. In any case, we conclude that Alt(Ag) < G.

Next, we will check (see the relevant data in Appendix B) that A satisfies the assump-
tions of Lemma 3.4 and Corollary 3.5. Thus, Corollary 3.5 implies that

Alt(2) < G. (25)

Therefore, G contains ¥ (X) and U = 4 (X)v¥(X). Conjugating U by a suitable permuta-
tional matrix, we find that G contains a matrix Q of the form (15), where the block P is
given by

-1 0 t 0
0 -1 0 t
0 0 1 0
0O 0 O 1

Using (25) and Lemma 3.3, we obtain the desired inclusion: E,, (R) < G.HenceE, (R) = G.
To complete the proof, we collect the relevant data from Appendix B. For each n listed
in the statement of Theorem 1.3, the following information is presented:

* the description of the representation v;
* the generators X, and Y,;

e I-handles (a1, a) and (cy, ¢3),aswell asaz = ax ¥ (Y), a4 = a3y (X),c3 = o (Y)
and c5 = Y (Y ' XY) = e3¢ (XY);

* the cycle structure of the commutator C = [ (X), ¥ (Y)] (to avoid any confusion
with the name of one of the basic representations, we write [ (X), Y (Y)] for the
commutator in Appendix B); in addition, a1, a4, c¢3 and c¢5 are printed in bold;

¢ the values of r and s used in Lemmas 2.10 and 2.11 (if » = s, then k such that
a1C* = ay, csC* = c3 is also indicated);

* the degree d such that cd = éd;

 the set Ag and the lengths of other non-trivial orbits of K (if any);

* an orbit {wy, ws} of ¥ (X), and two points w3, w4 from an orbit of ¥ (¥) lying in Agp;

* the cycle structure of S1 (which coincides with the cycle structure of $);

 anelement W of K, represented as a word in 51, S, together with its cycle structure
(a cycle of large prime length is printed in bold).

To represent the cycle structure of a permutation, we use the following notation:
o= (i1, i2,...)1, j2 .. .)e?l .. .E?S

means that o hascycles (i1, i2, .. .), (j1, j2 . . .) and also o, cyclesof length £, h = 1, ..., s.
An analysis of the data in Appendix B finishes the proof. O
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To complete this section, we discuss the range of applicability of the method described
in the proof of Theorem 1.3. For this purpose, we deduce from a result of Scott [8], an
inequality similar to the well-known genus formula.

Lety : T(2,3,7 — Sym(X) € GL,(C) be a transitive permutational represen-
tation. By dx, dy, dxy we denote the dimension of the subspace of C" fixed by v (X),
Y (Y), and ¥ (XY), respectively. In addition, let d be the dimension of the subspace fixed
by ¥ (T(2,3,7)). Since ¥ is a transitive representation, we have d = 1. Since i is a
permutational representation, it coincides with its dual. Thus, Scott’s formula [8] becomes

dx +dy +dxy <n+2d =n+2. (26)

On the other hand,

n n
dy>n—2bj, dxy>n—6bJ.

The above proof of Theorem 1.3 requires at least two 1-handles, so ¥ (X) fixes at least four
points in X. On the other hand, ¥ (X) = ¥ (X Y)w(Y_l) must be an even permutation.

Therefore,
n—4
dy >2n—2 \\ J .

4
By (26), we have

2n—2<2{n;4J+2L%J+6L%J. 27)

The only numbers n < 286 that satisfy (27) but whose status still remains open, are
21, 28, 36, 42, 56, 72, and 144. For example, the representation S(2)M of degree 144
has two 1-handles, but the commutator C does not satisfy assumption (ii) of Lemma 2.10.
This case deserves special treatment.

Appendix A. Basic representations and their generators

1. Representation A of degree 14; one handle: (1, 2);.
Xa = (3,4(5,7)(6,10)(8,12)(9, 14)(11, 13)(1)(2),
Ya =[1oGi +1,3i +2,3i +3)(13)(14).

2. Representation B of degree 15; one handle: (4, 8)3 or (1, 4); or (8, 1),.
Xp =(2,0)(3,9)(, 11)(7, 12)(10, 13)(14, 15)(1)(4)(3),
Y =[1loGi +1,3i +2,3i 4+ 3).

3. Representation C of degree 21; two handles: (1, 2); and (8, 14)3.
Xc = (3,45, 16)(6,20)(7, 18)(9, 10)(11, 13)(15, 21) (17, 19)(1)(2)(8)(12)(14),
Yo =10 Gi +1,3i +2,3i +3).

4. Representation D of degree 22; one handle: (1, 4);.
Xp =(2,0)(3,10)(5, 7)(8, 13)(9, 19)(11, 20)(12, 14)(15, 16)(17, 18)(21, 22)(1)(4),
Yp = [10_oGi + 1,3i +2,3i +3)(22).
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5. Representation E of degree 28; two handles: (26, 27); and (10, 13)5.

Xeg =(1,28)(2,7)(3,4)(5, 12)(6, 19)(8, 23)(9, 14)(11, 15)(16, 20)(17, 22)(18, 25)
(21, 24)(10)(13)(26)(27),

Ye =10 0Bi +1,3i 42, 3i +3)(28).

6. Representation F of degree 30; one handle: (1, 4),.

Xr=(02,6)3,10)(5,7)(8, 13)(9,27)(11, 20)(12, 14)(15, 16)(17, 21)(18, 26)(19, 22)
(23, 24)(25, 28)(29, 30)(1)(4),

Yr = [T=oGi +1,3i +2,3i +3).

7. Representation G of degree 42; three handles: (1,2)1, (13, 14); and (25, 26);.

X6 = @3B, 96, 11)(6,7)(8,40)(9, 12)(10, 37)(15, 16)(17, 23)(18, 19)(20, 41)(21, 24)
(22, 39)(27, 28)(29, 34)(30, 31)(32, 42)(33, 35)(36, 38)(1)(2)(13)(14)(25)(26),

Yo =[1i20Gi +1,3i +2,3i +3).

8. Representation H of degree 42; two handles: (1, 2);, and (24, 27)3.

Xug = @G3,4(,10)(6,7)(8,30)9, 11)(12, 14)(13, 16)(15, 34)(17, 25)(18, 21)(19, 23)
(20, 28)(22, 32)(26, 33)(29, 41)(31, 39)(35, 37)(38, 40)(1)(2)(24)(27)(36) (42),

Yu =[1}20Gi +1,3i +2,3i +3).

9. Representation [/ of degree 57; two handles: (4, 7);, and (36, 39),.

X1 =(2,12)(3,15)(5,9)(6, 13)(8, 11)(10, 18)(14, 24)(16, 55)(17, 19)(20, 27)(21, 22)
(23, 56)(25, 30)(26, 33)(28, 40)(29, 37)(31, 35)(32, 50)(34, 38)(41, 52)(42, 43)
(44, 48)(45, 51)(46, 47)(49, 54)(53, 57)(1)(4)(7)(36)(39),

Yr =[1120Gi +1,3i +2,3i +3).

10. Representation J of degree 72; two handles: (1, 2)1, and (62, 63);.

X5 =(,4)(5,12)(6,8)(7,10)(9, 15)(11, 30)(13, 36)(14, 16)(17,31)(18, 21)(19, 24)
(20, 27)(22, 23)(25, 33)(26, 28)(29, 39)(32, 42)(34, 38)(35, 57)(37, 60) (40, 45)
(41, 54)(43, 56) (44, 49)(46, 51)(47, 48)(50, 52)(53, 58)(55, 64)(59, 71)(61, 69)
(65, 67)(66, 72)(68, 70)(1)(2)(62)(63),

Y =[120Gi 4+ 1,3i +2,3i +3).

11. Representation K of degree 72; one handle: (1, 2);.

Xk = (3,4)(5,10)(6,7)(8,24)(9, 11)(12, 15)(13, 33)(14, 16)(17, 27)(18, 21)(19, 30)
(20, 22)(23, 56)(25, 39)(26, 48)(28, 69)(29, 63)(31, 52)(32, 34)(35, 37)(38, 40)
(41,46)(42,43)(44, 45)(47,51)(49, 54)(50, 67)(53, 55)(57, 59)(58, 62)(61, 65)
(64, 68)(66, 70)(71, 72)(1)(2)(36)(60),

Yk =[120Gi +1,3i +2,3i +3).

12. Representation L of degree 102; one handle: (1, 4);.

X1 =(2,6)(3,10)(5,7)(8,13)(9,20)(11, 24)(12, 14)(15, 16)(17, 63)(18, 35)(19, 27)
(21, 30)(22, 26)(23, 48) (25, 81)(28, 32)(29, 64)(31, 41)(33, 34)(36, 38)(37, 40)
(39, 82)(42, 43)(44, 45)(46, 95)(47, 49)(50, 52)(51, 61)(53, 58) (54, 55)(56, 57)
(59, 86)(60, 62)(65, 75)(66, 69)(67, 78)(68, 72)(70, 74)(71,79)(73, 84) (76, 77)
(80, 91)(83, 85)(87, 88)(89, 94)(90, 92)(93, 99) (96, 98)(97, 100) (101, 102)(1)(4),

Yo =[120Gi +1,3i +2,3i +3).
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13. Representation M of degree 108; two handles: (1, 2); and (82, 85),.

Xu = @3, 496, 14)(6,7)(8,10)(9, 15)(11,24)(12,31)(13, 17)(16, 21)(18, 25)(19, 64)
(20, 22)(23, 47)(26, 28)(27, 53)(29, 33)(30, 76)(32, 34)(35, 37)(36, 49) (38, 43)
(39, 40)(41, 42)(44, 46)(45, 50)(48, 98)(51, 89)(52, 56)(54, 68)(55, 61)(57, 58)
(59, 60)(62, 67)(63, 65)(66,94)(69, 70)(71, 73)(72,91)(74, 78)(75, 84)(77, 79)
(80, 88)(81, 86)(83, 87)(90, 92)(93, 100) (95, 102)(96, 103)(97, 101)(99, 105)
(104, 106) (107, 108)(1)(2)(82)(85),

Yi = [12Gi +1,3i +2,3i +3).

14. Representation N of degree 108; two handles: (1, 2); and (33, 35)3.

Xn = 3,4)(5,10)(6,7)(8, 14)(9, 11)(12, 25)(13, 17)(15, 59)(16, 20)(18, 44)(19, 23)
(21, 28)(22, 26)(24, 67)(27, 82)(29, 31)(30, 34)(32, 37)(36, 62)(38, 40)(39, 63)
(41,43)(42,98)(45, 46) (47, 49)(48, 88)(50, 55)(51, 52)(53, 54)(56, 58)(57, 89)
(60, 84)(61, 65)(64, 68)(66, 94)(69, 71)(70, 74)(72, 86)(73, 80)(75, 76)(77, 78)
(79, 83)(81, 85)(87,93)(90, 92)(91, 102) (95, 103)(96, 100)(97, 104)(99, 101)
(105, 106) (107, 108)(1)(2)(33)(35),

Yy =[120Gi +1,3i +2,3i +3).

15. Representation O of degree 7; one handle: (5, 6)1 or (1, 5), or (1, 6)3.
Xo = 2,43, T)(1)(5)(6),
Yo =[T_oGi + 1,3i +2,3i +3)(7).

16. Representation P of degree 15; one handle: (1, 2);.
Xp = (3,4)(5,10)(6, 79, 11)(12, 13)(14, 15)(1)(2)(8),
Yp = [1ioGi 4+ 1,3i +2,3i +3).

17. Representation Q of degree 21; two handles: (1, 2); and (15, 18),.
Xo = (3,4)(5,9)(6, 11)(7,10)(8, 21)(12, 16)(13, 17)(14, 19)(1)(2)(15)(18)(20),
Yo =100 + 1.3i +2,3i +3).

18. Representation R of degree 22; one handle: (1, 2);.
Xr=(3,4)(5,12)(6,7)(8,20)(9, 10)(11, 17)(13, 18)(14, 15)(16, 19)(21, 22)(1)(2),
Yr =[100Gi +1,3i 4+ 2,3i +3)(22).

19. Representation S of degree 36; two handles: (1, 2); and (14, 17),.

Xs = (3,4)(5,35)(6,7)(8,10)(9,36)(11, 22)(12, 13)(15, 16)(18, 19)(20, 24)(21, 33)
(23, 25)(26, 31)(27, 28)(29, 30)(32, 34)(1)(2)(14)(17),

Ys =[1/1oGi +1,3i +2,3i +3).

20. Representation T of degree 66; one handle: (1, 2);.

X7 =(@3,4)(5,12)(6,7)(8,33)(9, 10)(11, 13)(14, 42)(15, 16)(17, 19)(18, 30)(20, 57)
(21, 22)(23, 28)(24, 25)(26, 27)(29, 31)(32, 34)(35, 60) (36, 37)(38, 48) (39, 40)
(41, 43)(44, 46)(45, 52)(47,49)(50, 51)(53, 61)(54, 55)(56, 58)(59, 62)(63, 64)
(65, 66)(1)(2),

Yr =[12Gi +1,3i +2,3i +3).
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Appendix B. Data used in the proof of Theorem 1.3

n = 286. Representation J(1)G(1)G(1)E(2)L.
Yage = Y}1’72]Y([;73’”4]Ygls’156]Y[157’184]Y[185’286]

L
Xags = X762, 73)(63, 74) X114 (97, 115) (98, 116)x 115130139, 182) (140, 183)
X718 (166, 185) (169, 188) x |189-28¢]
a; =85,ay =86,c1 =127, ¢ =128, a3 =87, a4 = 88, c3 = 129, ¢5 = 131
[ (X), ¥y (Y)] = (78, 82,95, 85, 89, 109, 79, 84, 113, 88, 87, 92, 81)
(120, 124, 137, 127,131, 151, 121, 126, 155, 130, 129, 134, 123)
29216215%213212211°825%1°
r=s=13,k=6,d =13
Ao = {130} U {132, ..., 144} U {146, ..., 149} U {151} U {153, 154} U {156, ..., 286}
|Ag| = 152; lengths of other non-trivial orbits: 94
=157, wy = 184, w3 = 157, wy = 158
S; = 29%16%15%1121'0
=[51, 8§31 =131"111110
n = 272. Representation F(2Q)E(1)G(1))G(1)J(HEQR)F.

Yo7y = Y[l 30]Y[31 58] Y[59 lOO]Y[IOI 142]Y[143 214] Y1[5215 242]Y[243 272]

X7 = X101, 40)(4, 43)x D 31 8156, 59)(57, 60) X5 100](83 101)(84, 102)
xgm 421125, 143) (126, 144) x ['*214 204, 240) (205, 241) X 122+
(224,243)(227, 246) x 24272

al) = 71,a2 = 72, cl = 113, Cc) = 114, az = 73, a4 = 74, c3 = 115, Cy = 117

¥ (X), ¥ (Y)] = (64, 68, 81,71, 75,95, 65,70, 99, 74, 73, 78, 67)

(106, 110, 123, 113, 117, 137, 107, 112, 141, 116, 115, 120, 109)
13212191141028252110

r=s=13,k=6,d=13

Ag = {116} U {118, ..., 130} U{132,..., 135} U {137} U {139, 140} U {142, ..., 272}

|Ag| = 152; lengths of other non-trivial orbits: 80

wy = 157, wy = 151, w3 = 157, wy = 155

S = 12011210%28252112

= [82, 891 = 1011212311,
n = 265. Representation J(1)M (2)I (2)E.

Yaes — Y[l 721y,[73.180] YI[181 237]Y[238 265]

X265 = “ 1(62,73)(63, 74) X\ (7, 1801154, 184) (157, 187) X1 181271 (216, 247)
(219, 250) x [78-2091

ar=1,ap =2,¢c1 =263,¢c) =264,a3 =3,a4 =4, c3 = 262, c5 = 253

[v(X), v (Y)] = (1,5,28,31,15,4,3,9, 17, 26, 12)
(240, 257, 263, 253, 241, 245, 255, 262, 260)
55116%132122112847%2625%2214

s=11,r=9,d =99

Ao = {41 U{6, ..., 14} U {16, 18, 19, 21, 25, 26,28} U {30, . .., 34} U {36, 37, 38}

U {40, ...,45 U {50, ...,252} U {254, ...,261} U {265}

|Ag| = 243; no other non-trivial orbits

w1_6 w2_8 w3_6 U)4—4

S; = 16213284725154628 124

W = [52, 53] = 151'3715133 141,
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n = 257. Representation FQ)E(1)G(1)G(1)E2)I(2)F.
Yaos; = Y[l 30]Y[31 58]y [59.100], [101,142] 1, [143.170]  [171, 227]Y[228 257]

Xos7 = X 30](1 40)(4,43)x21%(56, 59)(57, 60) X5 100](83 101)(84, 102)
X(Jl(” 121125, 168) (126, 169) X 11700 (152, 174) (155, 177) X |17 2271
(206, 228)(209, 231) x 225:27]
ar=Tl,ay =72,¢c1 =113, ¢cp = 114,a3 =73, a4 = 74, c3 = 115, c5 = 117
[ (X), ¥ (Y)] = (64, 68, 81,71, 75,95, 65, 70, 99, 74, 73, 78, 67)
(106, 110, 123, 113,117, 137, 107, 112, 141, 116, 115, 120, 109)
17'15%2132124118522218
s=13,r=13,k=6,d = 13
Ao = {116} U {118, ..., 130} U {132, ..., 135} U {137, 139, 140} U {142, ..., 257}
|Ag| = 137; lengths of other non-trivial orbits: 80
wy = 254, wy = 236, w3 = 157, wy = 155
S =17 115211652921 10
W =[S, 531 =73"15'10%9152110,

n = 250. Representation G(1)J(1)M(2)E.
Yas0 = Y([;1’42] Y}43’114] Y/E/}IS,222] Y1[5223’250]

Xaso = X025, 43)(26, 44) X1 114 (104, 115) (105, 116) X112 (196, 232)
(199, 235) x 1222301

ar=1l,a0=2,c1 =13, co=14,a3 =3, a4, =4,¢c3 =15,¢5 =17

[V (X), v(Y)] = (1,5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)
(6, 10,23, 13,17,37,7, 12, 41, 16, 15, 20, 9)
282142132122112918272625%17

s=13,r=13,k=6,d = 13

Ao = {16} U{18,...,30}U{32,...,35} U{37,39,40} U {42, ..., 150} U {152, 153}

U{157,...,168} U {170, 171} U {175, ..., 218} U {223, ..., 250}

|Ag| = 218; no other non-trivial orbits

wi = 211, wy = 215, w3 = 211, wy = 212

S; = 2821421221129182726252127

W = [52, 531 = 167'27'32118,

n = 244. Representation J(1)G(1)E(2)L.
Yous = Y}l’mYg3’“4]Y[“5’142]Y[143’244]

L
Xoaq = XU 7262, 73)(63, 74) X114 (97, 140)(98, 141) x 15142 (124, 143) (127, 146)
XE43,244]
ar=1,ap0 =2,c1 =85,¢c0 =86,a3 =3,a4 =4,¢c3 =87,¢c5 =89
[V (X), ¥ (¥Y)] = (1,5,28,31,15,4,3,9, 17, 26, 12)
(78, 82, 95, 85, 89, 109, 79, 84, 113, 88, 87, 92, 81)
29216215%212%1148%521
s=11,r =13,d = 143
Ao = {115,..., 129} U {131, ..., 138} U {142, ..., 244}
|Ag| = 126; lengths of other non-trivial orbits: 76
wi = 127, wy = 146, w3 = 127, wy = 128
S; = 29216215216
W = [52, 53] =79'37'2216.
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n = 243. Representation B3)N(1)G(1)G(1)C(3)B.

1,15 16,123 124,165 166,207] ,[208,228] ,[229,243
Yagz = Y5 Pl 012y 124 1051y 11662071y [208,2281 y [229,243]

Xog3 = X P14, 48)(8,50) X 17 (16, 124) (17, 125) X1+ 19°1 (148, 166) (149, 167)
xU06:207 190, 208) (191, 209) X 2%22¥1 (215, 232) (221, 236) X 1722
ar =136, ar = 137, ¢; = 178, c2 = 179, a3 = 138, as = 139, c3 = 180, c5 = 182
[¥(X), ¥(Y)] = (129, 133, 146, 136, 140, 160, 130, 135, 164, 139, 138, 143, 132)
(171, 175, 188, 178, 182, 202, 172, 177, 206, 181, 180, 185, 174)
23217%13%12211'10%92625%24218
s=13,r=13,k=6,d =13
Ao ={1,...,129} U {131, 132, 134, 135, 151, } U {153, ..., 159} U {161, ..., 164}
|Ag| = 145; lengths of other non-trivial orbits: 58
wp = 158, wy = 156, w3 = 157, wg = 158
S; = 23217%210%926251110
W =[S1, 531 = 131'6%12.
n = 236. Representation A(1)G(1)G(1)M(2)F.
Y236 — YE ,14] Yé15,56] Y([;57’98] Y59,206] YI[:207,236]

X236 = X411, 15)2, 16) X 172%1 (39, 57) (40, 58) X% (81, 99) (82, 100) X | 2%°!
(180, 207)(183, 210) x 1207236
ap = 27, a) = 28, Ccl] = 69, Cc) = 70, az = 29, aq = 30, Cc3 = 71, Cc5 = 73
[V (X), ¥(Y)] = (20,24, 37,27, 31, 51, 21, 26, 55, 30, 29, 34, 23)
(62, 66,79, 69,73, 93, 63, 68,97, 72, 71, 76, 65)32217*13°726%18
s=13,r=13,k=6,d = 13
Ao = {72} U{74,...,86} U{88,...,91} U{93,95,96} U {98, ..., 134} U {126, 137}
U {141, ..., 152} U {154, 155} U {159, ...,202} U {207, ..., 236}
| Ag| = 148; no other non-trivial orbits
w; = 160, wy = 165, w3z = 159, ws = 160
S; = 3221727%6%1*
W =[5, §§1 = 83141132118,
n = 235. Representation C(1)G(1)G(1)E(2)L.

1,21]5,122,63] y,[64,105] 1,[106,133] y,[ 134,235
Y5 = yi 2y 22031y 64,1031y [106.1331 [134.233]

X35 = X221, 22)(2,23) x5 46, 64) (47, 65) X +11 (88, 131) (89, 132) x 100157
(115, 134)(118, 137) x[342%]

a1 =34,a) =35,¢c1 =76,cp =77,a3 =36,a4 =37,¢c3 =78, ¢c5 =80

[y (X), w(Y)] = (27, 31, 44, 34, 38, 58, 28, 33, 62, 37, 36, 41, 30)
(69, 73, 86, 76, 80, 100, 70, 75, 104, 79, 78, 83, 72)
29221'16%15%132112422218

s=13,r=13,k=6,d =13

Ao = {79} U {81, ...,93} U {95, ...,98} U {100, 102, 103} U {105, ..., 235}

|Ag| = 152; lengths of other non-trivial orbits: 43

wy = 157, wy = 144, w3 = 157, wy = 155

Si = 29216%15%112110

W =[S, 531 = 1311111110,
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n = 221. Representation O(1)G(1)G(1)E(2)L.
Yoo, = Y([)l’ﬂ Y([;8’49]Yé50’91]Y1[;92’“9] YEZO’ZZ”
X1 = X075, 8)(6, 9 X5 (32, 50033, 51) X5 (74, 117) (75, 118) X 117
(101, 120)(104, 123) x 120221
a) = 20, a) = 21, Ccl1 = 62, Cc) = 63, a3z = 22, aq = 23, c3 = 64, c5 = 66
[V (X), ¥ (Y)] = (13,17, 30, 20, 24, 44, 14, 19, 48, 23, 22, 27, 16)
(55,59, 72, 62, 66, 86, 56, 61, 90, 65, 64, 69, 58)
29219'16215%13%11218
s=13,r=13,k=6,d =13
Ao ={65}U{67,...,79} U {81, ...,84} U {86, 88,891 U{91,...,221}
|Ag| = 152; lengths of other non-trivial orbits: 29
wp = 157, wy = 155, w3z = 157, wg = 158
S; =29%16%15211211°
W =[5, §31=131"11"110.
n = 216. Representation J(1)M (2)S.
Yo = Y}1,72] YE3,180]YS[181,216]
Xa16 = X' 7262, 73)(63, 74) X1 10 (154, 194) (157, 197) x 131216
a) = 1,a2 = 2, c] = 181, Cc) = 182, a3z = 3,a4 = 4, c3 = 183, c5 = 185
[v(X),v(X)]=(a,5,28,31,15,4,3,9,17, 26, 12)
(...,190, 184,183, 188, ...,215,181, 185, 213, ...)
1321128%72625%1* (the cycle containing 183 and 185 has length 101)
s=11,r =101,d = 1111
Ao = {76} U{78,...,81}U{83,...,87}U{89,...,92} U{94, 96,97, 99, 101, 102, 103}
U{105} U {107, ..., 114}U{l1e6, ..., 120} U{125, ..., 134} U {136, 137, 138, 142}
U {144, 146, 147, 148, 150, 152, 153, 160, 161} U {163, ..., 180}
|Ag| = 76; lengths of other non-trivial orbits: 9, 9, 14, and 14
wy = 127, wy = 133, w3 = 136, wg = 137
S; = 1327262124
W =[5y, Sp] = 4315134116,
n = 214. Representation G(1)G(1)E(2)L.
Yors = Yé1,42]Yé43,84]Yl[585,112] Y£“3’214]

Xo14 = X0 ¥(25, 43)(26, 44) X1 (67, 110) (68, 111) X212 (94, 113) (97, 116)
XE13,214]
ar=1l,ap=2,c1=13,co =14,a3 =3,a4 =4,¢c3 =15,¢5 = 17
[y (X), ¥ (Y)] = (1,5, 38,31, 35, 40, 4, 3, 8, 33, 30, 36, 11)
(6, 10,23, 13,17,37,7, 12, 41, 16, 15, 20, 9)29%16215213311217
s=13,r=13,k=6,d =13
Ao = {58} U {60, ..., 72} U {74, ..., 77} U {79, 81,82} U {84, ...,214)}
|Ap| = 152; no other non-trivial orbits
w1 = 157, wy = 156, w3 = 157, wqg = 155
S; = 29216%15%112110
W =[S, 531 = 1311111110,
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n = 212. Representation G(1)E(2)I (2)I(2)E.

1,42]+,[43,70]y,[71,127]1,[128,184]y,[185,212
Yaip = YL By [ 01y FL 12Ty 128 1841 1185, 212]

Xa12 = X5 *(25, 68)(26, 69) X170 (52, 74) (55, 77) X[ 1*7 (106, 131)(109, 134)
x 1128184163 194) (166, 197) x 185212
ar=1l,ay=2,c1=13,co =14,a3 =3, a4 =4,c3 =15,¢5 = 17
[V (X), v(Y)] = (1,5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)
(6, 10,23, 13,17,37,7, 12, 41, 16, 15, 20, 9)
231171122114102918254241°
s=13,r =13, k=6,d = 13
Ao = {16} U{18,...,30}U{32,...,35 U {37,39,40} U {42, ...,212}
|Ap| = 192; no other non-trivial orbits
wy =212, wy = 185, w3 = 211, wg = 209
S =23'17'122114102918254241 11
W = [52, 53] = 97'55'827'513216,
n = 208. Representation E(2)M (1)J.

1,28]4,[29,136] 1,137,208
Yaos = Yi 28y POl (137,208

Xa0s = X210, 110)(13, 113) X729 29, 137) (30, 138) x 17728

a) = 26, a) = 27, Ccl1 = 198, Cc) = 199, a3z = 25, a4 = 18, Cc3 = 197, C5 = 203

[¥ (X), ¥ (¥)] = (3, 20,26, 16, 4, 8, 18, 25, 23)
(177, 195, 205, 197, 207, 190, 179, 201, 198, 203, 192)
28214213%112827%625214

s=9,r=11,d =99

Ao ={1,...,15YU{17,...,241U(28, ..., 155}U{157}U{161, ..., 170}U{172, ..., 174}

U {176, ..., 179} U {181} U {186, ..., 189} U {191, 192, 194, 196, 200, 201, 202}
U {204, ..., 208}

|Ag| = 186; no other non-trivial orbits

wlzl,w2:28,w3:l,w4:2

S; = 28214213282725226124

W =[S, 531 = 113531120,

n = 206. Representation O (1)G(1)G(H)ER)I(2)F.

Y206 — Y[Ol 7] Yé8’49] Y([;50,91] Y}[Z92, 119] Y][IZO, 176] Y][:177’206]

X206 = X575, 8)(6, 9) x 34132, 50) (33, 51) x5 (74, 117) (75, 118) X P> 117

(101, 123)(104, 126) x 21701 (155, 177) (158, 180) x 11 77-2%¢!

a) = 20, ay = 21, Ccl = 62, c) = 63, a3z = 22, ag = 23, c3 = 64, c5 = 66

[V (X), ¥(Y)] = (13,17, 30, 20, 24, 44, 14, 19, 48, 23, 22, 27, 16)
(55,59, 72, 62, 66, 86, 56, 61, 90, 65, 64, 69, 58)
19'17'1521321165%22218

s=13,r=13,k=6,d = 13

Ao = {65} U{67,...,79} U {81,..., 84} U {86, 88,89} U {91,...,206}

|Ag| = 137; lengths of other non-trivial orbits: 29

wy = 127, wy = 130, w3z = 157, wg = 158

S; = 17'15%1165222110

W =[5y, §31 = 73'15'10%915%11.
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n = 205. Representation F(2)E(1)G(1)G(1)H(3)C.
1,301 y,[31,58] y,[59,100] y,[101,142] y,[143,184] 1,185,205
Yaos = Y20y o8y D9 1001y LIOT 1421y [143, 1841 1185, 2051

Xa0s = X5770(1, 40) (4, 43)x 21856, 59) (57, 60) X519 (83, 101) (84, 102)
xLOM19 (125, 143) (126, 144) X [ ¥4 (166, 192) (169, 198) X132
ar=Tl,ap=72,c1 =113, cp = 114,a3 =73, a4 = 74, c3 = 115, ¢c5 = 117
[V (X), ¥ (Y)] = (64, 68, 81,71,75,95, 65,70, 99, 74, 73,78, 67)
(106, 110, 123, 113, 117, 137, 107, 112, 141, 116, 115, 120, 109)
23121119113212411242311°
s=13,r =13,k =6,d = 13
Ag = {116} U (118, ..., 130} U {132,...,135} U {137, 139, 140} U {142, ..., 205}
|Ag| = 85; lengths of other non-trivial orbits: 80
wy =179, wy = 177, w3 = 178, wy = 176
S; = 2312111914231 1
W =[S1, 551 =47'825'3318.

n = 201. Representation C(3)N(1)J.

1,21]y,[22,129]4,[130,201
Yaor = Y22y 2 2y R020

Xao1 = X218, 54)(14, 56) X171 (22, 130) (23, 131) 20201

ar=1lay=2,c1 =191,¢cp =192,a3 =3, a4 = 4, c3 = 190, c5 = 196

[v(X), ¥(Y)] = (1,5,8,59, 120, 115, 83, 15, 4, 3, 21, 57, 87, 122, 61, 54, 16)
(170, 188, 198, 190, 200, 183, 172, 194, 191, 196, 185)
43116%11210%29282524214

s=17,r=11,d = 187

Ao = {4} U {6, ..., 148} U {150} U {154, ..., 163} U {165, 166, 167} U {169, ..., 172}

U {174} U {179, ..., 182} U {184, 185, 187, 189, 193, 194, 195} U {197, ..., 201}

|Ag| = 179; no other non-trivial orbits

w1 26,11)2:20,11)3:6,1,04:4

S; = 43116210%92825242132

W =[S1, 531 = 131113242114,

n = 200. Representation G(1)J(1)J(1)A.
YZO() — Yé1,42] Y}43, 114] Y}l 15,186] Y/[‘187,200]
Xa00 = X0 425, 43)(26, 44) X' 114 (104, 115) (105, 116) x>0 (176, 187)
(177, 188) X1,/ 87:201
ar=1l,ap=2,c1=13,co =14,a3 =3,a4 =4,¢c3 =15,¢5 = 17
[y (X), ¥ (Y)] = (1,5, 38,31, 35, 40, 4, 3, 8, 33, 30, 36, 11)
(6, 10,23, 13,17,37,7, 12, 41, 16, 15, 20, 9) 124116845418
s=13,r=13,k=6,d =13
Ao = {16} U {18, ...,30} U {32, ...,35}U{37, 39,40} U {42, ...,200}
|Ap| = 180; no other non-trivial orbits
wy = 18, wy =19, w3 = 18, wy = 16
S; = 1241168454114
W = [S1, 851 =103'12211'933316,
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n = 198. Representation G(1)G(1)EQQ)E(1)EQ2)F .

1,42]+,[43,84],[85,112],[113,140] ,[141,168 169,198
Yigs = Yoy y 5o 11Ty 1131401y [141, 1681y, 1169, 1981

X198 = X #2125, 43)(26, 44) X7 ¥ (67, 110) (68, 111) x 37112194, 122) (97, 125)
x 31901138 166)(139, 167) x 1411981 (150, 169) (153, 172) x L1619
ar=lay=2,c1=13,co =14,a3 =3, a4 =4,c3 =15,¢5 = 17
[y (X), ¥(Y)] = (1,5, 38,31, 35, 40, 4, 3, 8, 33, 30, 36, 11)
(6, 10,23, 13,17,37,7, 12, 41, 16, 15, 20, 9)133124112961°
s=13,r=13k=6,d =13
Ao = {58} U {60, ...,72} U {74, ..., 77} U {79, 81,82} U {84, ..., 198}
| Ag| = 136; no other non-trivial orbits
wi = 127, wy = 123, w3 = 157, ws = 158
S; = 12411296112
W = [Sg, 5101 = 891735232110,

n = 193. Representation G(1)J(1)J(1)O.
Y193 — YC[;1’42]Y}43’114]Y5115’186]Y[0187’193]
X193 = X025, 43)(26, 44) X' 1141 (104, 115)(105, 116) x 11150
(176,191)(177, 192) x [ 8719
ai=1l,ap=2,c1 =13, co =14,a3=3,a4 =4,c3 = 15,¢c5 = 17
[v(X), ¥(Y)] = (1,5, 38,31, 35,40, 4, 3, 8, 33, 30, 36, 11)
(6, 10,23, 13,17,37,7, 12,41, 16, 15, 20, 9)17' 122110845418
s=13,r=13,k=6,d =13
Ao = {16} U{18,...,30} U{32,...,35} U{37,39,40} U {42, ..., 193}
|Ap| = 173; no other non-trivial orbits
w; = 18, wy =19, w3 = 18, wy = 16
S; = 1711221184544
W =[S, 531 =109'21'927!32112,

n = 192. Representation G(1)G (1) M.
Y192 — Yél,42] Yé43’84] YES,]QZ]
X192 = X5 *(25, 43) (26, 44) X% (67, 85) (68, 86) X |5 1%
ar=l,ap=2,c1=13,co =14, a3 =3, a4 =4,c3 =15,¢5 = 17
[v(X), ¥(Y)] = (1,5, 38,31, 35, 40, 4, 3, 8, 33, 30, 36, 11)
(6, 10,23, 13,17,37,7, 12, 41, 16, 15, 20, 9)49' 191135726217
s=13,r=13,k=6,d =13
Ao = {58} U{60,...,72} U{74,...,77} U {79, 81,82} U {84, ..., 120} U {122, 123}
U {127, ...,138} U {140, 141} U {145, ..., 188}
|Ap| = 118; no other non-trivial orbits
wy = 127, wy = 122, w3y = 127, wg = 128
S; = 49'19172621%4
W =[Ss, 551 =79'17'3222112,
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n = 191. Representation A(1)G(1)G(1)J(1)C.
1,14]+,[15,56] y,[57 17 171,191
Yio; = Yg, ]Yé )5 ]Yg ,98]Y}99, O]Yé ,191]

X191 = X111, 15)(2, 16) X077 (39, 57) (40, 58) X271 (81, 99) (82, 100) X 717!
(160, 171)(161, 172) x 17111
a1 =27,ap =28,c1 =69,cp, =70,a3 =29,a4 =30,¢c3 =71,¢5 =73
[V (X), ¥(Y)] = (20,24, 37,217, 31, 51, 21, 26, 55, 30, 29, 34, 23)
(62, 66,79, 69,73, 93, 63, 68,97, 72,71, 76, 65)
19113412211282524222110
s=13,r=13,k=6,d =13
Ao = {72} U{74,...,86} U{88,...,91}U{93,95,96} U {98, ..., 191}
|Ap| = 115; no other non-trivial orbits
wy = 127, wy = 137, w3 = 127, wy = 128
S; = 19112211282524222112
W =[5, 851 = 59129!5131119,
n = 185. Representation J (1) E(2)I (2)E.

1,72]4,73,100] y,[101,157] y,[158,185
Yigs = YL 7Aly 3 1001y 0L STy LS8 1831

X155 = X762, 98) (63, 99) X1 1% (82, 104) (85, 107) x 11117
(136, 167)(139, 170) x 12818
ar=1,ap=2,¢c1 =183, ¢cp =184, a3 =3,a4 =4,c3 = 182,¢5 = 173
[v(X), ¥ (Y)] =(,5,28,31,15,4,3,9, 17, 26, 12)
(160, 177, 183,173, 161, 165, 175, 182, 180)17112211410284542214
s=11,r=9,d =99
Ao = {4} U {6, ..., 14} U {16, 18, 19, 21, 25, 26, 28} U {30, ..., 34} U {36, 37, 38}
U {40, ...,45 U {50, ...,90} U {92,93} U {95, ..., 153} U{156,..., 172}
U {174, ...,181} U {185}
|Ag| = 159; no other non-trivial orbits
wi = 157, wy = 153, w3 = 158, wg = 159
S; = 17110%84544622142
W = [82,[57, $311 = 979171513122 34,
n = 180. Representation G(1)M (2) F.
Yigo = YC[;1‘42]Y1E/4113)150]Y}T]SHSO]
X150 = X0-*1(25,43)(26, 44) x> 2% (124, 151) (127, 154) x 11150
ar=1l,ay=2,c1=13,co =14,a3 =3,a4 =4,c3 =15,¢5 = 17
[v(X), v(Y)] = (1,5,38,31, 35,40, 4, 3, 8, 33, 30, 36, 11)
(6, 10,23, 13,17, 37,7, 12, 41, 16, 15, 20, 9)32217%132726*1*
s=13,r=13,k=6,d = 13
Ao = {16} U{18,...,30} U{32,...,35} U{37,39,40} U {42, ..., 78}
U {80, 81} U {85, ...,96} U {98,99} U {103,..., 146} U {151, ..., 180}
|Ap| = 148; no other non-trivial orbits
wy = 157, wy = 155, w3 = 157, wy = 158
S; = 32217%7%6%1%*
W =[5y, §§1 = 83141132118,
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n = 172. Representation G(1)E(2)L.
Y172 _ Yé1,42] Y}[E43,70] Y£71,1721
X172 = X*1(25,68)(26, 69) X 1270 (52, 71) (55, 74) X |1 172
ar=1l,ap=2,c1=13,co =14,a3 =3, a4 =4,¢c3 =15,¢5 = 17
[v(X), v(Y)] = (1,5, 38,31, 35,40, 4, 3, 8, 33, 30, 36, 11)

(6, 10,23, 13,17,37,7, 12, 41, 16, 15, 20, 9)2921621521121*
s=13,r=13,k=6,d = 13
Ao = {16} U{18,...,30} U{32,...,35} U{37,39,40} U {42, ..., 172}
|Ag| = 152; no other non-trivial orbits
wp = 157, wy = 158, w3 = 157, wg = 155
S; = 2921615211210
W =[S, 551 =131"11'11°,

n = 171. Representation G(1)J (1)H (3) B.
Y171 — Yél'42]Y}43’1]4]YIE}15’156]Y1[9157'17]]
X171 = X525, 43)(26, 44) X' 14 (104, 115) (105, 116) X1, 110
(138, 160)(141, 164) x 47171
a) = 1,a2:2,c1 = 13,6‘2: 14,a3 23,614:4,6‘3 = 15,65 =17
[v(X), ¥(Y)] = (1,5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)
(6, 10,23, 13,17,37,7, 12, 41, 16, 15, 20, 9)21' 12411282725331 16
s=13,r=13,k=6,d = 13
Ag = {16} U{18,...,30} U{32,...,35} U{37,39,40} U {42, ..., 171}
|Ag| = 151; no other non-trivial orbits
wy = 158, wy = 162, w3 = 157, ws = 158
S; =21'12411282725331112
W = [81, 531 = 101'29!32115,

n = 170. Representation G(1)J (1) EQ2)E.
Y170 — YC[;1,42] Y}43’114] Y1[5115,142] Y1E3143,17O]
X170 = X425, 43)(26, 44) X114 (104, 140) (105, 141) x 115142
(124, 152)(127, 155) x 1431701
ai=l,ap=2,c1=13,co =14, a3 =3, a4 =4,¢c3 =15,¢c5 = 17
[v(X), ¥(Y)] = (1,5, 38,31, 35, 40, 4, 3, 8, 33, 30, 36, 11)
(6, 10,23, 13,17,37,7, 12, 41, 16, 15, 20, 9)12211%21029°8%5217
s=13,r=13,k=6,d = 13
Ao = {16} U {18,...,30} U{32,...,35} U{37,39,40} U {42, ..., 170}
|Ag| = 150; no other non-trivial orbits
wy = 157, wy = 153, w3 = 157, wy = 155
S; = 12211210%98252113
W =[S, §31 = 8921110291111,
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n = 165. Representation G(1)N (3) B.

Y165 — Y([;l’42] Y[[\;l3,150]Y1[3151,165]

X165 = X0 *(25,43)(26, 44) x\y >0 (75, 154)(77, 158) x 11

ar=1l,ap=2,c1=13,co=14,a3 =3,a4 =4,¢c3 =15,¢5 = 17

[v(X), v(Y)] = (1,5, 38,31, 35,40, 4, 3, 8, 33, 30, 36, 11)
(6,10,23,13,17,37,7, 12,41, 16, 15, 20, 9)232172102926>5' 14

s=13,r =13,k =6,d = 13

Ao = {16} U{18,...,30} U{32,...,35} U{37,39,40} U {42, ..., 165}

| Ag| = 145; no other non-trivial orbits

wy = 157, wy = 162, w3z = 157, wg = 158

S; = 23217%210%926251110

W =[S, 551 =131'6°1°.

n = 164. Representation G(1)J (1) E(2)D.
Y164 — Y([;1’42] Y}43’“4] YI[5115,142] YB43,164]
X164 = X0 #2125, 43)(26, 44) X2 114 (104, 140) (105, 141) x 11142

(124, 143)(127, 146) x [143-164
ar=1l,ay=2,c1=13,co =14,a3 =3, a4 =4,c3 =15,¢5 = 17
[v(X), v(Y)] = (,5,38,31, 35,40, 4, 3, 8, 33, 30, 36, 11)

(6, 10,23, 13,17,37,7, 12, 41, 16, 15, 20, 9)12%11210*8272523216

s=13,r=13,k=6,d =13
Ao = {16} U{18,...,30} U{32,...,35} U{37,39,40} U {42, ..., 164}
|Ap| = 144; no other non-trivial orbits
w1 = 157, wy, = 158, w3 = 157, wqg = 155
S; = 12211210%8%7%5232112
W =[5, §31 = 8921110231111,

n = 163. Representation C(1)G(1)G(1)EQ2)F.

Y163 — Yél 211 Yé22’63] Yé64’ 105] Yl[5106, 133] Y}Ll 34,163]

X163 = X221 (1,22)(2, 23) x 22PN 46, 64) (47, 65) 19419 (88, 131)(89, 132)

x000131 (115, 134) (118, 137) x 13+ 16%]

a1 =34,a) =35,¢; =76,cp, =77,a3 =36,a4 =37,¢c3 =78, ¢c5 = 80

[V (X), ¥ (Y)] = (27, 31, 44, 34, 38, 58, 28, 33, 62, 37, 36, 41, 30)
(69, 73, 86, 76, 80, 100, 70, 75, 104, 79, 78, 83, 72)
211132124112422218

s=13,r=13,k=6,d = 13

Ao = {79} U {81, ...,93} U {95, ...,98} U {100, 102, 103} U {105, ..., 163}

|Ag| = 80; lengths of other non-trivial orbits: 43

w] = 134, wy = 115, w3 = 89, Wy = 90

S; = 124112110

W =[S}, 881 = 5319142110,
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n = 156. Representation A(1)G(1)G(1)EQ2)F.
1,141 1,[15,56] 1,[57,98] 1,[99,126] 1, [127,156
Yise = YLy L >0 y D798y 9. 1201y [127,136]

X156 = X411, 15)2, 16) X170 (39, 57) (40, 58) X7 *% (81, 124) (82, 125) X 120!
(108, 127)(111, 130) X 1271261
a1 =27,ay =28,¢c1 =69,cp, =70,a3 =29,a4 =30,¢c3 =71,¢5 =73
[ (X), ¥(Y)] = (20,24, 37,27, 31, 51, 21, 26, 55, 30, 29, 34, 23)
(62, 66,79, 69,73, 93,63, 68,97, 72,71, 76, 65)
13*12411218
s=13,r =13,k =6,d = 13
Ao = {72} U {74, ...,86} U {88,...,91}U{93,95,96} U {98, ..., 156}
|Ag| = 80; no other non-trivial orbits
w] = 89, wy = 91, w3 = 90, Wy = 91
S; = 124112110
W =[S}, 881 = 5319142110,
n = 150. Representation G(1)J(1)C(3)B.
Y150 _ Yé1,42] Y}43’114]Yé115’135]Yt[}136'150]
X150 = X0 *(25, 43)(26, 44) X114 (104, 115) (105, 116)x 11513
(122, 139)(128, 143) x 361301
ar=1l,ay=2,c1=13,co =14,a3 =3, a4 =4,c3 =15,¢5 = 17
[y (X), ¥ (Y)] = (1,5, 38,31, 35,40, 4, 3, 8, 33, 30, 36, 11)
(6, 10,23, 13,17,37,7, 12,41, 16, 15, 20, 9) 1221178253421
s=13,r=13,k=6,d =13
Ao = {16} U{18,...,30} U {32,...,35} U{37,39,40} U {42, ..., 150}
|Ap| = 130; no other non-trivial orbits
w =127, wy = 125, w3 = 127, wy = 128
S; = 12211°8%5342112
W =[5y, 851 = 7112211191331,
n = 149. Representation O(1)G(1)G(1)E(2)F.
Y149 — Y([)1,7] Yé8’49] Yé59,91]YIE:92,119] Y;120,149]
X190 = X515, 8)(6, 9) X5 *1(32, 50033, 51) X5 (74, 117) (75, 118) X 117
(101, 120) (104, 123) x [120-149)
a1 =20,a; =21,c1 =62,¢cp =63,a3 =22,a4 =23, ¢c3 =64, c5 = 66
[V (X), ¥(Y)] = (13,17, 30, 20, 24, 44, 14, 19, 48, 23, 22, 27, 16)
(55, 59,72, 62, 66, 86, 56, 61, 90, 65, 64, 69, 58)
1913212411218
s=13,r=13,k=6,d =13
Ao = {65} U{67,...,79} U {81,...,84} U{86,88,89) U{91,..., 149}
|Ag| = 80; lengths of other non-trivial orbits: 29
w; =91, wy = 81, w3 =91, wy = 89
S; = 124112110
W =[S}, 881 = 5319142110,
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n = 147. Representation G(1)G(1)G(1)C.
1,42],[43,84 126] 1,[127,147
Yigr = Y5 Py ¥y B ey 127147

X147 = X0*1(25, 43)(26, 44) x> % (67, 85) (68, 86) X 521291 (109, 127) (110, 128)
X[Clz7,147]
ar=lay=2,c1=13,co =14,a3 =3, a4 =4,c3 =15,¢5 = 17
[v(X), v(Y)] = (,5,38,31, 35,40, 4, 3, 8, 33, 30, 36, 11)
(6, 10,23, 13,17,37,7, 12, 41, 16, 15, 20, 9)2111364222110
s=13,r=13,k=6,d =13
Ao = {100} U {102, ..., 114} U {116, ..., 119} U {121, 123, 124} U {126, ..., 147}
|Ag| = 43; no other non-trivial orbits
wi = 129, wy, = 130, w3 = 127, wg = 128
S; = 2114222110
W = I[85, §]1=29'5"1°.

n = 142. Representation G(1)G(1)E(2)F.
Yin = Yé1,42] YC[;43,84] Yt[?SS, 112] YEB’ 142]

X142 = X025, 43)(26, 44) X1 (67, 110) (68, 111) X212 (94, 113) (97, 116)

X5313,142]
ai=l,ap=2,c1=13,co =14, a3 =3, a4 =4,¢c3 =15,¢c5 = 17
[v(X), ¥(Y)] = (,5,38,31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10,23, 13,17,37,7, 12,41, 16, 15, 20, 9)133 12411217

s=13,r=13,k=6,d = 13
Ao = {58} U{60,...,72} U{74,...,77} U {79, 81,82} U {84, ..., 142}
|Ag| = 80; no other non-trivial orbits
w] = 89, wy = 96, w3 = 89, w4 = 90
S; = 124112110
W = [S4, 891 = 5319142110,

n = 136. Representation G(1)J(1)R.

1,42]4,[43,114] y,[115,136
Yize = Y5 Py s 150

X136 = X *1(25,43)(26, 44) X' 114 (104, 115) (105, 116) x5 1130
ai=1l,ap=2,c1=13,co =14, a3 =3, a4 =4,¢c3 =15,¢c5 = 17
[v(X), ¥(Y)] = (1,5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)
(6, 10,23, 13,17,37,7, 12,41, 16, 15, 20, 9)1621221128%521°
s=13,r=13,k=6,d = 13
Ao = {16} U{18,...,30} U{32,...,35} U{37,39,40} U {42, ..., 136}
|Ag| = 116; no other non-trivial orbits
w =127, wy = 132, w3 = 127, wy = 128
S; = 1621221128252112
W =[S, 8531 ="79'25"1"2,
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n = 135. Representation G(1)J (1) Q.
1,42]+,43,114],[115,135
Yizs = v Ay R Ay DS 1]

X135 = X0*21 (25, 43)(26, 44) x4 (104, 115) (103, 116)X515’135]

ag=1l,ap=2,c1 =13, co =14,a3=3,a4 =4,c3 =15,¢c5 = 17

[v(X), v(Y)] = (,5,38,31, 35,40, 4, 3, 8, 33, 30, 36, 11)
(6,10,23,13,17,37,7, 12,41, 16, 15, 20, 9)21' 122112835221 16

s=13,r =13,k =6,d = 13

Ao = {16} U{18,...,30} U{32,...,35} U{37,39,40} U {42, ..., 135}

|Ag| = 115; no other non-trivial orbits

wy = 127, wy = 131, w3 = 127, wy = 128

S =211122112835221112

W = [S2, 5,] = 59!311131112.

n = 133. Representation G(1)G(1)G(1)O.

1,42],[43,84],(85,126]+,[127,133
Yz = yG Py sy B 120ly 27133

X133 = X025, 43)(26, 44) X 1% (67, 85) (68, 86) X 5> 12°1 (109, 131)(110, 132)
X%27’133]
ar=1l,ap=2,c1=13,co =14,a3 =3,a4 =4,¢c3 =15,¢5 = 17
[y (X), ¥(Y)] = (1,5, 38,31, 35, 40, 4, 3, 8, 33, 30, 36, 11)
(6, 10,23, 13,17,37,7, 12, 41, 16, 15, 20, 9)191 130110
s=13,r=13,k=6,d =13
Ao = {100} U {102, ..., 114} U {116, ..., 119} U {121, 123, 124} U {126, ..., 133}
|Ag| = 29; no other non-trivial orbits
w; =116, wy = 126, w3z = 116, wg = 117
S; = 191110
W =25 =19'110.

n = 129. Representation G(1)J (1) P.

1,42]4,[43,114] y,[115,129
Yigo = Y5 Py iy 15129

X129 = X5 *(25,43)(26, 44) X' 114 (104, 115) (105, 116) x5 1> 1)
ai=l,ap=2,c1=13,co =14, a3 =3, a4 =4,c3 =15,¢c5 = 17
[v(X), ¥(Y)] = (1,5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)
(6, 10,23, 13,17,37,7, 12,41, 16, 15, 20, 9)25' 122112825216
s=13,r=13,k=6,d = 13
Ao = {16} U{18,...,30} U{32,...,35} U{37,39,40} U {42, ..., 129}
|Ag| = 109; no other non-trivial orbits
wy = 127, wy = 126, w3 = 127, wy = 128
S; = 25'1221128252112
W =[Sy, §]1 = 89422218,
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n = 128. Representation G(1)J(1)A.

Y128 — Y([;l’42] Y}43’“4] Y1£115,128]

X128 = X0 #2125, 43)(26, 44) X2 114 (104, 115) (105, 116) x [ 1128

ar=1l,ap=2,c1=13,co=14,a3 =3,a4 =4,¢c3 =15,¢5 = 17

[v(X), v(Y)] = (1,5, 38,31, 35,40, 4, 3, 8, 33, 30, 36, 11)
(6,10,23,13,17,37,7, 12,41, 16, 15, 20, 9)12*112825%1°

s=13,r=13,k=6,d =13

Ao = {16} U{18,...,30}U{32,...,35} U{37,39,40} U {42, ..., 128}

|Ag| = 108; no other non-trivial orbits

wy = 127, wy = 125, w3 = 18, wy = 16

S; = 1241128252112

W =[S52, 851 = 731171322218,

n = 127. Representation O (1)G(1)G(1)C(3)B.

1,711,[8,49]4,(50,91]+,[92,112] y,[ 113,127
Yizg = Yo Ty Sy DOy D2 12y L3 127]

X127 = X575, 8)(6,9) x5*(32,50) (33, 51) x5 (74, 92) (75, 93) x> 1
(99, 116)(105, 120) x 13127

a) = 20, ay = 21, Ccl1 = 62, Cc) = 63, a3z = 22, ag = 23, c3 = 64, Cc5 = 66

[¥(X), ¥(Y)] = (13,17, 30, 20, 24, 44, 14, 19, 48, 23,22, 27, 16)
(55,59, 72,62, 66, 86, 56, 61, 90, 65, 64, 69, 58)
19'13%12%1115'4%18

s=13,r=13k=6,d =13

Ao = {65} U {67,...,79} U {81, ..., 84} U{86,88,89}U{9l,...,127}

|Ag| = 58; lengths of other non-trivial orbits: 29

wi = 106, wy = 112, w3 = 106, wy = 104

S; = 122111542110

W = [S1, 851 = 43'3316.

n = 121. Representation G(1)J (1) 0.

1,42]4,[43,114]y,[115,121
Yior = y5 Py iRy s 2l

X121 = X525, 43)(26, 44) X' 114 (104, 119) (105, 120) x L)1 121
ai=1l,ap=2,c1=13,co =14, a3 =3, a4 =4,¢c3 =15,¢c5 = 17
[v(X), ¥(Y)] = (1,5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)
(6, 10,23, 13,17,37,7, 12,41, 16, 15, 20, 9)17' 13212211282521°
s=13,r=13,k=6,d = 13
Ao = {16} U{18,...,30} U{32,...,35} U{37,39,40} U {42, ..., 121}
|Ag| = 101; no other non-trivial orbits
w] = 18, wy = 19, w3 = 18, w4 = 16
S; = 17'1221128252112
W = [S1, 851 = 89'3216.
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n = 114. Representation G(1)J.
Y114 _ YC[;1’42JYJ[43’114J
Xi1a = X*1(25, 43) (26, 44) x 121141
ar=1l,ap=2,c1=13,co =14,a3 =3, a4 =4,¢c3 =15,¢5 = 17
[v(X), v(Y)] = (1,5, 38,31, 35,40, 4, 3, 8, 33, 30, 36, 11)
(6, 10,23, 13,17,37,7, 12,41, 16, 15, 20, 9) 12211382521
s=13,r=13,k=6,d = 13
Ao = {16} U{18,...,30} U{32,...,35} U{37,39,40} U {42, ..., 114}
|Ag| = 94; no other non-trivial orbits
wi; = 89, wy =90, w3z = 89, wy =90
S; = 122113825211
W =[5, 871 = 53'15!82110,

n = 113. Representation R(1)G(1)G(1)O
Y13 = YU’22JYl23’64jYé65’106]YUO7’113]

R G o
X113 = X2 (1,23)(2, 24) x5 (47, 65) (48, 66) X110
(89, 111)(90, 112)x ;0711

a1 =35,ap=36,c1=77,¢c; =78,a3 =37,a4 =38,¢c3 =79, ¢c5s = 81

[ (X), ¥(Y)] = (28, 32, 45, 35, 39, 59, 29, 34, 63, 38, 37, 42, 31)
(70,74, 87,77, 81, 101, 71, 76, 105, 80, 79, 84, 73)
19117213218

s=13,r=13,k=6,d = 13

Ao = {1,...,28} U{30,31,33,34,50} U {52, ...,58} U {60, ..., 63}

|Ag| = 44; lengths of other non-trivial orbits: 29

wlzl,w2:23,w3:1,w4:2

S; = 17%110

W =[S, 571 = 23823112,

n = 112. Representation G(1)H (3)C(1)O.
Y112 — YC[;1’42]YE3’84]Yé85’105]Y[0106’”2]
X112 = X025, 43) (26, 44) X155 (66, 92) (69, 98) X 122107

(85, 110)(86, 111) X[, 112]
ai=l,ap=2,c1=13,co =14, a3 =3, a4 =4,¢c3 =15,¢c5 = 17
[v(X), ¥(Y)] = (1,5, 38,31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10,23, 13,17,37,7, 12,41, 16, 15, 20, 9)25' 231211423116

s=13,r=13,k=6,d = 13
Ao = {16} U{18,...,30} U{32,...,35} U{37,39,40} U {42, ..., 112}
|Ag| = 92; no other non-trivial orbits
w] = 89, wy = 100, w3 = 89, w4 = 90
S; = 2512312114231 12
W =[53, 881 =73!51114.
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n = 108. Representation G(1)T.

1,42],(43,108
Y108:Y([; JY} J

X108 = X*71(25, 43) (26, 44) x [ 1081
ar=1l,ap=2,c1=13,co =14,a3 =3, a4 =4,¢c3 =15,¢5 = 17
[v(X), v(Y)] = (1,5, 38,31, 35,40, 4, 3, 8, 33, 30, 36, 11)

(6, 10,23, 13,17,37,7, 12, 41, 16, 15, 20, 9)39%1*
s=13,r=13,k=6,d = 13
Ao = {16} U{18,...,30} U{32,...,35} U{37,39,40} U {42, ..., 108}
|Ag| = 88; no other non-trivial orbits
w; = 89, wy =91, wy = 89, wy =90
S, = 326110
W = (515)%[S1, S»]1 = 71' 1213121,

n = 106. Representation G(1)G(1)R.
Yios = Yg,42] Yé43,84]ylg85,106]
X106 = X125, 43)(26, 44) x> *¥(67, 85) (68, 86) X g ']
ai=1l,ap=2,c1 =13, co=14,a3 =3, a4 =4,c3 =15,¢c5 = 17
[v(X), ¥(Y)] = (1,5, 38,31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10,23, 13,17,37,7, 12,41, 16, 15, 20, 9) 17213317
s=13,r=13,k=6,d =13
Ao = {58} U{60,...,72} U{74,...,77) U {79, 81,82} U {84, ..., 106}
|Ag| = 44; no other non-trivial orbits
w] = 67, wy = 85, w3 = 86, w4 = 87
S; = 17%110
W =[5, 571 =23'823112.

n = 105. Representation G(1)H(3)C.
Y105 — Yél,42] YI[;13,84] YéSS,lOS]
X105 = Xh*1(25,43)(26, 44) x 7% (66, 92) (69, 98) x 1%
ai=l,ap=2,c1=13,co =14, a3 =3, a4 =4,c3 =15,¢c5 = 17
[v(X), ¥(Y)] = (1,5, 38, 31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10,23, 13,17,37,7, 12, 41, 16, 15, 20, 9)23' 211191423115
s=13,r=13,k=6,d = 13
Ao = {16} U{18,...,30} U{32,...,35} U{37,39,40} U {42, ..., 105}
|Ag| = 85; no other non-trivial orbits
w] = 89, wy = 100, w3 = 89, W4 = 90
S; = 2312111914231 11
W = [S81, 531 = 4718253318,
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n = 100. Representation G(1)E(2) F .
Y100 = Yé1’42JY1[543’70]Y}p71’1001
X100 = X1 *71(25, 68)(26, 69) X 1270 (52, 71) (55, 74) X 1100
ar=1l,ap=2,c1=13,co =14,a3 =3, a4 =4,¢c3 =15,¢5 = 17
[v(X), v(Y)] = (1,5, 38,31, 35,40, 4, 3, 8, 33, 30, 36, 11)

(6, 10,23, 13,17,37,7, 12,41, 16, 15, 20, 9) 12411214
s=13,r=13,k=6,d = 13
Ao = {16} U{18,...,30} U{32,...,35} U{37,39,40} U {42, ..., 100}
|Ag| = 80; no other non-trivial orbits
w; = 89, wr =92, w3 =89, wy =90
S; = 124112110
W =[S}, 581 = 5319142110,

n = 98. Representation G(1) E(2)E.

Y98 — Y([;1’42] YI[E43,70] Yé71,98]

Xog = X425, 68) (26, 69) X130 (52, 80) (55, 83) x|/ *¥!

ar=l,ay=2,c1=13,co =14,a3 =3, a4 =4,¢c3 =15,¢5 = 17

[v(X), v(Y)] = (,5,38,31, 35,40, 4, 3, 8, 33, 30, 36, 11)
(6,10,23,13,17,37,7, 12,41, 16, 15, 20, 9)1129° 1°

s=13,r=13,k=6,d =13

Ao = {16} U{18,...,30} U{32,...,35} U{37,39,40} U {42, ..., 98}

|Ag| = 78; no other non-trivial orbits

w1 = 67, wy = 60, wy =89, wy =90

S = 11293111

W = [52, 58] = 41'10%5!3216.

n = 93. Representation G(1)Q(2)F.
1,42]1,[43,63] 1,[64,93
Yo = v Py ey [

Xo3 = Xy (25, 43) (26, 44) X 5> (57, 64) (60, 67) X |7+
ai=1l,ap=2,c1=13,co =14, a3 =3, a4 =4,¢c3 =15,¢c5 = 17
[v(X), v (Y)]=(,5,38,31, 35,40, 4, 3, 8, 33, 30, 36, 11)

(6, 10,23, 13,17,37,7, 12,41, 16, 15, 20, 9)63' 1*
s=13,r =13,k =6,d =13
Ao ={16}U{18,...,30} U{32,...,35} U{37,39,40} U {42,...,93}
|Ag| = 73; no other non-trivial orbits
w] = 67, wp = 60, w3 = 89, Wy = 90
S; = 631110
W =[5, §3] = 67'221%.
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n = 92. Representation G(1)E(2)D.
Yop = y 11421 y143.70] 1 [71.92]

G E D

Xoo = X #2125, 68)(26, 69) X270 (52, 71) (55, 74) x |72

ar=1l,ap=2,c1=13,co =14,a3 =3, a4 =4,¢c3 =15,¢5 = 17

[v(X), v(Y)] = (1,5, 38,31, 35,40, 4, 3, 8, 33, 30, 36, 11)
(6,10,23,13,17,37,7, 12,41, 16, 15, 20, 9) 112102723214

s=13,r=13,k=6,d = 13

Ao = {16} U{18,...,30} U{32,...,35} U{37,39,40} U {42, ...,92}

|Ag| = 72; no other non-trivial orbits

w; = 67, wy = 60, wy = 67, wy = 68

S; = 1121027232110

W =[S}, §51 = 41171625117,

n = 91. Representation G(1)G(1)O.

1,42],[43,84]1,(85,91
Yo = Y-y y 5ol

Xo1 = X525, 43)(26, 44) X% (67, 89) (68, 90) X 5>
ai=1l,ap=2,c1 =13, co=14,a3 =3, a4 =4,c3 =15,¢c5 = 17
[y (X), ¥(Y)] = (1,5, 38,31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10,23, 13,17,37,7, 12,41, 16, 15, 20, 9) 19113317
s=13,r=13,k=6,d =13
Ao = {58} U {60, ...,72} U{77,...,77} U {79, 81,82} U {84, ...,91}
|Ag| = 29; no other non-trivial orbits
w] = 87, wp = 91, w3 = 87, Wy = 85
S; = 191110
W =25 =19'110

n = 85. Representation G(1)E(2)B.

1,42]+,[43,70]y,[71,85
Yss = Y5 Py 0y Tl

Xss = X4 4125, 68) (26, 69) X370 (52, 71) (55, 74) X |} ¥
ag=1l,ap=2,c1=13,cr =14, a3 =3, a4 = 4,¢c3 =15,¢5 = 17
[v(X), v (Y)]=(,5,38,31, 35,40, 4, 3, 8, 33, 30, 36, 11)

(6, 10,23, 13,17,37,7, 12,41, 16, 15, 20, 9)33' 11214
s=13,r =13,k =6,d =13
Ao ={16}U{18,...,30} U{32,...,35} U{37,39,40} U {42,...,85}
| Ag| = 65; no other non-trivial orbits
w] = 67, wy = 60, w3 = 67, Wy = 68
S; =33'112110
W =[52, 871 = 41'316.
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n = 77. Representation G(1)E(2)O.

1,42]4,(43,70],(71,77
Y77 = YS Ry [Py b7

X77 = X*1(25, 68)(26, 69) x 170 (52, 71) (55, 75)x 177
ar=1l,ap=2,c1=13,co =14,a3 =3, a4 =4,¢c3 =15,¢5 = 17
[v(X), v(Y)] = (1,5, 38,31, 35,40, 4, 3, 8, 33, 30, 36, 11)

(6, 10,23, 13,17,37,7, 12,41, 16, 15, 20, 9)25' 11214
s=13,r=13,k=6,d = 13
Ao = {16} U{18,...,30} U{32,...,35} U{37,39,40} U {42, ..., 77}
|Ag| = 57; no other non-trivial orbits
w; =53, wy =57, w3 =53, wg =54
S; =25'11%2110
W =[S, 551 =43'511°.

n = 70. Representation G(1)E.

1,42]4,(43,70
Y7o = Y5y [P0

X70 = X525, 68)(26, 69) X 71
ai=1l,ap=2,c1 =13, co=14,a3 =3, a4 =4,c3 =15,¢c5 = 17
[v(X), ¥(Y)] = (1,5, 38,31, 35, 40, 4, 3, 8, 33, 30, 36, 11)

(6, 10,23, 13,17,37,7, 12, 41, 16, 15, 20, 9) 1129214
s=13,r=13,k=6,d =13
Ao = {16} U {18, ...,30} U {32,...,35} U{37,39,40} U {42, ..., 70}
|Ag| = 50; no other non-trivial orbits
w] = 43, wy = 70, w3 = 53, Wy = 54
Si = 11292110
W =[S, 851 =31"11"18,

n = 64. Representation G(1)R.
Yeu = Y([;1,42]Y1[€43,64]
Xo4 = X4 4125, 43) (26, 44) x 17041
ai=l,ap=2,c1=13,co =14, a3 =3, a4 =4,c3 =15,¢c5 = 17
[v(X), v (Y)] = (1,5, 38,31, 35,40, 4, 3, 8,33, 30, 36, 11)

(6, 10,23, 13,17,37,7, 12,41, 16, 15, 20, 9)17%1*
s=13,r=13,k=6,d = 13
Ao = {16} U{18,...,30} U{32,...,35} U{37,39,40} U {42, ..., 64}
|Ag| = 44; no other non-trivial orbits
w] = 18, wy = 19, w3 = 43, w4 = 44
S; = 17%110
W =[S1, 571 =23'823"12.
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n = 63. Representation G(1)C.
Y3 — Yé1,42]Yé43,63]
Xe3 = X125, 43)(26, 44) x>
ar=1l,ap=2,c1=13,co =14,a3 =3, a4 =4,¢c3 =15,¢5 = 17
[v(X), v ()] =(@1,5,38, 31, 35,40, 4, 3, 8, 33,30,36, 11)
(6, 10,23, 13,17, 37,7, 12, 41, 16, 15, 20, 9)21142221*
s=13,r=13,k=6,d =13
Ao = {16} U{18,...,30} U {32,...,35} U{37,39,40} U {42,...,63}
|Ag| = 43; no other non-trivial orbits
wy; =39, wy =22, w3 =43, wy =44
S; = 2114222110
W =[S}, §]1=29'5'1°.

n = 57. Representation G(1) P.
Ys; = Y([;I’42]Y£,43’57]
Xs7 = X4 *(25, 43)(26, 44) X157
ai=l,ap=2,c1=13,co=14,a3 =3, a4 =4,¢c3 =15,¢c5 = 17
[v(X), v (Y)]=(,5,38,31, 35,40, 4, 3, 8, 33, 30, 36, 11)

(6, 10,23, 13,17,37,7, 12, 41, 16, 15, 20, 9)27' 14
s=13,r=13,k=6,d =13
Ao ={16}U{18,...,30} U{32,...,35} U{37,39,40} U {42,...,57}
| Ag| = 37; no other non-trivial orbits
w] = 43, wy = 25, w3 = 39, w4 = 37
S; =27'110
W =[S, 531 =19'513217,

n = 49. Representation G(1)O.
1,42] 1,[43,49
Yag = Yy [P

X9 = X4 *(25, 47)(26, 48) x5
ai=l,ap=2,c1=13,co=14,a3 =3, a4 =4,¢c3 =15,¢5 = 17
[v(X), v (¥Y)]=(,5,38,31, 35,40, 4, 3, 8, 33, 30, 36, 11)

(6, 10,23, 13,17,37,7, 12,41, 16, 15, 20, 9)19' 1*
s=13,r =13,k =6,d =13
Ao ={16}U{18,...,30} U{32,...,35} U{37,39,40} U {42,...,49}
|Ag| = 29; no other non-trivial orbits
w] = 29, wp = 34, w3 = 29, Wy = 30
Si =191
W=25 =191
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Appendix C.

This appendix contains the collection of MaGMa libraries that were used to obtain the

information provided in Appendix B. These, as well as a "README" file, can be found at

http://ww. | ns.ac. uk/jcm 7/1 ns2004- 042/ appendi x- c.
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