A NOTE ON GROUP RINGS OF CERTAIN TORSION-FREE GROUPS

BY

R. G. BURNS AND V. W. D. HALE

ABSTRACT. As a step towards characterizing *ID*-groups (i.e., groups G such that, for every ring R without zero-divisors, the group ring RG has no zero-divisors), Rudin and Schneider defined Ω -groups, a possibly wider class than that of right-orderable groups, and proved that if every non-trivial finitely generated subgroup of a group G has a non-trivial Ω -group as an epimorphic image, then G is an *ID*-group. We prove that such groups are even Ω -groups and obtain the analogous result for right-orderable groups.

Rudin and Schneider [8] define a group to be an ID-group if, for every ring R without zero-divisors, the group ring RG has no zero-divisors. They find a large class of groups (called Ω -groups) which are *ID*-groups. A group G is said to be an Ω -group if for every ordered pair of nonempty finite subsets A, B of G, there is at least one pair $(a, b) \in A \times B$ such that $ab \neq a_1b_1$ for any other pair $(a_1, b_1) \in A \times B$. This definition generalizes that of orderable groups and LaGrange and Rhemtulla [7] have observed that even right-orderable groups are Ω -groups: a group G is defined to be a right-orderable group (briefly RO-group) if there exists a full order \leq on the carrier of G such that, whenever $a \leq b$ then $ag \leq bg$ for all $g \in G$. If we add the requirement that $ga \leq gb$ for all $g \in G$, we obtain the definition of an orderable group (O-group). It is well known (see [3]) that nilpotent torsion-free groups are O-groups; also that if a group is locally an O-group then it is an O-group, and that Cartesian and free products of O-groups are again O-groups. It is easy to see that the latter remarks hold true for Ω -groups and for *RO*-groups. (For example a free product of Ω -groups is an extension of a free group (the Cartesian) by the direct product, and is therefore (by the remarks following) an Ω -group. This argument is valid also for *RO*-groups.) However, an extension of an O-group by an O-group need not be an O-group (see e.g. [2]) whereas the classes of Ω -groups and RO-groups are closed under forming extensions ([8], [2], or Corollary 1 below). If O, RO, Ω , ID, TF denote the classes of O-groups, ROgroups, Ω -groups, *ID*-groups and torsion-free groups respectively, then it is not too difficult to show (see [7], [8]) that

$$0 \subseteq RO \subseteq \Omega \subseteq ID \subseteq TF.$$

Here we shall be concerned with the following definition, applied to the classes RO and Ω . Let X denote a class of groups closed under forming isomorphic images.

441

[September

We define a group to be *locally indicable by groups in* X (or briefly *locally* X*indicable*) if every finitely generated nontrivial subgroup can be mapped homomorphically onto a nontrivial group in X. This terminology is derived essentially from that of Higman [4] who proves that all locally Z-indicable groups are in ID, where here Z denotes the class of infinite cyclic groups. Rudin and Schneider [8, Theorem 6.3] use Higman's method to prove the conceivably stronger result that a locally Ω -indicable group is an ID-group. However, Higman's argument can be made to yield the following possibly stronger theorem.

THEOREM 1. If a group is locally Ω -indicable then it is in Ω .

COROLLARY 1. (Rudin and Schneider [8].) If a group G has a normal subgroup N such that N and G/N are Ω -groups, then G is an Ω -group.

Proof. Let H be a finitely generated nontrivial subgroup of G. If $H \leq N$ then H is in Ω . If $H \leq N$ then HN/N is a nontrivial Ω -group. Thus G is locally Ω -indicable, and therefore in Ω by Theorem 1.

We shall prove by a similar method the following theorem.

THEOREM 2. If a group is locally RO-indicable then it is an RO-group.

The following corollary is immediate.

COROLLARY 2. A locally Z-indicable group is right-orderable.

Before proving these theorems we make two remarks. The first remark gives some indication of the size of the class of locally X-indicable groups as compared with X. A subnormal system \mathscr{S} of subgroups of a group G (see Kurosh [6, p. 171]) is a set of subgroups which contains G and the identity subgroup, which is fully ordered by inclusion and closed under intersections and unions of subsets, and which has the further property that whenever $H, K \in \mathscr{S}$ are such that K < H and no subgroup in \mathscr{S} lies properly between K and H, then K is normal in H. The factor groups H/K are called factors of \mathscr{S} . The proof of the following is not difficult and we omit it.

THEOREM 3. Let X be a class of groups closed under taking isomorphic images and subgroups. If G is a group possessing a subnormal system all of whose factors lie in X, then G is locally X-indicable.

In particular if $X=\Omega$, this together with Theorem 1 gives a generalization of Corollary 1.

1972] A NOTE ON GROUP RINGS OF CERTAIN TORSION-FREE GROUPS 443

We do not know if the converse is true. However it seems likely that at least Higman's class of locally Z-indicable groups coincides with the class of groups possessing a subnormal system with torsion-free abelian factors. Note that the latter class properly contains the class O [3, p. 51] and by Theorems 2, 3, is contained in RO. (We do not know if the latter containment is proper (see [2]).) It would be interesting to know if the class of SN-groups (Kurosh [6, p. 182]) coincides with the class of locally A-indicable groups, where A is the class of all abelian groups. An affirmative answer would generalize the result that if a group is locally an SN-group then it is an SN-group (Cf. [6, p. 183]).

Secondly, J. Poland has pointed out that the group G presented as

$$\langle x, y | x^{-1}y^2x = y^{-2}, y^{-1}x^2y = x^{-2} \rangle$$

(which occurs in Karrass and Solitar [5]) is torsion-free metabelian and is not in *RO*. For suppose \leq is a right order on *G*. Since any of the four mappings $x \rightarrow x^{\pm 1}$, $y \rightarrow y^{\pm 1}$ determines an automorphism of *G*, we may assume that x < 1, y < 1. Then xy < 1, yx < 1, whence $(xy)^2 < 1$, $(yx)^2 < 1$. However $(yx)^2 = (xy)^{-2}$, a contradiction. It is unknown whether or not *G* is an Ω -group.(¹)

Proof of Theorem 1. Suppose G is locally Ω -indicable but is not an Ω -group. Let A, B be two nonempty finite subsets of G such that for every pair $(a, b) \in A \times B$ there is at least one distinct pair $(a_1, b_1) \in A \times B$ such that $ab = a_1b_1$. Suppose further that |A| + |B| is minimal with respect to this property. We may assume also that $1 \in A$ and $1 \in B$ since replacement of A, B by gA, Bg_1 respectively, where g, g_1 are arbitrary elements of G, does not affect the above properties. Write G_1 = $sgp{A, B}$; clearly G_1 is nontrivial. Let K be a normal subgroup of G_1 such that G_1/K is a nontrivial Ω -group and let $\varphi: G_1 \rightarrow G_1/K$, be the natural homomorphism. Then $A\varphi$, $B\varphi$ are finite nonempty subsets of G_1/K and therefore contain elements Ka, Kb say, where $a \in A, b \in B$, such that $KaKb = Ka_1Kb_1$ (with $Ka_1 \in A\varphi, Kb_1 \in B\varphi$) if and only if $Ka = Ka_1$, $Kb = Kb_1$. Write $A_1 = Ka \cap A$, $B_1 = Kb \cap B$. Then to every pair $(a, b) \in A_1 \times B_1$ there corresponds a distinct pair $(a_1, b_1) \in A_1 \times B_1$ such that $ab = a_1b_1$. For, A, B have this property, and if either $a_1 \in A \setminus A_1$ or $b_1 \in B \setminus B_1$ then $a_1b_1 \notin KaKb$, whence a fortiori $a_1b_1 \neq ab$. Further, we cannot have both $A_1 = A$ and $B_1 = B$; for if $Ka \supseteq A$ and $Kb \supseteq B$ then Ka = Kb = K (since $1 \in A, B$), contradicting the fact that G_1/K is nontrivial. Thus $|A_1| + |B_1| < |A| + |B|$ and we have reached a contradiction.

Proof of Theorem 2. If x_1, \ldots, x_n are elements of a group, we shall denote by $S\{x_1, \ldots, x_n\}$ the subsemigroup generated by these elements. By a result of Conrad

^{(&}lt;sup>1</sup>) However ZG has no zero-divisors, where Z is the ring of integers. This follows from a result of Jacques Lewin, as yet unpublished, that if G_1 is an amalgamated product of two soluble groups H_1 and H_2 where ZH_1 and ZH_2 have no zero-divisors, then the same is true of ZG_1 . The group G is given in [5] as just such an amalgamated product. (Note added in proof.)

[September

[2, Theorem 2.2] a group is right-orderable if and only if for every finite subset $\{x_1, \ldots, x_n\}$ which does not contain 1, there exist $e_i = \pm 1$ $(i=1, \ldots, n)$ such that $1 \notin S\{x_1^{e_1}, \ldots, x_n^{e_n}\}$.

Suppose G is a locally RO-indicable group which is not in RO. By Conrad's criterion there is a subset $T = \{g_1, \ldots, g_k\} \subset G$, of smallest order k, such that $1 \notin T$ and for every choice of $e_i = \pm 1$ $(i=1, \ldots, k)$, we have $1 \in S\{g_1^{e_1}, \ldots, g_k^{e_k}\}$. Let G_1 be the subgroup of G generated by T, and let K be a normal subgroup of G_1 such that G_1/K is a nontrivial RO-group. Thus we cannot have $g_i \in K$ for all $i=1, \ldots, k$. On the other hand if $Kg_i \neq K$ for all i, then for every choice of $e_i = \pm 1$ $(i=1, \ldots, k)$, since $1 \in S\{g_i^{e_i}\}$, we should have $K \in S\{Kg_i^{e_i}\}$, contradicting the fact that $G_1/K \in RO$. Thus we may suppose, by relabelling the elements of T if necessary, that the elements of T outside K are precisely g_1, \ldots, g_r , where 0 < r < k. Since $G_1/K \in RO$, there exist $\delta_i = \pm 1$ $(i=1, \ldots, r)$ such that

(1)
$$K \notin S\{Kg_i^{\delta_i} \mid i = 1, \ldots, r\}.$$

For $r < i \leq k$, choose δ_i such that

(2)
$$1 \notin S\{g_i^{\delta_i} \mid i = r+1, \dots, k\}$$

This is possible by the minimality of T and since 0 < r. However, by definition of T we have $1 \in S\{g_i^{\delta_i} | i=1, ..., k\}$; say

(3)
$$1 = g_{i(1)}^{n_1 \delta_{i(1)}} \cdots g_{i(s)}^{n_s \delta_{i(is)}}$$

where the $n_i(j=1,\ldots,s)$ are positive integers and $1 \le i(j) \le k$, and where by (2) at least one of the $i(j) \le r$. From (3) we infer that

$$K = (Kg_{i(1)}^{n_1\delta_{i(1)}}) \cdots (Kg_{i(s)}^{n_s\delta_{i(s)}}),$$

where at least one of the cosets $Kg_{i(j)}$ is distinct from K. This contradicts (1) and completes the proof.

We conclude with a few related remarks. LaGrange and Rhemtulla [7] prove essentially that an *RO*-group *G* has the following property: If *A*, *B* are any two finite nonempty subsets of *G* with |A|+|B|>2, then there are two distinct pairs $(a_1, b_1), (a_2, b_2) \in A \times B$ such that $a_1b_1 \neq ab$ for any other pair $(a, b) \in A \times B$, and the same is true for a_2b_2 . They show that the group ring of a group with the latter property, over a ring with no zero-divisors, has all its units of the form *ug* where *u* is a unit of the ring and *g* is an element of the group. This generalizes Theorem 13 of Higman [4]. Properties of this type have also been considered by Banaschewski [1].

ACKNOWLEDGEMENTS. We thank T. MacHenry, J. Poland and D. Solitar for helpful comments. The first author's research was partially supported by a grant from the National Research Council of Canada.

1972] A NOTE ON GROUP RINGS OF CERTAIN TORSION-FREE GROUPS 445

REFERENCES

1. Bernhard Banaschewski, On proving the absence of zero-divisors for semi-group rings, Canad. Math. Bull. 4 (1961), 225-231.

2. P. Conrad, Right-ordered groups, Michigan Math. J. 6 (1959), 267-275.

3. L. Fuchs, Partially ordered algebraic systems, Pergamon Press, 1963.

4. Graham Higman, The units of group rings, Proc. London Math. Soc. (2) 46 (1940), 231-248.

5. A. Karrass and D. Solitar, The subgroups of a free product of two groups with an amalgamated subgroup, Trans. Amer. Math. Soc. 150 (1970), 227-255.

6. A. G. Kurosh, The theory of groups, Vol. 2, Chelsea, New York, 1956.

7. R. H. LaGrange and A. H. Rhemtulla, A remark on the group rings of order preserving permutation groups, Canad. Math. Bull. 11 (1968), 679-680.

8. Walter Rudin and Hans Schneider, Idempotents in group rings, Duke Math. J. 31 (1964), 585-602.

York University, Downsview, Ontario University of York, York, U.K.

.