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1. INTRODUCTION 

This meeting, which deals with turbulence in stars, opens with a review on ther­

mal convection. There is no better way to state from the start that among all insta­

bilities that are likely to arise in stars, it is thermal convection which is the 

most firmly established as a cause for the turbulence that we observe on their surface. 

Our confidence in this comes mainly from the theoretical prediction that convective 

instability sets in whenever the density stratification becomes superadiabatic, as is 

expected in late type stars whose outer layers are very opaque, due to the ionization 

of the two most abundant elements, hydrogen and helium. And, in these stars at least, 

thermal convection occurs close enough to the photosphere to influence, be it indi­

rectly, the profile of spectral lines. 

A whole IAU colloquium has been devoted three years ago in Nice to the topic of 

stellar convection, and one finds in its proceedings an extensive account of what 

was the state of the problem. Some progress has been accomplished since then, and 

naturally I will spend most of my time describing recent work, and even work in progess 

that I an aware of. But on the assumption that some of you are not too familiar with 

the subject, let me first recall some generalities. 

2. A HIGHLY NONLINEAR PROBLEM 

Thermal convection is described by a set of well-known equations, which state the 

conservation of mass 

|£ + v-pv = o , CD 

that of momentum 

P ( f| + (VV)V ) = -VP + £p + f_v (2) 
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and that of heat (or entropy) 

PT ( || + V«VS ) = V«(K VT) + dy (3) 

One can combine these equations to establish the conservation of total energy 

|- ( \ P V2 + pH - P ) + V« ( -K VT + H pV + \ pV2 V + Fy ) 

= £«PV (4) 

I use here the classical notations for the gravity vector ( g ) and the velocity 

field ( V_ ); the pressure ( P ), the entropy ( S ), the enthalpy ( H ) and the ther­

mal conductivity ( K ) are all known functions of the density ( p ) and the temperatu­

re ( T ). The viscous force ( f ), the viscous dissipation ( d ) and the so-called 

viscous flux ( F ) need not to be explicited for this purpose. The assumption has 

been made that the medium is optically thick, so that the radiative flux is propor-
2 

tional to the temperature gradient; H pV is the convective flux, and 1/2 p V V the 

mechanical energy flux. 

Even a layman realizes that the differential system formed by the first three 

equations is highly nonlinear, and he may guess that most difficulties in treating 

the problem are due to this nonlinearity. To stress that point, it suffices perhaps 

to recall that the most simple version of this system obtained by neglecting the buoy­

ancy and assuming that the density is constant, and thus retaining, only the two first 

equations (which the fluid dynamicists refer to as the Navier-Stokes equations), has 

no general solution that would be valid over a large range of parameters. 

The nonlinearities of the problem have a double role. First they prevent the 

motions, once the instability has set in, from growing for ever exponentially. Second, 

they generate a whole set of scales in the velocity field, and they interconnect them. 

The term responsible for this is the advection term (V_ V) V_, and no wonder that this 

term, plus a similar one in the heat equation, namely V_ VS, are the most difficult to 

deal with when attempting to solve the problem numerically. 

In fact, the various approaches to the problem that have been devised so far differ 

mainly in how they treat these advection terms. The most ambitious approach would be 

of course to consider all scales, and to calculate explicitly those nonlinear terms. 

However in all cases of astrophysical interest, this is out of question since the 

scales involved span several orders of magnitude (typically eight or more), and even 

if the velocity field were homogeneous in space, which it is not, describing all these 

scales would be well beyond the capabilities of the present computers. Therefore one 

has always, at one stade or another, to make some simplifying assumption. An impressi­

ve portion of the fluid dynamical literature has been devoted to the subject of how 

to best model convective transport, that is the advection, by prescribed motions, of 

a scalar or of a vector field. Let us briefly recall how this is done most commonly. 
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3. APPROXIMATING THE CONVECTIVE TRANSPORT 

The simplest situation one can imagine is that of the advection of a passive 

scalar, ignoring molecular diffusion. The conservation equation for this scalar (which 

may be a dye in water, a pollutant in the atmosphere or entropy in thermal convection) 

takes the simple form 

|f + V«Vs = 0 (5) 

s being the concentration. 

Experiments and observations show that in many instances, in particular when the 

motions are turbulent, the scalar just diffuses away. Thus in that case some local 

average of s, which we will designate by s without further defining it, obeys a diffu­

sion law 

|f " V-( xT Vi ) = 0 (6) 

The turbulent diffusivity xT
 ls given by 

XT = £" 

u being the mean turbulent velocity and 1 the mixing length. The latter has been intro­

duced by Prandtl (1925), and can be viewed as the distance a turbulent element travels 

before it dissolves in the medium and dumps there the scalar quantity that it has car­

ried to that point. 

For this diffusion approximation to be valid, a necessary condition is obviously 

that the mixing length be smaller than the scale characterizing the spatial variation 

of s. Unfortunately, this is not a sufficient condition, as it has been recognized in 

many cases. 

The most recent work on this subject is that by Knobloch (1978), who begins to 

establish a formal expression for the time derivative of s 

The J\ are differential operators which can in principle be determined for a given 

velocity field. If this field is isotropic and varies slowly enough in space and time, 

the are given by 

X m " 12*2 + \ ^ + - + V'1' W 
(where m', an even number, is either m or m-1). The coefficients n. are integrals in­

volving the velocity distribution and its successive moments. 
2 

For m = 2, one recovers the above mentioned diffusion approximation, with x). 

being the turbulent diffusivity. For higher m, the coefficient in front of the Lapla-

cian operator becomes 

2 3 4 
n2 + Tij + "2 + •••• (9) 

and thus the diffusivity is modified, even when the higher order operators play a 

is 
St 
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negligible role. The important fact to notice therefore is that at each step of appro­

ximation, as m increases, the coefficient multiplying each differential operator is 

renormalized. 

Moreover, the series is known only to converge if the following ditnensionless 

number is smaller than unity: UT/A < I, where T and A are respectively the correlation 

time and the correlation length characterizing the velocity field (see Knobloch's paper 

for more details). In most cases however that requirement is not met, and this restricts 

seriously the applicability of the diffusion approximation. Needless to say that the 

problem becomes even more intricate if it is a vector field that is being advected, if 

it feeds back on the velocity field, if the latter is no longer isotropic, etc. 

At this point we realize that the only reason the diffusion approximation is so 

widely used is that one has not yet found by what to replace it. And we come to under­

stand that the degree of refinement (I hesitate to say reliability) of a given treat­

ment of thermal convection can be measured by the level at which the diffusion appro­

ximation is introduced, as we will see next. 

4. THE MIXING LENGTH APPROACH 

In the current mixing length approach, which has been applied to stellar convec­

tion (in the core of a star) by Biermann (1933), the diffusion approximation is used 

right from the beginning to model the heat transport. Thus the advection term in 

Eq. 3, pT_V«vS , is replaced by 

- V.( X T pT VS ) = - V ( ^ ) (10) 

the quantity in parenthesis being the convective flux, whose magnitude is more common­

ly stated as 

Fc = p Cp T (u Z/H) (Vad - V) (11) 

Here C is the specific heat at constant pressure and H the pressure scale height, 

V , and V are respectively the adiabatic and the true logarithmic temperature gra­

dient, with respect to the pressure. The turbulent diffusivity has been replaced by 

u I, where usually the mixing length Z is taken proportionaly to the pressure scale 

height and the velocity u estimated from the conservation of mechanical energy: 

| P V2 <», g p' Z (12) 

The density difference p' between a convective element and its surroundings is evalu­

ated in turn through 

p' /P «• (Vad - V) Z/H (13) 

All quantities are then defined at any given depth, and the temperature gradient, for 

instance, depends only on those local values. 
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Many improvements have been brought to this original form of the mixing length 

treatment, for instance by Opik (1950). Vitense (1953) took into account the heat ex­

changes between the convective elements and the surrounding medium, which enabled her 

to model a convection zone up to the surface of a star, thus linking its atmosphere 

with the interior. More recently Shaviv and Salpeter (1973), followed by Maeder (1975), 

endeavoured to transform the local mixing length treatment into a non-local one, which 

would be capable of also describing penetrative convection. Another line of action has 

been to refine the evaluation of the diffusion coefficient xT> by introducing the effect 

of rotation and magnetic field; I will mention here only the most recent contributions 

from Gough (1978) and from Durney and Spruit (1979), since P. Gilman will cover this 

subject in more detail in his review. 

All these improvements however cannot hide the main weakness of the mixing length 

approach, namely that it evluates the heat transport through the diffusion approxima­

tion. Some progress should therefore be expected when abandoning this approximation, 

as it is done in the so-called hydrodynamical treatments. 

5. HYDRODYNAMICAL APPROACHES 

In such approaches, a great effort is made to solve the original fluid dynamical 

equations, at least for those scales of the velocity field that transport most of the 

convective flux. The diffusion approximation cannot be avoided entirely, but it will 

be used only to evaluate the momentum transport by the smaller scales. This is possible 

in principle if only the larger scales are driven by buoyancy, the smaller scales being 

generated through the nonlinear interactions that have been mentioned earlier. 

By large, we mean here the scales that in the laboratory are of the order of the 

thickness of the unstable layer. In a star, several of such scales seem to be present, 

as indicated by the solar observations: those of granulation and supergranulation are 

well established, but others may also exist, as we will learn from J. Beckers later in 

this meeting. These scales are certainly related to the vertical structure of the con­

vection zone, although we do not know yet precisely how, especially when the hydrogen 

and helium ionization regions are merged in the same unstable zone. 

The numerical techniques available to solve the nonlinear system (Eq. 1-3) fall 

into three categories. First, you may choose to stay in the physical space; you divide 

it in a mesh as fine as your computer allows it, you transform the differential equa­

tions in finite differences equations, and you solve those by an appropriate scheme. 

Its transparency makes this method very appealing, but it remains restricted to rather 

mild convection, which does not require too high spatial resolution. Alternatively, 

since you are not interested in each detail of the various fields, but merely in their 

statistical properties, you might prefer to work in the Fourier space. This is done 

indeed by most people who study developed turbulence, but the method is only well suited 
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for homogeneous fields. 

Most calculations of stellar convection are based on a third method, which com­

bines the main advantages of the other two. Postulating, as it seems very natural, that 

the various fields are homogeneous on horizontal surfaces in some statistical sense, you 

take a Fourier expansion (or something similar) in the horizontal directions, but you 

stay in the physical space for the vertical dimension, in which you are certain to en­

counter much more structure. This procedure is known as that of modal expansion; let 

us sketch it below when applied to a scalar field, say the temperature: 

T (x,y,z,t) = T (z,t) + £ ^(x.y) e^z.t) (14) 
i 

The temperature is split into its horizontal average T , which depends only on the 

vertical coordinate z and time t, and the fluctuation around this mean, which is 

expanded into a series of horizontal planforms f.(x,y), the modal amplitudes 9. 

being again functions of only z and t. 

The horizontal planforms used most commonly, mainly for simplicity, are those 

which separate the variables in the linear limit of the problem; they obey the harmo­

nic equation 
2 2 

( |-2 + |-2 ) f. + a.2 f. = 0 (15) 
^ dx 3y ' l 1 1 

where a. is the wavenumber that characterizes the horizontal structure of this mode. 
l 

Fourier modes of the same wavenumber can be assembled to describe cells of various 

shapes: horizontal rolls, prisms of rectangular base, of hexagonal base, etc., which 

may differ stronlgy in their nonlinear properties. 

Many other possible choices exist for these planform functions; one has recently 

been explored by Depassier and Spiegel (1979), which needs only one single mode to 

render the high contrast that is often observed between rising and falling motions. 

6. RECENT DEVELOPMENTS 

The modal expansion procedure has first been applied to the Boussinesq approxima­

tion, which is the form the fluid dynamics equations take when the thickness of the 

considered layer is very small compared to the density scale height, as it is the case 

in laboratory convection. In this approximation, the only nonlinear terms are - not 

surprisingly - the advection terms (YV)V and V-VS, and much can be learned by study­

ing this simplest example of thermal convection. The parameters defining a given ex­

periment reduce then to only two: the Rayleigh number, which measures the strength of 

the instability, and the Prandtl number, which is the ratio of the viscosity to the 

thermal diffusivity. It is therefore relatively simple, in principle, to explore the 

behavior of convection, both experimentally and theoretically, in the two-dimensional 

space of these parameters. 

For a thorough discussion of Boussinesq convection we refer to the review paper 
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by Spiegel (1971). The most extensive calculations, with the modal expansion procedure, 

have been performed by Toomre et at. (1977); their results are in satisfactory agree­

ment with the laboratory experiments. One difficulty with the modal method is the 

selection of the planforms that are used in the expansion, especially when the availa­

ble facilities limit the number of modes to one or two only. Numerical experimentation 

of the kind just quoted then offers an indispensable guidance on how to make such 

choices. 

a. Strong density stratification 

The Boussinesq approximation is of course not well adapted to describe stellar 

convection, which takes place in general over several density scale heights. Therefore 

some of the recent works have dealt with more realistic situations and have focussed 

on the effects due to a strong density stratification. Another approximation is then 

used very often, namely the (inelastic approximation. It consist mainly in filtering 

out the acoustic waves, which probably contribute very little to the energy transport. 

To be applied, it requires that the convective velocities be small compared to the 

speed of sound (see Gough 1969), which is generally the case. 

The simplest example to consider is that of a thick layer of perfect gas, in which 

the dynamical viscosity and the thermal conductivity are both constant. In the absence 

of motion, the stratification is that of a polytrope, with In p = n In T + constant. 

As is well known, the stratification is convectively unstable when n, the polytropic 

index, is less then 1.5 (for either a monoatomic or a fully ionized gas). 

The linear stability problem has been investigated by Spiegel (1965) and by Gough 

et at. (1976); steady nonlinear solutions have been constructed by Massaguer and Zahn 

(1979). The main result of those studies is that the pressure forces play a very impor­

tant role, in contrast with Boussinesq convection, and the reasons for this can be 

easily understood. 

In the anelastic approximation, the equation of momentum conservation can be 

written 

P ( 5f + (V V) V ) = - VP' + £ p' + f_v (16) 

where P' and p' are the fluctuating values of the pressure and the density, with 

respect to their horizontal mean (of which only that of the density, P, enters expli­

citly in this equation). As before in Eq. 1, f is the viscous force. One sees that 

the pressure force, on the right hand side, has been split in the contribution of the 

fluctuating pressure, _.VP', and that of the mean pressure, gP'> which is usually 

referred to as the buoyancy force. 

In Boussinesq convection, the buoyancy force is always acting upwards on a rising 

fluid element in the unstable region. A first consequence of the density stratification 

is that the buoyancy changes sign in the upper part of the unstable domain. To under-
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Figure 1 

A cross-section through steady 
cellular convection 

a. The pressure fluctuations 
are positive where the flow 
diverges, negative where it 
converges. 

b and c. Variation of the re­
lative fluctuations of the 
pressure (P'/P), the tempera­
ture (T'/T) and the density 
(p'/p), along the vertical 
line A B, where the fluid 
is rising. 

b. In the limit of vanishing 
density stratification (Bous-
sinesq case), P'/P is negli­
gible and thus p'/p is the 
mirror image of T'/T. 

c. With a_strong stratifica­
tion, P'/P is of the same 
order as the other fluctua­
tions, and therefore p'/p 
(and thus the buoyancy force) 
changes sign in the upper 
part of the domain. 

„ a. Pressure fluctuations 

h. Boussinesq 

a. Stratified 

stand this, let us consider Figure la where we have sketched a cross-section through 

a convective layer. It makes no difference here whether the cells are rolls or take 

another shape: since it is the fluctuating pressure which is responsible for turning 

a vertical flow into a horizontal one, it must have a maximum in each horizontal plane 

where the flow diverges, and a minimum where it converges. This obliges the vertical 

gradient of the fluctuating pressure to be predominantly in the direction of the ver­

tical flow, as depicted in Figure lc. The temperature fluctuations, on the other hand, 

are positively correlated with the vertical velocities, since they originate from the 

advection of heat in a superadiabatic temperature gradient (in the language of the 

mixing length theory: a rising fluid element is hotter than its surroundings). 

Now in Boussinesq convection the pressure fluctuations are vanishingly small 

compared to the temperature fluctuations: the equation of state therefore imposes that 

the density fluctuations then just be the mirror images of these temperature fluctua-
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tions, as shown in Figure lb. But in stratified convection, where the fluctuations of 

the pressure may be of the same order as those of the temperature (depending on the 

thickness of the convective layer as compared to the density- scale height), the buoy­

ancy force reflects the horizontal variations of both the temperature and the pressure, 

as indicated in Figure lc. This is again imposed by the equation of state, which in 

the anelastic approximation takes the simple linear form 

P'/P = p'/p + T'/T (17) 

with our assumption of a perfect gas. The profiles sketched in Figure 1 are valid for 

non penetrating convection, with the temperature fluctuations vanishing at top and 

bottom, but the results can easily be extended to other cases. 

Another consequence of strong density stratification is the modification of the 

energetics of thermal convection. The work done by the fluctuating pressure force, 

per unit time and over the whole considered domain, is 

E
P = - / / / v p , , i d v . o8> 

which can be transformed into 

Ep = - // V«(P'V) ds + /// P'V.V dv . (19) 

With the usual boundary conditions on V_, the surface integral is zero and only remains 

the volume integral, which also vanishes in the Boussinesq limit since there V«V = 0. 

But one sees that in a stratified medium, where the conservation of mass imposes that 

V«\? 4 0, the fluctuating pressure too contributes to the work done on the fluid. There 

are many cases, as shown by Massaguer and Zahn (1979), where this pressure integral is 

larger than that representing the work done by the buoyancy force; there are instances 

where the latter work becomes even negative, due to the reversal of the buoyancy that 

has been discussed above. 

We should perhaps remind ourselves at this point that in the mixing length ap­

proach the pressure fluctuations are generally ignored and that the convective velo­

cities are estimated from the work done solely by the buoyancy. The application of 

this procedure should therefore be restricted to the Boussinesq limit, where the pres­

sure fluctuations are indeed negligible and only the buoyancy force produces net work. 

But the mixing length approach is widely used to describe very thick convection zones, 

where these conditions are no longer realized, and this is another reason for not 

taking its predictions too seriously. 

The properties of non Boussinesq convection that have been presented above in the 

case of a polytropic atmosphere are entirely confirmed by more realistic calculations, 

such as those performed by Latour, Toomre and Zahn with application to the envelope 

of an A type star; a first report on this has been given in Toomre et at. (1977). 

The medium is treated as a real gas, the variations of the thermal conductivity and of 

the turbulent viscosity are taken in account. The computational domain goes from above 

the photosphere to a depth of 28,000 km, thus encompassing both convection zones (that 
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due to the ionization of hydrogen and the first ionization of helium, and that due to 

the second ionization of helium); the density varies by a factor of 60 between top and 
4 -2 

bottom. The star has an effective temperature of 8000 K and a gravity of 1.15 10 cm s . 

A typical solution is displayed in Figure 2 for one choice of the horizontal plan-

form of the single mode that has been retained in this calculation: it corresponds to 

cells of hexagonal base with the flow directed mainly upwards along their centerline. 

The horizontal size of the cell is comparable to the thickness of the lower convection 

zone. Notice that the pressure fluctuations are of the same order as those of the 

temperature; as in the simple polytrope, the buoyancy force is controlled by the pres­

sure fluctuations in the upper part of the domain, whereas the temperature fluctuations 

dominate in the lower part. One verifies also that the fluctuations of these thermo-

dynamical variables do not exceed 8%, which justifies a posteriori the use of the ane-

lastic approximation, in which only linear terms in these variables are retained. 

cgs 

Figure 2 

Fluctuations of the thermodynamical variables in the envelope of an 
A type star 

The relative fluctuations of the pressure (P'/P), the temperature 
(T'/T) and the density (p'/p) are shown versus the mean pressure, 
taken as measure of the depth. The location of the unstable zones 
is indicated in heavy lines on the pressure scale. The results 
refer to a single mode solution, and the fluctuations which are 
displayed are the modal amplitudes. The horizontal planform is he­
xagonal and the vertical velocity is predominantly upwards in the 
centerline of the convective cells, whose horizontal dimension is 
of the order of the thickness of the lower convection zone. 
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b. Penetration 

But the most striking result of this calculation is that the convective motions, 

which are driven in the lower convection zone, penetrate through the stable region 

above and the upper convection zone up to the surface of the star. This appears clear­

ly in Figure 3, where the two components of the velocity are shown for the same single 

mode solution as above. The strong horizontal flows which develop in the atmosphere 

are organized in cells whose dimensions are large compared to the local density or 

pressure scale heights; one is therefore tempted to identify this with some kind of 

supergranulation. In an earlier work by Toomre et at. (1976), there was already an in­

dication for such an extended penetration, which has the consequence of connecting 

the two convection zones; according to the current mixing length theory, these zones 

should be well separated. 

:- o 

-10 

- -15 

Figure S 

Convective velocities in the envelope of an A type star 

The modal amplitudes of the vertical and horizontal velocities, de­
signated respectively by V and V , as functions of the mean pres­
sure. This single mode solution is the same as that of Figure 2. 
Over most of the domain, the vertical velocity has a negative sign, 
implying that it is directed upwards in the centerline of the con­
vective cells. Notice the ample penetration from the lower convec­
tion zone all the way up to the surface of the star, and also the 
large horizontal velocities which occur there. 
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Convection in smaller scales has not been investigated in this calculation, be­

cause the radiative transfer has been treated for simplicity in the diffusive appro­

ximation, which is not applicable in the optically thin limit. Nelson and Musman (1977) 

and Nelson (1978a) have tackled this problem, with application to the solar granula­

tion. They treat the transfer in the Eddington approximation, whose validity has been 

established by Unno and Spiegel (1966) (at least when the mean radiation field is uni­

form). The mean stratification is imposed, and the amplitude of the convective motions 

is limited through a nonlinear process which is similar to a turbulent viscosity. Only 

the upper part of the solar convection zone is considered, above optical depth T = 25; 

although the boundary conditions on the fluctuating variables appear somewhat arbitra­

ry, their influence on the solutions seems moderate. The free parameters are chosen 

to match the observations. 

The main results of these calculations concern the temperature fluctuations, which 

are shown to be controlled mainly by the transfer of radiative energy. They change sign 

around 110 km above optical depth T = 1, as the result of penetrative convection, which 

has an e-folding distance of about 160 km. The center to limb variation of the intensi­

ty fluctuations are in satisfactory agreement with the observations. 

The same method has also been applied by Nelson (1978b) to an F type star, which 

has two separate convection zones. His conclusions are similar to those of Latour, 

Toomre and Zahn mentioned above for an A type star; he too finds that the two convection 

zones are linked through penetrative motions. 

7. WORK IN PROGRESS 

Most of the recent results come from calculations that are based on the modal 

expansion procedure. It should not be forgotten, however, that in all cases the modal 

expansion was limited to only two, if not one, modes. The consequences of such a 

drastic truncation are not fully understood yet, and therefore these results should 

be used with some caution. It is true that most of these calculations have dealt with 

rather mild convection, involving convective fluxes of only a few percent. The feed­

back on the mean stratification is therefore very slight, and it is reasonable to as­

sume that a multi-mode solution would not differ much from the superposition of an 

ensemble of single-mode solutions. 

To check this point, it would be very worthwhile to undertake calculations with 

many more modes. This is now under its way thanks to the efforts of Nordlung, who 

will present some recent results in this colloquium, and to Marcus (1979). Marcus 

applies the modal expansions to a spherical geometry, and he just completed a first 

investigation of Boussinesq convection with as many as 15 modes. This enables him to 

calculate explicitly the motions on scales that are in the so-called inertial sub­

range, and which are fed only through the nonlinear interactions discussed earlier. 
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For this reason, his results should be much less sensitive to the approximation used 

to close the system. 

A less ambitious calculation, involving only three modes in its final form, is 

undertaken by Latour, Toomre and Zahn to describe the solar convection zone. Inspired 

by the observed scales separation, the modes are intended to represent respectively 

the granulation, the supergranulation, and the large cells which seem necessary to 

render the whole zone nearly adiabatic, even though they are not observed yet with 

certitude. 

The same are also exmaining the penetration of convective motions into an adja­

cent stable layer, in the Boussinesq limit. Preliminary results have been reported 

by Zahn (1977): modal calculations with one or two hexagonal planforms predict a 

penetration which is of the order of the thickness of the unstable layer. Laboratory 

experiments with water around 0°C lead to the same conclusion. 

An important effort is also spent to refine the treatment of radiative transfer 

in the presence of motions, in the optically thin limit. Legait and Gough (1979) com­

pare various approximations with the exact solutions of the transfer equation, in 

the case of an anisotropic radiation field; their main goal is to test the validity 

of the Eddington approximation which is commonly used. 

This list is certainly incomplete, but it has the merit to demonstrate that the 

subject of stellar convection is alive. There is good hope, therefore, that new and 

perhaps decisive progress will be reported when we meet the next time to discuss 

turbulence in stellar atmospheres. 
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