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Fluid flows coupled by a deformable solid layer (DS) may be found in both natural and
industrial settings. To analyse the stability of such systems, we consider plane Couette
flows coupled by a DS. The shear stress exerted by the flowing fluids on the DS leads to
its deformation, coupling the motion in each fluid. We demonstrate that, as a consequence
of the coupling and irrespective of the thickness of the DS, a viscous instability exists,
which can lead to absolute instability at sufficiently high dimensionless speed of the lower
plate. The predicted instability apparently arises due to the energy exchange between the
fluids and DS via the tangential velocities at the interface. A linear elasticity model for
the DS is employed, removing the non-physical growth rate predicted by previous models.
A spatio-temporal analysis further reveals the existence of an absolute instability. Insight
on this instability could be potentially utilised in manipulating mixing in microfluidic
systems and membrane separation as well as for understanding morphologies evolving
during membrane formation via interfacial polymerisation.
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1. Introduction

Viscous flows coupled by a deformable solid layer (DS) may be encountered in
both natural and engineered processes. In biological systems, such flows occur at the
micro-scale, past deformable lipid membranes forming the cell wall and organelles (Fricke
1925; Hochmuth, Mohandas & Blackshear 1973; Thaokar & Kumaran 2002), as well
as at a macroscopic level, such as the heart, where the interventricular and interatrial
septums act as a DS (Rosenquist et al. 1979; Marcomichelakis et al. 1983; Pislaru et al.
2014). Engineered systems where such flows are present include membrane separation
(Strathmann 2011) and interfacial polymerisation (Ukrainsky & Ramon 2018) processes.

The experiments of Kumaran & Muralikrishnan (2000), Srinivas & Kumaran (2017),
Neelamegam & Shankar (2015) and Verma & Kumaran (2012, 2013) showed that the
presence of a deformable wall in a micro-channel can lead to transitional flows at a
much lower Reynolds number compared to rigid-walled channels and, presumably, lead to
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FIGURE 1. Schematic of the flow geometry in dimensionless coordinates. The plates at y = 0
and y = 1 + a + b are moving with dimensionless speeds 1 and Vr, respectively. The fluids exert
a shear stress at the fluid–DS interface, leading to deformation of the DS and coupling between
the base-state fluid motion and perturbations in the DS, which affects the stability of the flows.

improved mixing. However, this requires a wall much thicker than the channel dimensions.
Furthermore, manipulation of the hydrodynamic instabilities in such a system requires
alteration of the fluid and/or deformable wall properties (Verma & Kumaran 2012, 2013).
Thus, during the process, mixing in such a system cannot be actively controlled. Here,
we propose that such limitations can be overcome by using a thin, elastic membrane
as a DS along with an adjacent, second fluid, as illustrated in figure 1. At any instant
during a process, the speed of fluid 2 can be used to actively control and trigger
hydrodynamic instabilities which in turn can be used to control the mixing in the coupled
system. The present theoretical analysis can help in understanding the manipulation of the
hydrodynamic instabilities in such systems. Such a system is also representative of some
membrane-based separation processes using hollow fibres (e.g. dialysis), essentially a tube
whose wall is a permeable, elastic polymer (Strathmann 2011). This membrane separates
two liquid streams flowing at either side. As with the microfluidic system, flow-induced
wall vibrations can enhance mixing and intensify the process. Finally, another system
of interest is the stability of thin films generated during interfacial polymerisation,
commonly used to fabricate desalination membranes (Raaijmakers & Benes 2016). Here,
the ultra-thin polymeric film is formed at a liquid–liquid interface, and its ultimate
morphology has been linked to several possible mechanisms, one of which may be of
a hydrodynamic origin (Ukrainsky & Ramon 2018); the existence of such a mechanism is
also part of the motivation to study the stability of this system.

1.1. Flow past a deformable solid
Before proceeding with the analysis, we begin with an overview of previous studies on
related systems. The first study concerning the stability of fluids coupled by a DS was
done by Harden & Pleiner (1994), where the DS was treated as an infinitesimally thin
elastic sheet. Their study was aimed at explaining experimental studies on dynamic light
scattering from insoluble polymeric monolayers at a liquid–liquid interface. Accordingly,
the study was focused on hydrodynamic modes induced by thermal fluctuations. As such,
their model neglected the governing equations for the solid film. The elastic character of
the film affected the liquid–liquid interface only through the tangential stress continuity
condition. Other interfacial conditions were those normally applied for a liquid–liquid
interface. Additionally, both fluids were static, hence the effect of shear on the membrane
and hydrodynamic modes was not studied, in contrast to our present motivation. Kumaran
& Srivatsan (1998) added fluid shear and considered the stability of plane Couette flows
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coupled by a (still) infinitesimally thin DS. Similar to Harden & Pleiner (1994), in their
study, the DS was sandwiched between two fluids as shown in figure 1. However, Kumaran
& Srivatsan (1998) assumed only normal displacement of the membrane and neglected
possible tangential displacement. As a result, a constitutive equation for the DS became
unnecessary. Their analysis predicted that in the absence of inertia, the system is stable
and the transition Reynolds number is proportional to the dimensionless tension in the
thin elastic sheet.

The lack of a constitutive equation in the analysis of Kumaran & Srivatsan (1998) was
then relaxed by Thaokar & Kumaran (2002), who used a constitutive relation, originally
proposed by Harden & Pleiner (1994), for the DS. The flow geometry in Thaokar &
Kumaran (2002) was similar to the one considered in figure 1. With the added constitutive
relation, Thaokar & Kumaran (2002) predicted the existence of an instability even in
the absence of inertia, in contradistinction with Kumaran & Srivatsan (1998). Thaokar
& Kumaran (2002) also performed a weakly nonlinear stability analysis and predicted that
perturbations in the limit of vanishing wavenumber are supercritically stable. However,
similar to Harden & Pleiner (1994) and Kumaran & Srivatsan (1998), Thaokar &
Kumaran (2002) assumed an infinitesimally thin elastic sheet. As shown later in § 3, their
constitutive equation and/or the assumption of infinitesimally thin membrane leads to a
seemingly non-physical growth rate in some parametric regimes. This prompted the use
of a linear elasticity model and a finite-thickness DS in the present work, consequences of
which are discussed in § 3.

1.2. Spatio-temporal stability analysis
The previous studies by Harden & Pleiner (1994), Kumaran & Srivatsan (1998) and
Thaokar & Kumaran (2002) only considered the temporal evolution of disturbances in the
flows coupled by a DS. However, a temporal stability analysis does not provide information
about the growth of the disturbances in space or in both space and time simultaneously.
This requires a spatio-temporal stability analysis, which may be further classified into
either absolute or convective instabilities. A convective instability implies that, given
sufficient time, the disturbances will decay at any point in space, while an absolute
instability leads to growth of disturbances at any point in space. Further description of
both absolute and convective instabilities, as well as an outline of the methodology used
to determine their existence, is presented in § 3.2.

An absolute instability has been experimentally observed in several fluid flows, for
example, Guillot et al. (2007) and Utada et al. (2008) observed that an absolute instability
leads to jet breakup. The experiments of Lingwood (1995) on the boundary layer on a
rotating disk showed that the laminar to turbulent flow transition could be a consequence of
an absolute instability. In a rotating Hagen–Poiseuille flow, Shrestha et al. (2013) observed
the presence of a wavy pattern in the whole tube, presumably due to an absolute instability.
Thus, if an absolute instability exists in a given flow geometry, it can bring about dramatic
changes. This feature could be exploited in promoting mixing. The length of the system
may not be sufficiently large for convective instabilities to grow within the domain of the
device. However, if absolute instabilities are present, then the flow is destabilised over the
entire domain of the channel, which can enhance mixing, providing further motivation
and potentially important practical consequences for probing the existence of absolute
instabilities in fluid flows coupled by a DS.

In the present study, linear elasticity is used to model the DS due to the following
reasons. For high dimensionless thickness of the DS, a, the study of Gkanis & Kumar
(2003) on the plane Couette flow past a neo-Hookean solid shows that the linear elastic and
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neo-Hookean models are in excellent agreement. However, at low a, for the plane Couette
flow past a deformable solid, the critical dimensionless speed of the plates, Γ , which is
proportional to the dimensionless speed of the moving plate, is sufficiently high such that
deviations appear in results obtained by linear elasticity, compared with a neo-Hookean
model. However, this is not an issue in the present analysis since the coupling instability
predicted here for a < 1 exists at low values of Γ (< 0.1), for which linear elasticity and
more advanced models such as the neo-Hookean model are in good agreement (Gkanis
& Kumar 2003; Shankar & Kumar 2004; Gaurav Shankar 2009). Additionally, the linear
elasticity model is mathematically and numerically simpler compared to the neo-Hookean
model. As shown later in § 3, the linear elastic model removes the unphysical growth
rate predicted by the model of Thaokar & Kumaran (2002). Therefore, linear elasticity is
deemed sufficient to define the dynamics of the DS and hence to study the linear stability
of the present system.

The rest of the paper is arranged as follows. The base-state variables and perturbation
governing equations are derived in § 2. The temporal stability results and their discussion
is given in § 3.1. The existence of the absolute instability and its dependence on the
various parameters is discussed in § 3.2. The salient conclusions of the present study are
summarised in § 4.

2. Problem formulation

The system under consideration consists of an incompressible, isotropic and
homogeneous elastic solid with shear modulus G, sandwiched between two
incompressible fluids, as shown in figure 1. The fluids, marked as 1 and 2, have viscosities
μ1 and μ2, respectively and density ρ. The densities of the two fluids and the DS are
assumed to be equal, which is a reasonable approximation for the industrial processes
and biological systems motivating this problem (Hochmuth et al. 1973; Strathmann 2011;
Shrestha et al. 2013; Pislaru et al. 2014). The lengths in the present problem are scaled
by the thickness of fluid 1, R. In the dimensionless coordinates, fluid 1, DS and fluid
2 are present in the domains [0, 1], [1, 1 + a] and [1 + a, 1 + a + b], respectively. The
length and height of the system are assumed to infinitely extend in the x and z-directions.
The plates at y = 0 and y = 1 + a + b are moving at dimensionless speeds 1 and Vr,
respectively, where velocities are scaled by the speed of plate at y = 0, V1. The parameter
Vr = V2/V1 is the ratio of the plate velocities where V2 is the dimensional velocity of the
plate at y = 1 + a + b.

The DS is assumed to be pre-stretched due to the tethering of its ends, in line with
practical applications. The tension induced in the DS as a consequence of the tethering
is assumed to be much higher than the base state stresses exerted by the flowing fluids.
If the DS is un-tethered, then the present analysis is applicable if the interfacial tension
is sufficiently large. Otherwise, the fluid shear stress would induce a pressure gradient
in the solid that would, in turn, be transmitted to the fluid. Under such conditions, a
fully developed Couette flow would no longer be a correct description of the velocity
field. A force balance at the fluid–DS interface shows that, for the development of the
plane Couette flow for the un-tethered DS, the interfacial tensions must be higher than
(Γ /ak3)((Vrμr/b) + 1), where k is the wavenumber and Γ is the dimensionless speed of
the plate at y = 0. The parameter Γ = μ1V1/(GR) can be interpreted as the ratio of the
viscous stresses in fluid 1 to the elastic stresses within the DS. Another interpretation of
Γ is the ratio of the relaxation time scale of the DS (∼ μ1/G) to the convection time scale
(∼ R/V1). The latter interpretation indicates that Γ is a measure of the relative elasticity
of the DS. Furthermore, it is assumed that the dimensional widths of each fluid domain,
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Stability of fluid flows coupled by a deformable solid layer 905 A36-5

namely R and bR, satisfy the condition R � L and bR � L, where L is the length of
the DS. This assumption is necessary for using the normal mode analysis employed in the
present study. However, if the widths of the fluids and length of the DS are of comparable
magnitude, then a fully global stability analysis is required (Theofilis 2011; Tsigklifis &
Lucey 2017).

We consider two fluids with a velocity field v(i) = (v(i)
x , v(i)

y ), where i = 1, 2 represent
fluids 1 and 2, respectively. Scaling the time, t, by R/V1, velocities by V1, the dimensionless
continuity equation, for an incompressible flow, becomes

∇ · v(i) = 0, (2.1)

where the gradient operator is ∇ = ex(∂/∂x) + ey(∂/∂y) with ex and ey the unit vectors
in the x and y-directions, respectively. The dimensionless Navier–Stokes equation for the
fluids, with μ1V1/R used for scaling the pressure, is,

Re
[
∂v(i)

∂t
+ (v(i) · ∇)v(i)

]
= −∇p(i) + μ(i)∇2v(i), (2.2)

where Re = ρV1R/μ1 is the Reynolds number. The dimensionless viscosity is μ(i) = 1 for
fluid 1 and μ(i) = μr for fluid 2. Assuming a steady-state and fully developed flow, the
base-state velocities of the fluids are

v̄(1)
x = 1 − y, (2.3)

v̄(2)
x = Vr

b
( y − 1 − a), (2.4)

where an overbar indicates a base-state quantity. The subsequent linear stability analysis
is performed for this base state.

For the DS, a linear elastic model is used. Scaling the DS displacements by R and
pressure by μ1V1/R, the dimensionless incompressibility and linear momentum equations
for the DS are

∇ · u = 0, (2.5)

Re
∂2u
∂t2

= −∇pm + 1
Γ

∇2u. (2.6)

Here, u = (ux , uy) is the displacement field in the DS with ux and uy the x and y
displacement components, respectively, and pm is the pressure field in the DS.

2.1. Linearised perturbation equations
For the linear stability analysis, two-dimensional disturbances are a reasonable assumption
since for the flows past a deformable surface, two-dimensional disturbances have been
shown to be more unstable than three-dimensional disturbances (Patne & Shankar 2018).
For the purpose of the linear stability analysis, dynamical quantities such as velocities,
displacements and pressures are decomposed into the base state and perturbed state, as
f (x, t) = f̄ (x, t) + f ′(x, t). Here, f (x, t) is any dynamic quantity and a prime signifies the
small perturbation quantity. In the linearised governing equations, the normal modes of
the following form are then substituted

f ′(x, t) = f̃ ( y) exp(i(kx − ωt)), (2.7)

where k = kr + iki is the complex wavenumber and f̃ ( y) is the eigenfunction of f ′(x, t).
The other parameter, ω = ωr + iωi is the complex frequency, which characterises the
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temporal frequency and growth of the disturbances. Therefore, the flow is considered
to be temporally unstable if at least one eigenvalue satisfies the condition ωi > 0. For
the existence of the spatio-temporal instability, as explained in § 3.2, the cusp point
coordinates in the ω plane must possess ωi > 0. After substitution of the normal modes,
the linearised governing equations for the fluid become

ikṽ(i)
x + Dṽ(i)

y = 0, (2.8)

Re
[−iωṽ(i)

x + ikv̄(i)
x ṽ(i)

x + ṽ(i)
y Dv̄(i)

x

] = −ikp̃(i) + μ(i)(D2 − k2)ṽ(i)
x , (2.9)

Re
[−iωṽ(i)

y + ikv̄(i)
x ṽ(i)

y

] = −Dp̃(i) + μ(i)(D2 − k2)ṽ(i)
y , (2.10)

where D = d/dy. Similarly, for the DS

ikũx + Dũy = 0, (2.11)

−ω2Reũx = −ikp̃m + 1
Γ

(D2 − k2)ũx , (2.12)

−ω2Reũy = −Dp̃m + 1
Γ

(D2 − k2)ũy. (2.13)

The above equations are to be solved using the following boundary conditions. At y = 0
and y = 1 + a + b, the assumption of no slip and impermeability of the plates gives

ṽ(1)
x = 0; ṽ(1)

y = 0, at y = 0, (2.14a,b)

ṽ(2)
x = 0; ṽ(2)

y = 0, at y = 1 + a + b. (2.15a,b)

At y = 1, oscillations of the fluid–DS interface will be induced due to the perturbations.
The perturbed interface is y = u′

y(x, t)|y=1 so that the linearised normal to the interface
is n(1) = −ex(∂u′

y(x, t)|y=1/∂x) + ey , pointing in the positive y-direction i.e. from the
fluid 1 into the DS, and the tangent is t(1) = ey(∂u′

y(x, t)|y=1/∂x) + ex . There will be four
boundary conditions at y = 1, two of which are continuity of the tangential and normal
velocities, while the other two represent continuity of the tangential and normal stresses.
These boundary conditions, after substitution of the normal modes, become

ṽ(1)
x + Dv̄(1)

x ũy + iωũx = 0, (2.16)

ṽ(1)
y + iωũy = 0, (2.17)

ikṽ(1)
y + Dṽ(1)

x = 1
Γ

(ikũy + Dũx), (2.18)

−p̃(1) + 2Dṽ(1)
y = −p̃m + 2

Γ
Dũy − Σ1k2ũy, (2.19)

where all quantities are evaluated at y = 1. The parameter Σ1 is the dimensionless
interfacial tension between fluid 1 and the DS. Similarly, for the interface at y =
1 + a, the equation of the surface is y = −u′

y(x, t)|y=1+a. Thus, the linearised normal
and tangent to the fluid–DS interface are n(2) = ex(∂u′

y(x, t)|y=1+a/∂x) + ey and
t(2) = −ey(∂u′

y(x, t)|y=1+a/∂x) + ex , respectively. To maintain consistency with the
direction of n(1), n(2) is directed from the fluid 2 into the DS. The boundary conditions
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at y = 1 + a are

ṽ(2)
x + Dv̄(2)

x ũy + iωũx = 0, (2.20)

ṽ(2)
y + iωũy = 0, (2.21)

ikṽ(2)
y + Dṽ(2)

x = 1
Γ

(ikũy + Dũx), (2.22)

−p̃(2) + 2Dṽ(2)
y = −p̃m + 2

Γ
Dũy + Σ2k2ũy, (2.23)

where all quantities are evaluated at y = 1 + a. Finally, Σ2 is the dimensionless interfacial
tension between fluid 2 and the DS.

The term Dv̄(i)
x ũy in the tangential velocity continuity conditions at the interface, (2.16)

and (2.20), leads to the coupling between the base state and perturbations, which in turn
leads to the energy exchange between the DS and the fluids. This energy exchange can
eventually lead to the instabilities predicted in the present work. However, we also note
that, at higher order, the interaction between the normal interfacial displacement and the
pressure fluctuations represents another mode of energy transfer. To determine the stability
of the system, the above equations and boundary conditions are solved for the eigenvalue
ω using the numerical methodology outlined in the next subsection.

2.2. Numerical methodology
To carry out the linear stability analysis of the present problem for arbitrary Re, the
pseudo-spectral method is employed, in which the eigenfunctions are expanded in terms
of Chebyshev polynomials, as

f̃ ( y) =
m=N∑
m=0

amTm( y), (2.24)

where f̃ ( y), m, N, Tm( y) and am are, respectively, the eigenfunctions, the number of the
Chebyshev polynomial, the highest degree of the polynomial in the series expansion or
the number of the collocation points, the mth Chebyshev polynomial and the coefficient
of the latter in the expansion. The series expansions are evaluated at N collocation points
to determine the series’ coefficients am and/or to obtain the eigenvalues ω. The eigenvalue
problem may then be written in the form

Ae + ωBe + ω2Ce = 0, (2.25)

where A, B and C are the discretised matrices and e is the eigenvector formed by the
eigenfunctions of the dynamic quantities such as the velocity, displacements, and the fluid
and DS pressures. Next, the polyeig MATLAB routine is used to solve the eigenvalue
problem (2.8)–(2.23). To filter out the spurious modes from the numerically computed
spectrum of the problem, the latter is obtained for N and N + 2 collocation points and the
eigenvalues are compared with a specified tolerance, e.g. 10−4. The genuine eigenvalues
are verified by increasing the number of collocation points by 20 and monitoring the
variation of the obtained eigenvalues. If the eigenvalue does not change up to the sixth
significant digit, then the same number of collocation points are used to predict the critical
parameters. In the present work, N = 40 is found to be sufficient to determine the most
unstable converged eigenvalue, within the parameter range studied.
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Process R aR bR V1, V2 G

MS and IP 10−3 − 10−6 m 10−6 − 10−9 m 10−3 − 10−6 m 10−2 − 10−3 m s−1 105 − 106 Pa

Cells 10−4 − 10−6 m 10−9 m — — 103 − 104 Pa

Heart 10−3 − 10−6 m 10−2 − 10−3 m 10−3 − 10−6 m 10−1 − 10−2 m s−1 104 − 105 Pa

TABLE 1. Range of dimensional parameters for various physical systems relevant for the
current study: membrane separation (MS) (Strathmann 2011) and interfacial polymerisation
(IP) processes (Ukrainsky & Ramon 2018), flows near cells (Fricke 1925; Hochmuth et al.
1973) and heart (Rosenquist et al. 1979; Marcomichelakis et al. 1983; Pislaru et al. 2014).
Other parameters such as densities and viscosity of the fluids are ∼103 kg m−3 and ∼10−3 −
10−1 Pa s, respectively.

In the creeping-flow limit (Re = 0), the governing equations for the fluids and DS can
be analytically solved to give eight integration constants. The obtained eigenfunctions for
velocities, displacements, as well as the fluid and DS pressures are then substituted into the
boundary conditions, resulting in eight equations with eight unknown variables. In matrix
form, the resulting eigenvalue problem becomes

Mα = 0, (2.26)

where M is an 8 × 8 matrix containing coefficients of the integration constants and
α is a vector containing eight integration constants. The dispersion relation, ω =
ω(k, a, b, Γ, μr, Vr,Σ1,Σ2) is then obtained by taking the determinant of the matrix M
obtained in the previous step, thereby determining the system stability. In the present work,
most of the results are for Re = 0 and the analytical method does not produce spurious
eigenvalues, thus the analytical method is preferred for obtaining results at Re = 0.

3. Results and discussion

3.1. Temporal stability (ki = 0)
Typical ranges of dimensional parameters involved in flows coupled by a DS, motivating
this study, are shown in table 1. According to these, the Reynolds number is estimated
to be Re ∼ 10−4 − 1. Owing to such small value of the Reynolds number, Thaokar &
Kumaran (2002) assumed the creeping-flow limit in their analysis. Here, we begin with
the vanishing Re limit, and separately present the temporal stability results for finite Re in
§ 3.1.2.

3.1.1. Results at Re = 0
We begin by briefly considering the model presented by Thaokar & Kumaran (2002),

in which the following relation between the tension (T) and deformation in the DS was
assumed,

T = K
∂ux

∂x
, (3.1)

in the linear limit of a purely elastic DS, where K is the dimensionless surface modulus
of the DS. As shown in figure 2(a), this model predicts a non-physical, unbounded
growth rate of the most unstable mode for Vr = −1. It must be noted that, Thaokar &
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FIGURE 2. The variation of the growth rate, ωi with wavenumber, k. (a) According to the model
employed by Thaokar & Kumaran (2002). (b) The present model. The curve for the Thaokar
& Kumaran (2002) model is obtained at b = 2, μr = 0.1, K = 50, Σ = 1 and Vr = −1 while
for the present model the parameters are a = 10−4, Γ = 10−4, b = 2, μr = 0.5, Σ1 = 1 and
Σ2 = 1. ωi > 0 implies an unstable eigenmode. The present model does not predict the
unbounded (non-physical) growth rate. (a) Thaokar & Kumaran (2002) model and (b) present
model.

Eigenvalue (ω = ωr + iωi) Characteristics

0.180434 + 0.030762i Unstable, downstream travelling
−0.077517 − 0.360288i Always stable, upstream travelling
−0.102915 − 204020i Always stable, upstream travelling
−2.6716 × 10−4 − 2.5845 × 1017i Always stable, stationary

TABLE 2. Typical eigenspectrum in the creeping-flow limit at k = 0.5, a = 10−4, Γ =
10−4, b = 2, μr = 0.5, Vr = 0, Σ1 = 1 and Σ2 = 1. The unstable mode (ωi > 0) signifies the
instability. The other three modes always remain stable.

Kumaran (2002) may not have been able to observe the inconsistent results predicted
by their model since a counter-flow arrangement was not studied in their work. The
unbounded growth rate shown in figure 2(a) implies some inconsistency in the constitutive
equation or assumption of the infinitesimally thin DS. Consequently, in the present work,
a linear elastic constitutive equation is employed and a finite thickness of the DS is
considered. Figure 2(b) illustrates the removal of the non-physical growth rate for the
most unstable (or least stable) mode by the present model, suggesting that considering
a finite thickness of the DS and a linearly elastic constitutive equation, resolves the
discrepancy. From figure 2(b), the growth rate peaks at k ∼ O(0.1), indicating that the
dominant disturbances have a wavelength larger than the width of fluid 1.

In the creeping-flow limit, the present analysis predicts four eigenvalues, shown in
table 2. The instability predicted herein is due to the first eigenvalue in the table, which is a
downstream travelling mode that remains downstream within the parameter range studied
(‘downstream mode’ and ‘upstream mode’ here implies disturbances having positive and
negative ωr, respectively). Hence, this mode is the focus of the forthcoming discussion.
The remaining three modes are always stable.
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FIGURE 3. The normalised perturbations, for the fluids and DS, at a = 0.6, b = 1, Γ =
0.57, μr = 0.5, k = 0.029, Σ1 = 1, Σ2 = 1 and Vr = 0 for the marginally stable eigenvalue
ω = 0.01001. Here, v

′(1)
x = Re[ṽ(1)

x eikx ], v′(2)
x = Re[ṽ(2)

x eikx ] and u′
x = Re[ũx eikx ]. For

convenience, the axes for the fluids and DS have been normalised to the interval [0, 1]. The
length of the domain in the x-direction is equal to a wavelength (2π/k) of the perturbations. The
plots show that the unstable eigenmode is antisymmetric. (a) v

′(1)
x ; (b) u′

x ; and (c) v
′(2)
x .

The form of the perturbations for the unstable eigenmode, at marginally stable
parameter values, is shown in figure 3, normalised by the maximum absolute value of
the corresponding eigenfunctions. In figure 3(a), at y = 0, v′(1)

x vanishes, as required
by the boundary conditions at the moving plate near fluid 1. This is likewise observed
for v′(2)

x , where the disturbances must vanish at y = 1 + a + b, which corresponds to
y = 1 in figure 3(c). Interestingly, the absolute values achieved by the normalised
perturbations v′(1)

x and v′(2)
x at the fluids–DS interface are equal. Consequently, the DS

exhibits anti-symmetric oscillations (figure 3b). Thus, the unstable mode predicted in the
present work is anti-symmetric in nature.

The oscillations of the DS, in the perturbed state, are shown in figure 3(b). Figure 4
shows that the second mode is symmetric with respect to the horizontal perturbation
displacement of the DS, while the oscillations of the DS for the third and fourth modes
are almost identical except that the fourth mode exhibits tilted oscillations. Interestingly,
the oscillations for both the third and fourth modes exhibit slight variations in x and y.

In a typical experiment aimed at detecting hydrodynamic instabilities, the growth of
disturbances is observed as a function of the slowly increasing velocity. In the present
study, Γ is the dimensionless speed of the plate and also a measure of the shear stress
applied by the flow on the DS. Therefore, we study the variation of the critical value
of Γ (Γc), as affected by different model parameters, as an indicator of system stability.
To estimate the critical parameters, neutral stability curves are obtained, as illustrated
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FIGURE 4. The normalised horizontal perturbation displacement of the DS for the remaining
three modes at a = 0.6, b = 1, Γ = 0.57, μr = 0.5, k = 0.029, Σ1 = 1, Σ2 = 1 and Vr = 0.
Panels (a–c) are for the second, third and fourth modes, respectively, which are all stable. The
designations first, second, third and fourth modes refer to the number of the mode when the
eigenvalues arranged in the descending order of the imaginary part similar to table 2.

in figure 5, for two values of a, the dimensional thickness of the DS, and fixed values
of the other parameters. The minimum in the neutral stability curve corresponds to the
values of the critical wavenumber, kc and Γc. For a = 10, in figure 5, the neutral stability
curve is flatter compared with the one for a = 0.125. Physically, this implies that at the
critical speed of the plate, for a = 10, disturbances with a broader wavenumber range will
become unstable. Neutral stability curves also show that with a decrease in a, Γc decreases,
demonstrating a destabilising effect when the thickness of the DS is decreased.

The critical wavenumber, kc, and Γc, obtained from neutral stability curves calculated
for various values of a, are plotted in figure 6. The figure shows a non-monotonic variation
in both kc and Γc with a decrease in a. Evidently, a decreasing thickness of the DS leads to
the lowering of the instability threshold and the wavelength of the unstable disturbances
increases. Figure 6 also shows the existence of an unconditionally unstable region for
a < 0.12. This region is characterised by the absence of well-defined critical parameters.

For higher values of a, the curve for Γc becomes akin to the problem of the plane Couette
flow past a plate lined by a DS (Kumaran, Fredrickson & Pincus 1994), and Γc decreases
with increasing a. The plane Couette flow past a plate lined by a DS exhibits a ‘viscous
mode’ of instability in the creeping-flow limit (Kumaran et al. 1994; Gkanis & Kumar
2003, 2005). We recall that the present system differs from the one studied by Kumaran
et al. (1994) through the existence of the second fluid. Considering the variation of Γc with
a shown in figure 6, the instability is similar to the viscous mode for higher a. However,
as a is decreased, the viscous mode of the instability is affected by the coupling with
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Γ

FIGURE 5. The neutral stability curves in k − Γ space at b = 1, μr = 0.5, Vr = −1, Σ1 = 1
and Σ2 = 1. The critical parameters, kc and Γc, decrease with decreasing a. The neutral stability
curve for a = 10 is flatter compared to the one for a = 0.125 showing that for the critical
parameters, a broad range of unstable disturbances can be observed for a = 10.

10–1 101100
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Γc
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kc

FIGURE 6. The variation of kc and Γc with a at b = 1, μr = 0.5, Vr = −1, Σ1 = 1 and
Σ2 = 1. The stable region exists on the concave side of the Γc curve. The steep decrease in Γc as
a → 0.1 indicates the existence of an unconditional instability for a < 0.12. The unconditionally
unstable region arises due to the terms in the tangential velocity continuity equations (2.16) and
(2.20), which introduce a coupling between the fluids via the DS at low a.
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With Dv̄
(i)
x ũy terms Without Dv̄

(i)
x ũy terms

0.020266 + 0.004055i −9.79794 × 10−7i
−0.007854 − 0.039245i −0.035189i
−0.012411 − 2.82600 × 109i −2.82600 × 109i
−1.48912 × 10−7 − 2.31576 × 1018i −2.31576 × 1018i

TABLE 3. The eigenspectrum with/without the Dv̄
(i)
x ũy terms in the tangential velocity

continuity equations (2.16) and (2.20). The eigenvalues are obtained at k = 0.05, a = 10−4, Γ =
10−5, b = 2, μr = 0.5, Vr = 0, Σ1 = 1 and Σ2 = 1. The table shows that Dv̄

(i)
x ũy terms are

responsible for the unconditionally unstable region, as these terms couple the base state with the
perturbations.

the second fluid, which leads to a rapid decrease in the critical parameters, as shown in
figure 6. To conclude, the flow geometry considered here exhibits an instability similar to
the viscous instability at high a; however, at low a, the coupling between the fluids via the
DS modifies the viscous instability and results in an unconditionally unstable region.

Earlier studies in the creeping-flow limit, by Kumaran et al. (1994) and Gkanis &
Kumar (2003), concluded that the viscous instability was due to the amplification of
the disturbances at the interface between the fluid and DS. These are driven by the
interaction term between the base-state velocity gradient and the perturbation in the
vertical displacement of the DS, in the tangential velocity continuity equations (2.16)
and (2.20). This interaction term couples the base state and perturbations, facilitating the
transfer of energy from the base state to the perturbations. Further analysis reveals that
the interaction terms in the tangential velocity continuity equations (2.16) and (2.20), are
also the reason for the unconditionally unstable region predicted in figure 6, as shown in
table 3. The existence of the unconditionally unstable region implies that as long as there
is a non-zero deformation (i.e. Γ /= 0) in the DS due to the shear applied by the flow
past the interface, then the coupled system is always linearly unstable provided that a and
μr are sufficiently small. Furthermore, as illustrated in table 3, this is due to the energy
exchange occurring at the fluids–DS interface through Dv̄(i)

x ũy terms in the tangential
velocity continuity equations (2.16) and (2.20). We further note that, for a rigid solid, the
deformation is absent, thus ũx = ũy = 0, which removes the Dv̄(i)

x ũy terms in the tangential
velocity continuity equations (2.16) and (2.20), eliminating the instability. Interestingly,
from table 3, the decay rate of the second (stable) eigenvalue is less affected by the absence
of the terms Dv̄(i)

x ũy , compared to the unstable eigenvalue, while the decay rates of the
remaining two eigenvalues remain unaffected even after removal of the interaction terms
(Dv̄(i)

x ũy). This implies that the unstable mode is destabilised due to the energy exchange at
the fluid–DS interface while other modes remain unaffected or are very weakly affected.

The role of μr in the unconditionally unstable region is shown in figure 7(a). In contrast
to the case of high a, for sufficiently low a the coupling established between the fluids
through the DS is strong enough to make the coupled system unstable at non-zero Γ .
However, the unconditionally unstable region comes at the ‘price’ of a low growth rate at
low Γ , which will be further discussed in the subsequent section.

The important role of fluid 2 in the induced instabilities can be illustrated with the help
of figure 7(c). For b = 0.1, the Γc curve is very similar to the curve for a Couette flow
past an elastic solid, since Γc decreases with increasing a. This implies that a minimum
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FIGURE 7. The effect of varying the viscosity ratio, μr (a), the relative velocity of plate 2,
Vr (b) and the dimensionless thickness of fluid 2, b (c) on the curves in Γc − a parametric
space at Σ1 = 1 and Σ2 = 1. Panel (a) shows that a lowered viscosity of fluid 2 compared
to fluid 1 is favourable for the instability to set in. Panel (b) shows that co-flow is more unstable
than counter-flow. Panel (c) illustrates the destabilising effect of an increased thickness of fluid
2, b. Panel (d) shows the rapidly decreasing growth rate with decreasing k and/or Γ . (a) Varying
μr at Vr = 0, b = 1; (b) varying Vr at μr = 0.5, b = 1; (c) varying b at μr = 0.5, Vr = 0 and
(d) ωi vs Γ at a = 10−4, b = 1, μr = 0.5, Vr = 0.

thickness of fluid 2 is necessary for the destabilising coupling between the two fluids via
the DS. For b = 1, this requirement is fulfilled and the coupling has a strong effect on the
viscous mode instability. Furthermore, increasing b leads to an increase in the minimum
value of a, at which point the system becomes unconditionally unstable.

Figure 7(b) illustrates the effect of the variation in Vr, which represents the shear force
acting on fluid 2, compared to fluid 1. The figure shows that the co-flow configuration
is more unstable than counter-flow. As explained in the preceding discussion, the terms
Dv̄(i)

x ũy in the tangential velocity continuity equations (2.16) and (2.20) are the main
cause of the instability predicted in the present work. The influence of the coupling terms
increases with an increase in the DS deformation, which is, in turn, induced by the shear
force exerted by the flow. In the counter-flow configuration, the shear force acting on the
DS due to both fluids is in the opposite direction, reducing the deformation in the DS and,
hence, stabilising the disturbances. Conversely, under co-flow, the shear forces exerted by
the fluids reinforce each other, increasing the coupling and resulting in de-stabilisation.
The effect of varying the viscosity ratio, μr = μ2/μ1 on the critical parameters is shown
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in figure 7(a). For μr = 1, the unconditionally unstable region does not exist, suggesting
a strongly stabilising effect imparted by the viscosity of fluid 2. Through computations of
similar Γc curves for various values of μr in the range [0.5, 1], the critical value of μr was
found to be ∼ 0.98 for the existence of the unconditionally unstable region. Furthermore,
the curve corresponding to μr = 0.75 illustrates that an increase in viscosity of fluid 2 can
push the unconditionally unstable region to lower values of a.

Figures 7(a), 7(b) and 7(c) also show that in certain parametric regimes, Γc ∼ O(1)
for which the linear elastic model is not applicable (Gaurav Shankar 2009, 2010; Patne
& Shankar 2018). Instead, a material frame-invariant model such as the neo-Hookean or
Mooney–Rivlin model is applicable. However, in applications such a high value of Γ is
not realisable owing to the practical and application restrictions. The results for such a
high Γ have been presented here only for the sake of completion.

In figures 6, 7(a), 7(b) and 7(c), the system is unstable for any non-zero value of Γ

and kc → 0. However, for such an unconditionally unstable region, the growth rate of
the disturbances also decreases with decreasing k and Γ , as illustrated in figure 7(d).
Owing to the small growth rate, this regime of the instability may not actually be
observable experimentally. We note that the low a regime may be relevant in processes
involving thin elastic films such as membranes or lipid bilayers. Furthermore, to induce
mixing in a practical setting, the growth rate should be high, such that it may lead to
the rapid movement of fluid particles (Verma & Kumaran 2012, 2013; Bodiguel et al.
2015). Figure 7(d) shows that, for k = 0.005 and Γ = 10−10, the characteristic growth
time of the disturbances is ∼107 s, while for k = 0.5 and Γ = 10−4, it is ∼102 s, which
is realistically achievable experimentally and in practice. In applications, owing to the
practical constraints, the length of the DS will be restricted. Accordingly, for a DS of
length L, the smallest disturbance wavenumber would be 2π/L.

An estimate to observe the coupling instability predicted here in the experiments or
practical applications can be obtained as follows. Consider the membrane separation
process for which the dimensionless parameters from table 1 are a ∼ O(10−3 − 10−6), b ∼
O(10−3 − 10−6), Vr ∼ O(0 − 10) and μr ∼ O(0.1 − 10). To detect the coupling mode
instability, assume μr ∼ 0.5 and Vr = 0 so that the figure 7(d) can be readily used.
Then the instability exists for k < 0.9 and arbitrary Γ values. For membrane separation
processes, length L ∼ O(10−2 − 10) m. Thus, depending on L, the minimum k will be
selected by the system. For example, if L ∼ O(1), then from figure 7(d), the temporal
coupling instability will exhibit a growth rate of O(10−2) s−1 which is possible to be
observed in the experiments. Also, the dimensionless speed of the plate needed to
destabilise the disturbances having k ∼ 0.8 is Γ ∼ 10−4 which corresponds to V1 ∼
10−2 − 10−4 m s−1, for a membrane of shear modulus G ∼ 105 Pa and channel height
R ∼ 10−4 − 10−6 m which again falls within a practical parametric regime. Please note
that, if the interfacial tension is sufficiently small, then the coupling instability predicted
here can exist for k > 1, in which case the minimum L required to observe instability can
become as low as ∼0.1.

Further analysis at k → 0 reveals that, for any given combination of the parameters,
kc /= 0 since for k → 0, only one non-trivial eigenvalue exists,

ω = −b + μr

aΓ μr
i, (3.2)

which is unconditionally stable. To conclude, for the low a regime, despite exhibiting
instability at small k and Γ , due to practical restrictions and small growth rate, such
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FIGURE 8. The eigenvalue spectrum at Re = 0.1, a = 0.1, b = 1, μr = 0.5, Vr = 0, Γ =
0.05, k = 0.05, Σ1 = 1 and Σ2 = 1. The shear waves arising due to the interaction of the
fluids and DS are symmetrically distributed about ωr = 0 line. The unstable viscous mode of
instability, ω = 0.013500 + 0.000727i is located on the symmetry line of the spectrum.

instability may not be of physical relevance. However, the same instability might play
a significant role in inducing mixing at sufficiently high k and Γ .

3.1.2. Instability characteristics at finite Re
The results discussed in § 3.1.1 are for a vanishing Reynolds number, Re. However,

physical restrictions dictate that Re may be small but of a finite value. Furthermore, the
previous study of Thaokar & Kumaran (2002) only considered the creeping-flow limit in
their analysis, neglecting the influence of inertia on the instability. Motivated by these
two reasons, the effect of the variation in Re on the instabilities is studied in the present
section.

In the creeping-flow limit, as shown in table 2, only four eigenvalues exist for arbitrary
values of the parameters. However, for non-zero Re there is an unlimited number
of eigenvalues, dependent on the number of collocation points used to discretise the
differential operator. For N = 40 collocation points, the eigenspectrum is shown in
figure 8. The eigenvalues, other than those present in the creeping-flow limit, are the
shear waves generated at the fluid–DS interfaces. Interestingly, these shear waves are
stable for Re < 1. For Re > 1, these waves may give rise to multiple unstable modes
(Gaurav Shankar 2009, 2010; Patne & Shankar 2018). In the present system, as discussed
in § 3.1.1, Re < 1, thus shear waves are found to be stable. This implies that, unlike in the
viscous mode, the shear waves remain unaffected by the presence of fluid 2 at low Re. As
a consequence of the stability of the shear waves for Re < 1, the viscous mode determines
the stability of the system even in the presence of finite inertia. Figure 9 illustrates the
effect of the increase in Re on the critical parameters. Increasing inertia has a slightly
stabilising effect on the viscous mode. Thus, the results presented for Re = 0 in § 3.1.1 are
generally applicable for Re < 1, with a minor quantitative adjustment.
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FIGURE 9. The variation of Γc and kc with Re at a = 0.6, b = 1, μr = 0.5, Vr = 0, Σ1 = 1
and Σ2 = 1. The figure illustrates the stabilising effect of inertia on the viscous instability. The
viscous instability remains the dominant mode of instability for Re < 1.

3.2. Spatio-temporal stability analysis (ki /= 0) at Re = 0
When performing a temporal stability analysis (see § 3.1), the frequency of the
disturbances, ω, is taken as a complex number and the wavenumber, k, is a real number
(Drazin & Reid 1981). Conversely, for a spatial stability analysis, used to study the
evolution of disturbances in space, ω is taken as a real number and k as a complex
number (Drazin 2002). In a spatio-temporal stability analysis, both ω and k are treated
as complex numbers (Huerre & Monkewitz 1990; Schmid & Henningson 2001) and
instability is classified as either an absolute or convective instability. This section is aimed
at understanding the effect of the fluid–solid coupling on the spatio-temporal instabilities,
in the creeping-flow limit.

The classification of flows as absolutely or convectively unstable was first proposed by
Briggs (1964) in the context of plasma physics. He further developed the methodology
to investigate the spatio-temporal instabilities by progressive moving of the Laplacian
contour in the complex frequency plane and Fourier contour in the wavenumber plane.
According to Briggs (1964), absolute instability signifies the growth of disturbances in
both upstream and downstream directions, while convective instability implies that the
disturbances develop in the downstream direction from the source of the disturbances.
Thus, convective instability will decay at any fixed position in space if provided sufficient
time (Huerre & Monkewitz 1990), resulting in mixing only in the downstream direction,
while absolute instability will induce mixing both up- and downstream. This can be
illustrated by considering the response of a given base velocity profile to an impulse
excitation at asymptotically long times (Huerre & Monkewitz 1990), where the obtained
response is used to determine whether the flow is absolutely or convectively unstable.

The absolute instability is absent in a plane Couette flow past a rigid surface since the
flow is temporally stable (Drazin 2002) – for the existence of an absolute or convective
instability, the flow must be temporally unstable (Huerre & Monkewitz 1990; Schmid &
Henningson 2001). However, the plane Couette flow past a plate lined by a DS exhibits an
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absolute instability since the fluid–DS coupling gives rise to the temporal instability (Patne
& Shankar 2017). The present flow geometry also possesses a deformable boundary but it
differs from the plane Couette flow past a DS due to the presence of fluid 2, which may
lead to modification of the results predicted by Patne & Shankar (2017). The assumption
of creeping flow in the present section is due to the considerable simplification in the
numerical determination of the saddle and cusp points. Also, as shown in § 3.1.2, Re has a
negligible effect on the instabilities for Re < 1.

To illustrate the absolute and convective instabilities, consider a dispersion relation of
the form ω = f (k), where f (k) is a continuous and differentiable function of k. For the
absolute instability to exist, the group velocity of the disturbances must vanish for at least
one value of k, so that ∂ω/∂k = 0 (Huerre & Monkewitz 1990; Schmid & Henningson
2001). However, the determined saddle point must also obey the causality principle for the
existence of the absolute instability (Huerre & Monkewitz 1990). To obtain the sufficient
condition, equation ∂ω/∂k = 0 is solved for k, which gives the saddle points of the
dispersion relation. If the saddle point is of first order in the k-plane (denoted by k0) and
ω0 is the value of ω at the saddle point k0, then a local Taylor expansion about this point
gives (ω − ω0) ∼ (k − k0)

2. This shows that the mapping from the k-plane to the ω-plane
is characterised by angle doubling (i.e. phase doubling) provided that the saddle point is of
first order. Here, the k- and ω-planes refer to the kr − ki and ωr − ωi planes, respectively.

For realistic dispersion relations, the solution of the equation ∂ω/∂k = 0 gives several
roots and thus saddle points. To determine the genuine saddle point, obeying the causality
principle (which stipulates that the cause does not precede the effect), the method of
Briggs (1964) is needed. However, finding the saddle point in the k-plane and cusp point
in ω-plane using the method of Briggs (1964) becomes a cumbersome mathematical and
numerical exercise for realistic dispersion relations. A simpler alternative is the method
of Kupfer, Bers & Ram (1987), in which for prediction of an absolute instability only the
formation of the cusp point in the ω-plane is necessary.

Use of the method presented by Kupfer et al. (1987) is illustrated in figure 10, where the
cusp point forms in the ω-plane at ω0 = 0.1142 + 0.01734i. To obtain the cusp point, the
temporal stability curve is first obtained in the ω-plane by varying kr and setting ki = 0.
Next, ki is given a negative value so that the disturbances can become spatially unstable.
Slowly lowering ki eventually forms a cusp point at ki = −0.24125, as shown in figure 10.
To verify the genuine character of the cusp point, a straight line (not shown in figure 10) is
drawn from the cusp point parallel to the ωi axis. The intersections of the drawn straight
line and the temporal stability curve are then counted. For example, in figure 10 the count
is one – an odd number – thus the formed cusp point is genuine. It must be noted that if
the count is even then it is an evanescent cusp point. The existence of a genuine cusp point
implies the presence of the absolute instability, while that of an evanescent mode signifies
a spurious cusp point (Yeo, Khoo & Zhao 1996, 1999, 2001).

According to the method of Kupfer et al. (1987), a cusp point in the ω-plane must
correspond to a saddle point in the k-plane. To obtain the saddle point in the k-plane, a
matrix of ωr and ωi values is generated by varying both kr and ki and (using MATLAB
built-in functions) isocontours are obtained as shown in figure 11. The cusp point (ω0) of
figure 10 and saddle point (k0) of figure 11 represent a local mapping of the type ω − ω0 ∼
(k − k0)

2, which shows that the saddle point in the k-plane is of first order.
Computation of the cusp point is a time-consuming procedure since an analytical form

of the dispersion relation is not available. Thus, unlike for the temporal stability analysis,
critical parameters are not determined. Instead, parameters are varied in figures 12 and
13(a) with respect to those used to obtain figure 10 and the corresponding variation in ωi0
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FIGURE 10. The formation of the genuine cusp point, ω0 = 0.1142 + 0.01734i in the ω-plane at
a = 10−4, b = 2, μr = 0.1, Vr = 0, Γ = 10−3, Σ1 = 1 and Σ2 = 1. A straight line parallel to
ωi axis, drawn from the origin of the cusp point intersects the temporal stability curve (ki = 0)
once, thus the formed cusp point is genuine. Since the cusp point is genuine and possesses
ωi > 0, the flow is absolutely unstable.
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FIGURE 11. The existence of the first-order saddle point, k0 = 0.7010 − 0.24125i in the k-plane
corresponding to the cusp point shown in figure 10. The parameters are, a = 10−4, b = 2, μr =
0.1, Vr = 0, Γ = 10−3, Σ1 = 1 and Σ2 = 1. Panels (a) and (b) show iso-contours for ωi and ωr,
respectively. The figure shows the presence of the first-order saddle point in the present model.

is noted and then used in determining the stabilising or destabilising role of the parameters.
In figure 12(a), Γ is decreased with respect to figure 10 and leads to the absence of the
absolute instability, implying a stabilising effect of decreasing Γ . This also shows that for
the existence of the absolute instability, similar to the temporal instability, there exists a
critical value of Γ at which the flow undergoes a transition from a convectively unstable
to an absolutely unstable state. Figure 12(b) shows the effect of varying the dimensionless
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FIGURE 12. The effect of variations in (a) the scaled plate velocity, Γ ; (b) scaled DS
thickness, a; (c) scaled thickness of fluid 2, b; and (d) viscosity ratio, μr, on the absolute
instability at Σ1 = Σ2 = 1. All figures in the panels are obtained by varying one parameter
with respect to the parameters used in obtaining figure 10. In (a), the cusp point at ω0 =
0.2762 − 0.07595i shows the stabilising effect of increasing Γ . Thus, unlike temporal instability,
at low a, the unconditionally absolute instability does not exist. Panel (b) shows the cusp point
formation at ω0 = 0.2763 − 0.07583i, stabilising effect of increasing a. The cusp point forms
at ω0 = 0.11699 + 0.00592i in (c) for lower b compared to figure 12(d) – a stabilising effect
of decreasing b due decreased ωi0. Panel (d) illustrates the stabilising effect of increasing
μr, as it increases from 0.1 to 0.5, the cusp point shifts from ω0 = 0.1142 + 0.01734i to
ω0 = 0.12982 − 0.004889i. (a) a = 10−4, b = 2, μr = 0.1, Vr = 0, Γ = 10−5; (b) a = 10−2,
b = 2, μr = 0.1, Vr = 0, Γ = 10−3; (c) a = 10−4, b = 1, μr = 0.1, Vr = 0, Γ = 10−3 and
(d) a = 10−4, b = 2, μr = 0.5, Vr = 0, Γ = 10−3.

thickness of the DS, where increasing a by two orders of magnitude compared to figure 10
leads to the disappearance of the absolute instability. This also shows that even when the
temporal analysis exhibited an unconditionally unstable region at low a, it is absent for the
absolute instability.

In figure 12(c), compared to figure 10, b is decreased from b = 2 to b = 1, resulting
in a decreased growth rate of the absolute instability (ωi0) by one order of magnitude,
demonstrating the strong stabilising effect of decreasing b. The effect of varying μr on the
instability is illustrated in figure 12(d), where μr is increased from μr = 0.1 (figure 10) to
μr = 0.5. As seen with the temporal instability, increasing μr has a stabilising effect on
the absolute instability.

Lastly, figure 13(a) shows that the counter-flow configuration is favourable for inducing
the absolute instability, illustrated by the fact that ωi0 is higher for Vr = −1 than
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FIGURE 13. Panel (a) shows the formation of the cusp point at ω0 = 0.106659 + 0.019357i
for the counter-flow configuration. Comparing with figure 10, the present figure shows that
counter-flow is less stable. Panel (b) illustrates the existence of absolute instability even for
a > 1, albeit at higher Γ . The cusp point formation occurs at ω0 = 0.19957 + 0.0037453i.
The other parameters used in these calculations are b = 2, μr = 0.1, Σ1 = 1 and Σ2 = 1.
(a) a = 10−4, Vr = −1, Γ = 10−3 and (b) a = 3, Vr = 0, Γ = 0.9.

Vr = 0 (figure 10). The absolutely unstable flow implies that the disturbances must
spatio-temporally grow both in the downstream and upstream directions. We suspect that
the counter-flow configuration is more easily amenable to the spatio-temporal growth
of the disturbances in the upstream direction since fluid 2 is exerting a shear stress on
the DS in the upstream direction due to the flow in negative x-direction. Such a shear
stress can then help amplify the disturbances in the negative x-direction. Furthermore,
fluid 2 can also convect the disturbances in the negative x-direction under the counterflow
configuration, which is essential for the spatial convection of the disturbances. These could
be the reasons that the counterflow is more prone to an absolute instability.

The preceding results are concerned with the existence of the absolute instability
at low a. However, the absolute instability also exists at higher a, provided that Γ is
also sufficiently high, as shown in figure 13(b). To conclude, by carefully adjusting the
properties of the fluids and the DS, it is possible to introduce absolute instability in the
system, which can in turn be used potentially to enhance mixing.

The parametric regime to observe the absolute instability in the experiments can be
obtained as follows. From figure 10, the absolute instability exists for the parameters
a = 10−4, b = 2, μr = 0.1, Vr = 0, Γ = 10−3,Σ1 = 1 and Σ2 = 1 which corresponds to
V1 ∼ 10−1 − 10−3 m s−1, for a membrane of shear modulus G ∼ 105 Pa and channel
height R ∼ 10−4 − 10−6 m which is achievable in the practical applications. Furthermore,
from figure 10 and 11, the spatial and temporal growth rates of the absolute instability
at the above parameters are ωi = 0.01734 and ki = 0.24125, which seem detectable,
experimentally. Using kr value from figure 11, the minimum length of the DS necessary to
observe the above instability is of O(1) m.

4. Conclusions

The present study examined the linear temporal and spatio-temporal stability of simple
shear flows coupled by an elastic, deformable solid layer. The fluids are Newtonian
while the DS is described using linear elasticity. Such a fluid–DS–fluid coupling can
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be encountered in microfluidics, membrane separation and formation as well as in
physiological systems such as cells and the heart. The present study illustrates the
effect of the coupling between the fluids, as mediated by a finite-thickness DS, on the
elastohydrodynamic instability and the existence of absolute instability.

At a sufficiently high dimensionless thickness of the DS (a), a viscous instability is
predicted – in agreement with the plane Couette flow past a plate lined by a DS. Under
these conditions, the two flows on either side of the DS are hydrodynamically decoupled.
However, at low a, the flows interact via the DS, which affects the viscous mode of
the instability. The predicted instability arises from the energy exchange between the
fluids and the DS via the tangential velocities at the interface. The interaction lowers the
value of Γc (Γ represents the shearing motion) required to destabilise the finite wave
disturbances, eventually leading to an unconditionally unstable region. The existence of
the unconditionally unstable region strongly depends on the thickness and viscosity of
fluid 2, i.e. in dimensionless terms b and μr, respectively. While this unstable region is
present at low Γ and k (the wavenumber), it is accompanied by a very small growth
rate of the perturbations. Such a low value of Γ and practical restrictions on k define a
parametric limit within which the predicted instabilities may be observed in experiments
and applications.

To further understand the role of the DS in triggering and controlling potential mixing
in practical applications, a spatio-temporal stability analysis was carried out. The analysis
revealed the existence of the absolute instability in the present system, however, at much
higher Γ compared to that required for triggering the temporal instability. At low a, since
the growth rate of the disturbances is small, the existence of the absolute instability can be
highly useful since it will enhance mixing. Finally, in practical applications, the DS can
be of a length comparable to the widths of the fluids. In such cases, a full global stability
analysis is required and may give rise to new types of instabilities, presenting a possible
next step in understanding the effect of the fluid–fluid coupling via a deformable solid on
elastohydrodynamic instabilities.
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