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Vassiliev invariants of quasipositive knots

Sebastian Baader

Abstract

Quasipositive knots are transverse intersections of complex plane curves with the standard
sphere S3 ⊂ C2. It is known that any Alexander polynomial of a knot can be realized by
a quasipositive knot. As a consequence, the Alexander polynomial cannot detect quasi-
positivity. In this paper we prove a similar result about Vassiliev invariants: for any
oriented knot K and any natural number n there exists a quasipositive knot Q whose
Vassiliev invariants of order less than or equal to n coincide with those of K.

1. Introduction

A quasipositive braid is a product of conjugates of a positive standard generator of the braid
group. If a link can be realized as the closure of a quasipositive braid, then we call it quasipositive.
When Rudolph introduced quasipositive links (in [Rud83]), he showed that they could be realized
as transverse C-links, i.e. as transverse intersections of complex plane curves with the standard
sphere S3 ⊂ C

2. Here a complex plane curve is any set f−1(0) ⊂ C
2, where f(z,w) ∈ C[z,w] is a

non-constant polynomial. Conversely, every transverse C-link is a quasipositive link, as was recently
proved by Boileau and Orevkov [BO01]. For a thorough introduction into this subject, we refer the
reader to Rudolph’s text book on the knot theory of complex plane curves [Rud04]. Quasipositive
knots have some extreme properties that allow us to determine their four-dimensional genera (see
[Rud93]). In contrast, we shall prove that quasipositivity cannot be detected by Vassiliev invariants
of bounded degree. For this purpose, we use yet another description of quasipositive knots, which
is based upon Seifert diagrams.

Theorem 1. For any oriented knot K and any natural number n there exists a quasipositive knot
Q whose Vassiliev invariants of order less than or equal to n coincide with those of K.

This is related to a result of Rudolph [Rud82], who showed that any Alexander polynomial can
be realized by a quasipositive knot. We also mention that Theorem 1 was formulated as a question
by Stoimenow in [Sto03]. The following corollary is an immediate consequence of Theorem 1.

Corollary. It is impossible to decide whether a given knot in the standard sphere in C
2 is isotopic

to a transverse intersection of a complex plane curve with this sphere by using Vassiliev invariants
of bounded degree.

2. Cn-moves and quasipositivity

The proof of Theorem 1 is based on a construction of Ohyama, who showed that any finite num-
ber of Vassiliev invariants can be realized by an unknotting number one knot (see [Ohy00]). His
construction involves certain Cn-moves, which were defined by Habiro in [Hab94] (see also [Hab00]
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Figure 1. Cn-move.
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Figure 2. Special Cn-move.

and [OTY02]). A Cn-move is defined diagrammatically in Figure 1. It takes place in a section with
2(n + 1) endpoints or (n + 1) strands. The strands are numbered from 1 to n + 1 and are all con-
nected outside the indicated section, since they belong to one knot K. Going along K according
to its orientation, starting at the first strand, we encounter the other strands in a certain order,
which depends on how the strands are connected outside the indicated section. This order defines
a permutation, say σ ∈ Sn, of the numbers 2, 3, . . . , n + 1.

In [OT99], Ohyama and Tsukamoto explain the effect of a Cn-move on Vassiliev invariants of
order n. Their result [OT99, Theorem 1.2] implies the following.

(1) A Cn-move does not change the values of Vassiliev invariants of order less than n.
(2) Let K and K̃ be two knots that differ by one Cn-move, and vn any Vassiliev invariant of order n.

Then vn(K) − vn(K̃) depends only on the permutation σ ∈ Sn defined by the cyclic order of
the (n + 1) strands of the section where the Cn-move takes place, and on the product of the
signs of the crossings c1, c2, c3, . . . , cn (see Figure 1).

The last statement of (2) follows from the proof of Theorem 1.2 in [OT99].

Remark. In the proof of Theorem 1, we will use special Cn-moves, as shown in Figure 2. Nevertheless,
we will not need the fact that every Cn-move can be expressed as a sequence of special Cn-moves.

The proof of Theorem 1 is also based on a diagrammatical description of quasipositivity, which
was introduced in [Baa05]. Since the definition in [Baa05] is not quite accurate, we shall explain it
in detail here.
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Figure 3. Rectangle.
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Figure 4. Sequence of rectangles.

A Seifert diagram is a special presentation for a knot. Starting from a planar knot diagram,
we smooth all crossings in an oriented way and replace all positive (negative) crossings by a +
(−) sign. Thus, a Seifert diagram is a collection of embedded circles with signs in the plane. A
rather complicated Seifert diagram is shown below in Figure 6, together with its corresponding
knot diagram.

Let D be a Seifert diagram in the plane. Further, let a1, a2 be two arcs on adjacent Seifert circles
of D, i.e. two closed connected subsets of adjacent Seifert circles. We say that a1 and a2 define a
rectangle in D, if there exist two disjoint paths γ1, γ2 in the complement of D (i.e.

◦
γ1,

◦
γ2 are disjoint

from all Seifert circles, from all crossings and from one another) that connect the endpoints of a1

and a2 in a way that gives rise to a rectangle, as shown in Figure 3. We denote this rectangle by
R(a1, a2).

Now let α, β be two arcs on arbitrary Seifert circles of D. We say that β is inside α, if either
β ⊂ α or there exists a finite sequence of rectangles R(a1, a2), R(a3, a4), . . . , R(a2n−1, a2n) with
a1 = α, a2n = β and a2k+1 ⊂ a2k, 1 � k � n − 1. For example, in Figure 4, a6 is inside a1.

Definition. A Seifert diagram D is quasipositive, if its set of crossings can be partitioned into
single crossings and pairs of crossings, such that the following three conditions are satisfied:

(1) each single crossing is positive;

(2) each pair of crossings consists of one positive and one negative crossing joining the same two
Seifert circles;

(3) if (c1,c̄1) and (c2,c̄2) are two pairs of crossings, then there exist two arcs α1 and α2 on Seifert
circles of D, such that αi connects the two crossings ci, c̄i (i = 1, 2) and either α1 is inside α2

or α2 is inside α1.

Pairs of crossings in a quasipositive Seifert diagram are called conjugating pairs of crossings.

Examples.

(i) Positive knots have quasipositive Seifert diagrams.

(ii) A Seifert diagram obtained from a braid diagram is quasipositive, if and only if it is quasi-
positive in Rudolph’s sense. Indeed, if a Seifert diagram has concentric Seifert circles and our
conditions (1)–(3) are satisfied, then we can immediately see the conjugating words in the
braid group.
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Figure 5. The knot 52.
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Figure 6. Diagram of Q1.

Remark. In [Baa05], we require a weaker condition than (3). However, then it is not so clear whether
quasipositive braid diagrams are quasipositive in Rudolph’s sense, although this is claimed there.
However, we can copy the proof of the lemma on p. 265 in [Baa05] (verbatim!) for the above notion
of quasipositivity, in order to get the following equivalence with Rudolph’s notion of quasipositivity.

Proposition. A knot is quasipositive in Rudolph’s sense, if and only if it has a quasipositive Seifert
diagram.

3. Proof of Theorem 1

Starting from the diagram of the positive twist knot 52 shown in Figure 5, we construct a quasi-
positive knot Q with the desired properties by applying several Ci-moves, 2 � i � n, step by
step.

In the first step, we construct a quasipositive knot Q1 whose Vassiliev invariants of order two (the
Casson invariant) equals that of K. Choose natural numbers a and b, such that v2(K) = 2+a−b. Here
v2(K) is the Casson invariant of K. Using these two numbers, we define a knot Q1 diagrammatically,
as shown in Figure 6.

By construction, we have
v2(Q1) = 2 + a − b = v2(K).

This follows easily by one application of the following relation for the Casson invariant of knots:

v2( ) − v2( ) = lk( ).

Indeed, a crossing change at the clasp on the left-hand side of the diagram of Q1 produces a trivial
knot, and the linking number lk of the corresponding link equals 2 + a − b. Moreover, Q1 is a
quasipositive knot, since its Seifert diagram at the bottom of Figure 6 is quasipositive.
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Figure 7. Standard pattern for a C3-move.
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Figure 8. Quasipositive pattern for a C3-move.

In the second step, we arrange the Vassiliev invariants of order three. Since ‘all’ the Vassiliev
invariants of order less than or equal to two of Q1 and K coincide (i.e. v2(Q1) = v2(K)), we conclude
that Q1 and K are related by a sequence of C3-moves. This is Habiro’s result for n = 2 (see [Hab00]).
Let K1 = Q1,K2, . . . ,Kl = K be a sequence of knots, such that two succeeding knots are related
by a C3-move. Our aim is to replace this sequence of knots by a sequence of quasipositive knots
K̃1 = Q1, K̃2, . . . , K̃l, such that

v3(K̃i+1) − v3(K̃i) = v3(Ki+1) − v3(Ki),

1 � i � l−1. By Ohyama and Tsukamoto’s result, |v3(K2)−v3(Q1)| depends only on the permutation
σ ∈ S3 defined by the cyclic order of the four strands of the section where the C3-move takes
place, as explained above. From this viewpoint, i.e. if we are only interested in the change of the
Vassiliev invariants of order three, there are only finitely many combinatorial patterns of C3-moves.
A ‘standard’ pattern of a special C3-move can be applied inside a local box on the right-hand side
of the diagram of Q1, as shown in Figure 7.

Moreover, we can choose a quasipositive representative for this pattern, i.e. a representative
whose Seifert diagram (inside the box) is quasipositive, see Figure 8. Here we remark that the two
segments above and below the cross-shaped Seifert circle belong to the same Seifert circle since they
are connected outside the local box.

However, this standard pattern corresponds to one specific permutation σ ∈ S3. In order to get
patterns corresponding to other permutations, we have to permute the strands inside the local box,
as shown by two examples on the left-hand side of Figure 9. We observe that all of these patterns
have quasipositive representatives. They are depicted on the right-hand side of Figure 9, together
with their Seifert diagrams.
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Figure 9. Permuting strands.

Since we want our C3-move to have the same effect on v3 as the original C3-move that connects
Q1 and K2, we have to arrange the product of the signs of the crossings c1, c2 and c3. If this product
does not coincide with the product of signs that comes from the original C3-move, then we may
switch it by changing four crossings between two strands inside the local box, see Figure 7, where
the four crossings are encircled. This changes the sign of the crossing c3. Thus, we can replace the
knot K2 by a quasipositive knot K̃2, such that

v3(K̃2) − v3(Q1) = v3(K2) − v3(Q1).

Likewise, we can replace all C3-moves of the sequence K1 = Q1,K2, . . . ,Kl = K by C3-moves
that take place in a clearly arranged box and preserve the quasipositivity of the knot Q1. In this way,
we obtain a sequence of quasipositive knots K̃1 = Q1, K̃2, . . . , K̃l and end up with a quasipositive
knot Q2 := K̃l whose Vassiliev invariants of order two and three coincide with those of K.

At this point, we merely sketch how the process continues: in the ith step, we arrange the
Vassiliev invariants of order i + 1 and define a quasipositive knot Qi whose Vassiliev invariants
of order less than or equal to i + 1 coincide with those of K. For this purpose, we need only
observe that every combinatorial pattern of a Ci+1-move has a quasipositive representative with
i2 + i conjugating pairs of crossings, i.e. pairs of crossings satisfying the conditions (2) and (3)
of quasipositive knot diagrams. The heart of such a quasipositive representative for a C4-move is
shown in Figure 10, together with its Seifert diagram. Here the 12 negative crossings can be paired
with positive crossings along vertical lines. Further, we have already seen that it is easy to permute
two strands inside the local box, without losing quasipositivity. At last, the product of the signs of
the crossings c1, c2, c3, . . . , ci+1 can always be arranged by changing the four crossings around ci+1.
After the (n − 1)th step, we end up with a quasipositive knot Q := Qn−1 that has the required
properties.
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Figure 10. Quasipositive pattern for a C4-move.

Remarks.

(i) All of the quasipositive knots Qi can be unknotted by a single crossing change at the clasp
that appears on the left-hand side of their defining diagram (see, e.g., Figure 6). In particular,
the unknotting number of Q is one, unless Q happens to be the trivial knot.

(ii) By Theorem 1 and Habiro’s result, we conclude that every knot can be transformed into a
quasipositive knot by a finite sequence of Cn-moves, for any fixed natural number n.
It would be interesting to have a direct proof for this fact, which in turn implies Theorem 1.
This would possibly simplify the construction of the desired quasipositive knots.

(iii) The knot Q might even be chosen to be strongly quasipositive. However, we do not know how
to prove that.
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