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1. Introduction

A number of authors have studied busy period problems for particular
cases of the general single-server queueing system. For example, using the
now standard notation of Kendall [7], G//M/1 was studied by Conolly [3]
and Takacs [18]. Earlier work on M/Af/1 includes that of Ledermann and
Reuter [8] and Bailey [1]. Kendall [6], Takacs [17], and Prabhu [11] have
considered Af/G/1.

More recently Conolly [4] has given a detailed study of the busy period in
GI/EJl and promises a further study of 2?fc/G/l. In [19] Takacs has also con-
sidered the system EJG/1.

We shall shew that results for the busy period of GI/G/1 can be obtained
by means of a combinatorial lemma due to Spitzer [15]. Combinatorial
methods in the study of sums of random variables were introduced by Sparre
Andersen [13], [14]. His methods were, however, very difficult and were
simplified by Spitzer [15]. In [16] Spitzer applied the method to the Wiener-
Hopf integral equation obtained by Lindley [9] for the limiting distributing
of waiting time in the queueing system GI[G/1.

Recently Feller [5] has shewn how the combinatorial methods of Spitzer
and Sparre Andersen can be simplified considerably. In the next section we
follow the treatment of Feller and give the fundamental Combinatorial
lemma due to Spitzer. This lemma will be used in our study of the busy
period of G//G/1. It is possible to extend the methods of this paper to study
the transient behaviour of G//G/1 and we shall do so in a later paper in which
we use the results obtained below.

2. Combinatorial Considerations
Let (Xt, Xit • • •, Xn) be an ordered «-tuple of real numbers and define

the partial sums Sh by the equations

(2.1) S0 = 0, S , = J X , * = 1 , 2, • • • , » .
i-i
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We say that k ^ 1 is a ladder index of the partial sums (So, S1 • • •, Sn) if

(2.2) Sk ^ S, j = 0, 1, • • • k - 1. k ^ 1.

If the inequality in (2.2) is a strict inequality we say that k is a strict ladder
index.

A (strict) ladder index is said to be the wth ladder index if it is preceded
by (m — 1) other (strict) ladder indices.

For any integral a, 0 ^ a < n, we define a cyclic rearrangement
(X^a), X2(a), • • •, Xn{a)) of then-tuple (Xlt X2, • • -,Xn) by the equations

Xi{a)=Xi+a i= 1,2, •••[n-a).
K'} * , ( « ) = *«_„+„ i=(n-a+l),'--,n.

Write S0(a) = 0 and Sh(a) = 2£=i-^*(a)- We shall continue to write
Xf, Sit in the case a = 0. From (2.3) we obtain

1 ' S»(a) = Sn - So + S,_n+O * = (n - a + 1). • • •, ».

The following theorem is proved by Feller [5].

THEOREM F.

If Sn ^ 0 there is at least one a, 0 ^ a < «, that is at least one cyclic
rearrangement, such that n is a ladder index of the partial sums (S0(a),
S^a), • • •, Sn{a)). If n is the wth ladder index of tnis sequence of partial
sums then there exist m such cyclic rearrangements. If S > 0 the same state-
ment is true of strict ladder indices. This is essentially Feller's theorem 5 and
we indicate briefly its proof. If Sn ^ 0 there is at least one a such that Sa ^ S}

for all / = 0, 1 • • • n.
It is easily verified from (2.4) that for such an a the sequence of partial

sums (50(a), Sx{a) • • •, Sn(a)) has n a s a ladder index. It follows from (2.4)
that n is a ladder index of (So (a), 5X (a), • • •, Sn (a)) if and only if a is a ladder
index of (So, S1, • • •, Sn) and the theorem follows readily from this fact.

We give now the Combinatorial lemma we require for our study of the
busy period. We formulate it for strict ladder indices, a similar result holds
for non-strict ladder indices.

COMBINATORIAL LEMMA.

Suppose that Xx -\- X2 -f • • • + Xn > 0 and consider the n! permutations
of (Xx, X2, • •• •, Xn). Let F{XX, X2, • • -, Xn) be some functional relation
between the X( which is invariant under the symmetric group of permuta-
tions on n numbers, that is F(XV, Xw, • • -,Xn,) = F(Xlt X2, • • -,Xn)
for any permutation (1 ' , 2', • • • , » ' ) of (1, 2, • • - , « ) . Suppose that F(Xlt

X2, • • •, Xn) is the case and let n\ jr|,m)(Fn) be the number of permutations
in which n is the mth. strict ladder index of the corresponding sequence of
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partial sums. Then we have

(2.5) 1= 2 I»W(FJ.

Before indicating the proof of the lemma we remark that we assume that
it is not the case that the relation F(X1, X2, • • •, Xn) implies the inequality
Xx + X2 + • • • + Xn ^ 0. Apart from this restriction the functional
relation Fn is arbitrary. For example, we could have

Fn(Xlt X2, • • ., Xn) = "0 <2X*£ X".

Later in this paper we shall suppose that Xt = Yi — Zt,i = 1, 2, • • • ,n
and shall take for Fn relations of the form

Fn(Xlt Xt, • • •, Xn) = "0 < 2 Yt ^ Y"

Fn{Xlt X2, •••,Xn)^"0<izi^ Z"

The Combinatorial lemma is proved by noting that we can divide the n!
permutations into n groups, the mth group, m = 1, 2, • • • , » , consisting of the
permutations where n appears as the mth. ladder index and the cyclic
rearrangements of these permutations. Because of Theorem F. any permuta-
tion must appear in one and only one group. Further within the mth. group
there are n\ 7r|,m'(Fn)/»i permutations from distinct cyclic rearrangements.
Thus n\ 2X-i l/w7tj,m) (Fn) is the number of classes of cyclic rearrangements
among the n\ permutations, that is (n — 1)! Hence we obtain (2.5).

3. The single-server queue
We consider now the single-server queueing system G//G/1. Customers

arrive at the instants tx, t2, • • •, tn, • • • where the inter-arrival intervals
TB = tn+1 — tn, n ^ 1, tx = 0 are independently and identically distributed
non-negative random variables with common d.f. (distribution function)
P(rn ^ x) = A (a;). Customers are served in the order of their arrival and it
is never the case that customers are waiting for service and the server is
idle. The service-times of successive customers form a sequence (an) of
independently and identically distributed non-negative random variables,
independent also of the input process (tn), with common d.f. P{ar ^ x) =
= B(x).

We shall suppose that the first customer arrives to find the server idle
at the instant tt = 0 and starts service immediately. By the busy period
we mean the time interval from tt until the server is next idle. By the busy
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cycle we mean the time interval from tx until it next happens that a customer
arrives to find the server idle.

Let n^(x), x > 0, n ;> 1 be the joint probability that during a busy
period exactly n customers are served and the duration of the busy period
does not exceed x.

Write tif = xt — at then we have

(3 1) n»{x)

+ V ^ 0. Vi + V2 • • • + Vn > 0, 0 < ax + <r2
Let nll)(x) be the d.f. of a busy period then

(3.2) »<"(*) = f *£>(*).
n—1

Let nn — n™ (oo) be the probability that n customers are served in a busy
period, then

(3 3) Un P(7?1 - °' m + V2 - °' " ' "' Vl + V* + ' ' ' + nn-x - °'
Vi + V2 + • • • + Vn > 0).

Similarly let y^{x), x > 0, n 2; 1 be the joint probability that during a
busy cycle exactly n customers are served and the duration of the busy
cycle does not exceed x. We have

(3 4) y " ( a : )

If yll)(x) is the d.f. of the busy cycle then

(3.5) y{1)(x)=fy^(x).
n- l

Evidently yiX)(oo) = n^{<x>) = nn.
In deriving the above equations we have used the convention that if a

customer arrives at the instant the previous customer departs then we
regard the busy period (cycle) as still in progress. The opposite convention
admits a parallel treatment and is obtained, for example, by replacing the
inequalities by strict inequalities and conversely in (3.3). If P(?y1 + r)2 + • • •
+ Vn = 0) 7 = 0 for all n there is no distinction between the conventions.

Write So = 0 and Sk = ^l^xVt then in the terminology of section 2
TI^ (x) is the joint probability that n is the first strict ladder index of the
partial sums (So, Sly • • •, Sn) and that 0 < a1 + <*2 + * * ' + an =̂ x- Let
n^(x) be the joint probability that n is the with strict ladder index of the
partial sums (So, 51 ( • • •, Sn) and that 0 < ax + a2 + • • • + an ^ x.
Because of the independence of the random variables r,, at a short calculation
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shews that
n—m+l /•*

(3.6) 4W)(*)= I igfKx-yWto)
r=l JO

Introduce the Laplace-Stieltjes transform

•*<»>(s) =/"«"-<&<«>(*)

and the generating function

From (3.6) we obtain

(3.7) *n™(s, z) = {•»<»(s, 2)}m.

Defining *y(m)(s, z) similarly we have

(3.8) Vm»(s, z) = {*r(1)(s- z)}m-

4. The busy period and the busy cycle

Write an{x) = P(T?1 + ^ H \- Vn > 0, at + a2 H f- CTB ̂  x) and
6.(3!) = P fo + % H 1- »?B > 0, T l + T2 H + rn^x) so that

(4.1) «„(*) = J" {1 - ^ ( -

(4.2) 6>)

where A{n)(x), B{n)(x) are the »-fold iterated convolutions of A(x), B(x)
with themselves. Let *an(s), *bn(s) be the Laplace-Stieltjes transforms of
an(x), bn(x) respectively. We prove

THEOREM 1.

For G//G/1 the generating function *7ta)(s, z) is given by

(4.3) *na>{s, z) = 1 — exp f — f ~ ^ - zn\
I n=i n )

The Laplace-Stieltjes transform *n^)(s) is given explicitly by

(4.4) *n™{s) = 2 ~

where the summation is over all non-negative integers k( such that kx -\-2k2-\-
+ • • • + nkn = n, that is over all the partitions of n, and

(4.5) *an(s) =
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A similar result holds for *y(1)(s, z), *y%] (s) with *an(s) replaced by *bn(s)
where

(4.6) *bn{s) =

In order to prove the theorem we apply the Combinatorial lemma of
section 2 with X, = rj, and F ^ , r)2, ••-,»?„) = "0 < ax + az -\ 1-
+ an sS x" to obtain

Equation (4.3) follows at once from (3.7) and (4.7). Equation (4.4) follows
from (4.3) by a standard result in Combinatorial Analysis (e.g. Riordan [12]
Chap. 4. eq. (3a).) Equations (4.5), (4.6) follow at once from (4.1), (4.2).

We mention the following important corollary.

COROLLARY.

The probabilities nn for the number of customers served in a busy period
are given by

where the summation is over all the partitions of n and

(4.8) is proved by noting that nn = n^{oo) = " ^
For example we have

1 \TIJ = ax

2\n2 = «2 — a\

= 2a3 — 3^02 + aj

!TT4 = 6a4 — 8^*3 — 3a* f j

= 24a5 — 30% a4 —

= 120a6 — 144a1a5 — 90a2a4 + 40a| + 90a|a4 + 20a1a2a3

15aja2 — aj.

It can be verified that these expressions agree with those given by Conolly
[3] who obtained nn, n ^ 5 for D/M/l.

The probabilities can be computed also from the following recurrence
relation which follows easily from (4.3).

n-l

n*n = «„ - 2 «n-»\ » ^ 1
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We prove now

THEOREM 2.

Suppose that E(\rj\) < oo. Write n = ^,i<oa
ni a n ( i N = 2i«»/:71* then

(4.11)

(4.12)

PROOF. Write Sn = rjl + t)2-\ h »?„ and P(Sn > 0 i.o.) for the
probability that the event (5n > 0) occurs infinitely often, that is,
P(Sn > Oi.o.) = P(lim sup (Sn > 0)). By the Borel zero-one criterion
(e.g. Loeve [10])P(5n > Oi.o.) = 0 or 1 according as 2 a n < °° o r = °°-

Suppose that E(ri) < 0 then P(Sn > 0 i.o.) = 0 by the strong law of
large numbers, hence 2 an < °° a n ( i s o 2 a«/M < °°-

If E(rj) > 0 then lim an = 1 by the strong law of large numbers, thus
2«B/n = °° a n ( i by the preceding argument applied to the sums S'n = — SB

we have 2 1 ~ an/w < °°-
If E(rj) = 0 the sequence of partial sums Sn is recurrent in the sense of

Chung and Fuchs [2], so that if P(r)n = 0) < 1 then P(Sn > 0 i.o.) = 1 and
hence ~^an = oo and since lim sup an = 1, %ajn = oo. A similar argument
shews that P{Sn ^ 0 i.o.) = 1 and that 2(1 — «„)/» = °°-

Write 7t{z) = J^^n^ = n{1){z) then from (4.3) we have

n(z) = 1 - exp ( - 2 -
v n-i n

(4.13)

(4.14) n'{z) =

Since the coefficients of powers of z in the expansion of n(z) and n'(z)
are non-negative we can apply the converse of Abel's theorem on power
series to obtain

n = 7i{l} = lim 7t(z)

N = n'(l) = lim n'(z)

(See, for example, Widder [21] Ch. 5. Cor. 4.56.).
When E(rj) ^ 0 we have ^ajn = oo and when E(rj) < 0 we have

2«n/« < oo. Thus we obtain (4.11) from (4.13) by letting 2-> 1.
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In order to establish (4.12) we consider the three cases for E(rj) separately
(i) E(V) > 0.
Write (4.14) in the form

(4.15) n'(z) = 1(1 -z)l akz*-i

Since E(rj) > 0, £ (1 — an)jn < oo. Also Km an = 1 so that

lim (1 — z) 2 tfjfZ*"1 = h"m ak = 1
-»1 *-»oo

and we obtain the first equation of (4.12) by letting z ->- 1 in (4.15).
(ii) E(ri) = 0.
We have ^(1 — «„)/« = oo, also l i m s u p a n = l . Thus from (4.15)

l™«-.i SUP n'(z) = °°- I* follows that iV = 7r'(l) = oo.
(iii) E(V) < 0.
We have ^an < oo, 2 an/w < °°- By letting z ->• 1 in (4.14) we obtain the

third equation of (4.12).
We remark that although we have formulated theorem 2 under the

assumption that E(\rj\) < oo it is clear that we could obtain (4.11) and (4.12)
when 7i(|?7|) = oo if we formulate the various cases of the theorem in terms
of the behaviour of the series ^un, "^ujn, ^(1 — «n)/w.

We establish now the following

COROLLARY.

Suppose that E(o) < oo, E(r) < oo and denote by 77, F respectively the
expectations of the length of a busy period and a busy cycle, then

77 = F = oo when E(o) ^ E(r)
(4.16) 77 =

where N is given by the first equation of (4.12).
PROOF. When E(rj) ^ 0 the expectation of the number of customers in a

busy period is infinite, thus 77 = F = oo.
When E(r]) > 0 the expectation of the number of customers served in a

busy period (cycle) is given by the first equation of (4.12). Thus, for example,
77 = E (at + CF2 + • • • + or) where r is a random variable taking the values
1, 2, • • • and with expectation E(r) = N < oo. Also P(r = n) = P{r)x ^ 0,

Vi + V% ^ 0. • • •. Vi + Vz -\ h Vn-i ^O . ' I i + ^ H 1" Vn > 0) and
this probability does not depend on an+1, on+2, • • •. Applying a theorem
due to Wald [20] we obtain (4.16). A similar argument applies to F.
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5. The busy period in Af/G//

When the input process is Poisson we can obtain the probabilities
nn(x)(= n^{x)) explicitly. We prove

THEOREM 3.

For MjGfl we have

1 f"
(5.1) nn(x) = — e-A»(Ay)"-1rfB<»>(y)

n\ Jo

where A is the parameter of the input process. Recently this result has
been obtained also by Prabhu [11] by quite different methods.

In order to prove (5.1) we shall shew that

(5-2) * ^ ) = ^

When the input process is Poisson, so that A (a;) = 1 — e~Xx, x 2=r 0, we
have from (4.1)

»-i 1 C"

m=0 Wl * * 0

thus

(5-3) *an(s) = "2 —f
m=o ml

If (5.3) is substituted into (4.4) it is easy to verify that (5.2) is true for
n = 1, 2. We shall prove (5.2) by induction, to do so we require the following
lemma which seems to be new and is not without an independent interest.

LEMMA.

If f(x) is a function of a real variable x which has a derivative of the m th
order then

1 m+1 [m 4- 1\
(5.4) Dmfn = 2 1 ) (D"- 0 ^ m < n

where D = djdx.
It is easily verified that (5.4) is true for m = 1, n > 1 and we shall prove

it generally by induction. We remark that (5.4) is true also for m 5; n, as
follows from (5.5) below, but we shall not use this fact.

Suppose that (5.4) is true for m — 1, 2, • • • ,r. (it is trivially true for
m = 0) and n > m. We shall shew that it is true also for m = r + 1 and
n > r -j- 1. In the course of the proof of the lemma we suppose that any
functions considered are differentiable as often as required.
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We shew first that the induction hypothesis implies that

(5.5) (g/) ^ j; (

for n > r and an arbitrary function g(x).
We prove (5.5) by noting that

- 5 (i) (c"'s) fchl (' t ' ) P " " " ^
by the induction hypothesis applied to (D'f^t 5S r, n > r.

Interchanging the order of summation we obtain

1 r+i ir i i \ rn-i-u/r _|_ i _ M\ "i

n n = - T i P-1/-) 2 , (D̂ -«-'g)(D7»-)

The second sum in this equation is just DT+1-"(gfn~u) and so we obtain (5.5).
In (5.5) write n = r + 1 and put g = (r + 2)Z>/ then since we now have

r 4- 2
7)r+l-u(Wr+l-u\ — '2 — u

we obtain

(r+l)Dr+1p+i=y\ m«-l/«)mr+2-Uyfr+2-u)

adding £>r+1fr+2 to each side of this equation gives

1 r+? /> I 2 \
J^r+ljr+2 _ V ' I

r 4- 2 u=1 \ M /

By the induction hypothesis

1 m+x (m + 1\
' ~ m+ 1 A I M /

for w = 0, 1,,- • •, r. We deduce that

(5.6)

for an arbitrary function g(x). Equation (5.6) is established by an argument
similar to that used to derive (5.5). Writing g = /*, k ^ 0 in (5.6) we obtain
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(5.4) for m = r -f- 1 and n > r + !• This completes the proof of the lemma.
We return to the proof of theorem 3. Equations (5.2), (5.3) can be written

in the form

(5.7) •»W(s) = 1 ( - ID) »-i{*5 (s + X)Y

(5.8) *an{s) = n£ — (-W)m{*B(s + A)}"
m=0 *n\

where D =s d/ds and *B(s) = /~ «
Suppose that (5.1) is true for n = 1, 2, • • •, k and substitute from (5.7)

and (5.8) into the equation

(k + l)**&(s) = *«fc+1(s) - | •flJH-1_,(s)*»<?(s)
m—1

which follows from (4.3) (compare equation (4.10)). Because of (5.4) it will
be found that the resulting expression for *w^x(s) becomes (5.2). This proves
the theorem.
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