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DEPENDENCE OF BEST RATIONAL CHEBYSHEV 
APPROXIMATIONS ON THE DOMAIN 

BY 

CHARLES B. DUNHAM 

Sufficient conditions are given for the error norm and coefficients of best 
rational Chebyshev approximation on a domain to depend continuously on the 
domain. Examples of discontinuity are given. 

Let W be a space with metric p. For X, Y non-empty subsets of W define 

dist(X, Y) = sup{inf{p(x, y) : x e X} : y G Y}, 

and the Hausdorff metric 

d (X, Y) = max{dist( Y, Y), dist( Y, X)}. 

Let X, X1 ? . . . , Xn , . . . be compact subsets of W. We say {Xk}->X if 
d(X,X fc)->0. Let / be a fixed element of C(W). Let NG = {4>u . . . ,<l>n}, 
DG = {ijj1,... if/m} be linearly independent subsets of C(W). Define 

n / m 

R(A,x) = P(A,x)IQ(A,x) = X 0fc<M*)/E an+kxl*k{x). 
k=\ I k=\ 

For a subscript s, define || ||s to be the Chebyshev norm on Xs and define 

cr(Xs) = inf{||/- JR(A,.)| |a:O(A,x)>0 for x GXS , 0 (A, .) + 0}. 

A parameter A* for which the infimum is attained is called best (on Xs). If 
we use the convention of Goldstein a best approximation always exists, 
providing there is A with Q(A, . )>0 , which we hence forth assume. 

As in [1,484], we normalize rational functions such that 

m 

(1) I \On + k\=l, 
k = \ 

THEOREM 1. Let the generators NG and DG be independent on X. Let {Xk}-> X 
and R(Ak,.) be best to f on Xk. Let f have a best approximation r* on X and a 
closed neighbourhood N of X exist such that (i) the denominator of r* is 
non-negative on N, and (ii) r* is continuous on N. Then o-(Xk)—»o-(X), {Ak} 
has an accumulation point, and any accumulation point is best to f on X 

Proof. The proof of the corresponding result of [1] can be used except for 
one point. By continuity of r* on N, there is a neighbourhood L of X, L <= N, 
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such that 

(2) ll/-r*||L<||/-r*||x + £ 

and for all k sufficiently large, Xk <= L. We apply this to the bottom inequality 
of [1, 485] to get a contradiction, proving optimality of accumulation points. 

We now show that cr(Xk)—» cr(X), which was claimed but not explicitly shown 
in [1]. Let e > 0 be given. Assume without loss of generality that {Afc}-» A. By 
arguments of [1], there is x eX such that Q(A, x)>0 and 

\f(x)-R(A,x)\>\\f-R(A,.)\\x-e. Let {xk}-»x,xkeXk, 

then 

\f(xk)-R(A\xk)\^\f(x)-R(A,x)\ 

hence 

liminfcr(Xk)>cr(X). 

(This fills the gap in the proof of Theorem 1 of [1]). Hence if cr(Xk) -\> or(X), we 
can assume that 

a(Xk)><r(X)+e 

and that Xk c L. As o-(Xk)<| | /- r*\\k < | | / - r* | |L , we have (2) and a contradic
tion. Hence cr(Xk)—>a(X) and the theorem is proven. 

REMARK. The closed neighbourhood N of the theorem is easily seen to exist if 
the denominator of r* is positive on X. 

The independence condition of the theorem cannot be deleted. 

EXAMPLE 1. Let X = {0}, Xk = {1/k}, f = 1, and R (a, x) = ax. The unique coeffi
cient of best approximation on Xk is ak = k, <r(Xk) = 0 and since R(a, 0) = 0, 
<r(X)=l. 

The hypothesis of a non-negative denominator in the theorem cannot be 
weakened. 

EXAMPLE 2. Let us approximate / = 1 by R (A, x) = aA x/(a2 + a3x). f is approxi
mated with zero error on [0,1] by JC/JC. In approximation on Xk = [-1/fc, I], the 
denominator must be positive at 0, hence all permitted approximants vanish at 
zero, and 0 is a best approximation with error norm of 1. 

COROLLARY. Suppose in addition f has a unique best approximation R(A,.) on X 
which has a unique representation on X under the normalization (1) and 
Q(A,x)>0 for xeX. Then {Ak}-*A, Q(Ak , J C ) > 0 for xeXkUX and all k 
sufficiently large, and {R(Ak,.)} converges uniformly to R(A,.) on X. 
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If we merely have R(A,.) a unique best approximation and Q(A, x)>0 for 
x e X, uniform convergence may not occur (see the example at the end of [1]). 

Examples 1 and 2 show that a need be neither lower semi-continuous, nor 
upper semi-continuous. 

Let us next consider approximation by admissible rational functions (de
nominators are greater than zero). Define 

a+(Xs) = inf{||/- £ ( A , . ) | | , : Q ( A , J C ) > 0 for xeXs}. 

A result comparable to Theorem 1 does not hold even when {Xk}^X. 

EXAMPLE 3. Let X = [ 0 , 1 ] , Xk = [l/fc, 1], / = 1 , R(A, x)= a1x/(a2+a3x). 
x\x = 1 = / is best to / on Xk and cr+(Xk) = 0. x/x is not admissible on X and 
since R(A, 0) = 0 for all admissible A, 0 is best to / on X and cr+(X) = 1. We, 
however, have 

THEOREM 2. Let the generators NG and DG be independent on X. Let f have a 
unique best admissible approximation R(A,.) on X which has a unique represen
tation on X under normalization (1). Let {Xk}->X For all k sufficiently large 
there is a best admissible approximation R(Ak,.) to f on Xk (it is also admissible 
on X), {Ak}-*A, and {R(Ak,.)} converges uniformly to R(A,.) on X. 

Proof. It is shown in [1, middle 486] that R(A,.) is best in rationals with 
non-negative denominators. We then apply the earlier results of this paper. 

It is seen from earlier results that o-+(Xk)->cr+(X) under the hypotheses of 
the above theorem. 

Without the unique representation hypothesis of Theorem 2, we may not 
have existence (see the example at the end of [2]) or uniform convergence (see 
the example at the end of [1]), even when Xk <= X. 

Sentence two of Theorem 2 can be replaced by "Let R(A,.) be a best 
admissible approximation to / on X and S (A) be a Haar subspace of dimen
sion n + m - 1 on X", where 

S(A) = {R(A,.)Q(B,.) + P(B9.)}. 

That R(A,.) is uniquely best on X follows from classical uniqueness results. If 
R(A,.) had another representation, S(A) would be of dimension less than 
n + m + 1. 

A case of special interest is where W= [a, j8], a closed finite interval, and R 
is the rational approximating function for ordinary rational approximation. The 
examples at the end of papers [1;2] show respectively that uniform con
vergence need not occur nor best admissible approximations exist on subsets. 
Whether a and cr+ are continuous in this case is an open question. It is open 
even for the case of approximation by constants divided by first-degree 
polynomials. 
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The possibility of discontinuity of a was first shown by the author in [3]. 
Dependence of best linear approximations on the domain is treated implicitly 
by Kripke in [5] and explicitly by the author in [4]. Riha [6] considers the case 
of linear approximation on an interval. 
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