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Abstract

Many Banach algebras A have the property that, although there are discontinuous homomorphisms from
A into other Banach algebras, every homomorphism from A into another Banach algebra is automatically
continuous on a dense subspace—preferably, a subalgebra—of A. Examples of such algebras are C -
algebras and the group algebras L'(G), where G is a locally compact, abelian group. In this paper,
we prove analogous results for A = £(§>£*, where £ is a Banach space, and A = l[(SL(2, IR)). An
important role is played by the second Hochschild cohomology group of £®£* and €Q(5L(2, K)),
respectively, with coefficients in the one-dimensional annihilator module. It vanishes in the first case and
has linear dimension one in the second one.

1991 Mathematics subject classification (Amer. Math. Soc): primary 46H40; secondary 46M20, 57T11.

Introduction

The automatic continuity problem for homomorphisms from a given Banach algebra A
is to determine whether every homomorphism from A into another Banach algebra is
continuous. There are Banach algebras for which this problem has a negative solution,
that is there is a discontinuous homomorphism from A into another Banach algebra.
However, even if A is the domain of a discontinuous homomorphism, its restriction
to a 'large' subspace of A (preferably, a subalgebra) may be continuous.

The ancestor of results of this type is [BC, Theorem 4.1]: For a compact Hausdorff
space £2 and a homomorphism 0 from ^(£2) into a Banach algebra, there is a dense
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232 Volker Runde [2]

subalgebra &/ of ^(Q.) such that d]^ is automatically continuous. The techniques
developed in [BC] apply to other (regular) commutative Banach algebras as well,
among them to all group algebras Ll(G), where G is a locally compact abelian group.
In [Sin], Sinclair extended the Bade-Curtis theorem on homomorphisms from ^{Q.) to
homomorphisms from arbitrary C*-algebras, and in [Runl, Run2, Run3], we proved
similar results for homomorphisms from Ll{G) for certain, not necessarily abelian,
locally compact groups G. Nevertheless, for an arbitrary locally compact group G, it
is still unknown (and is likely to remain unknown for the foreseeable future) whether
every homomorphism from L\G) into a Banach algebra is continuous on a dense
subalgebra ([Dal, Question 2.10(i)]). A particularly intriguing case is G = SL(2, R)
([Run3, Question 2]).

Generally, an automatic continuity result of the above type is obtained via the
following strategy (which, of course, has to be subjected to modifications depending
on the Banach algebra under consideration).

Given a Banach algebra A and a homomorphism 6 from A into another Banach
algebra, we use the main boundedness theorem [DW, Theorem 1.3] (see [BC] for the
very first version of this result) in order to obtain an ideal J of A such that / := c\J
has finite codimension in A and such that the following bilinear continuity assertion
is true:

(1) \\e(ab)\\ < C\\a\\ \\b\\ (a, beJ^)

for some C > 0. From (1), we then wish to pass to a linear continuity assertion on y2,
that is to conclude that the restriction of d to y2, the linear span of all products ab with
a, b e y', is automatically continuous. Obviously, #|j?2 is continuous with respect
to the quotient norm on y2 induced by the multiplication map A : y <g> y -*• y2.
Hence, it suffices to prove that this quotient norm is equivalent to the given norm.
Such a proof is easily accomplished in case / has a bounded left or right approximate
identity (see [Sin] and also [Run3]). If no bounded approximate identity exists—this is
the case, for example, if A = Ll(G) with a non-amenable group G ([Rei, Will])—no
general way exists to prove the equivalence of the two norms. In fact, they may be
inequivalent, even if / = y = y2 ([Dix]).

In the present paper, we seek to establish a condition on / which is weaker than
the presence of a bounded approximate identity, but still enables us to conclude from
(1) that Q\ji is continuous. It turns out that a sufficiently general condition is that
J?2(l, Cann), the second Hochschild cohomology group of / with coefficients in the
one-dimensional annihilator module, vanishes. Since the Hochschild cohomology
groups of a Banach algebra are in fact linear spaces and not only abelian groups, it
makes sense to speak of their linear dimensions. We shall see that, if Jf2{I, Cann) =
{0} is replaced by dim Ji?2(I, <Cann) < oo, we can still show that 9 is continuous, not
necessarily on all of y2, but still on a dense subspace with finite-codimension. We
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[3] Automatic continuity and second order cohomology 233

then apply these results to homomorphisms from E®E*, where £ is a Banach space,
and from i\SL(2, K)); in particular, we give a partial answer to [Run3, Question 2].

Although we only discuss homomorphisms, as they seem to be the most interesting
class of maps from Banach algebras for which automatic continuity results of the
aforementioned type can be obtained, we could equally well have worked—as in
[Run3]—in the more general context of intertwining maps. All results in this paper
remain true for this larger class of maps.

1. Statement, proof and consequences of the main lemma

We state our main lemma, the technical centrepiece of this paper, in a context
slightly more general than just outlined in the introduction. Cohomology groups do
not show up yet in its formulation.

As is customary, for two Banach spaces E and F, let £<§)F denote their completed
projective tensor product.

LEMMA 1.1. Let A be a Banach algebra, let E be a Banach A-left module, and let

and

r : A®A®E ->• A®E, a <g> b®x H» a <g> b x - ab®x

be such that A is surjective, and such that there is n e No with

dim(ker A) cl r(A®A<8>E) = n.

Further, let si be a dense subalgebra of A, let & be a dense si'-submodule of E, and
let 0 be a linear map from E into a Banach space such that

(2) l|0(a-*)ll<C||fl||||x|| (aes/, x e <?)

for some constant C > 0. Then there is a dense subspace & of E with codimension
at most n in s/' • § such that6\& is continuous.

PROOF. Let <j>\,... ,<pn € (A®E)* be such that </>i|kerA. • • • , 0JkerA are linearly
independent, but 4>j £ T{A®A®E)° for j = 1 , . . . , n (such functional can easily
be found with the Hahn-Banach theorem). Since cl r(A<g>A®E) has codimension n
in ker A, it follows that

n

(3) ker A D P|ker</>; = c\Y(A®A®E).
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234 Volker Runde [4]

Let X := P|J=1 ker fa • Assume that A(X) is a proper subspace of E. Then there is
a non-zero, linear functional ir on E which annihilates A(X), that is fYLi kerfa c
ker(Vr o A). By [Rud, Lemma 3.9], there are X i , . . . ,Xn e C such that f o A =
Xifa + • • • + Xn(pn; in particular,

^•10llkerA H \-K<Pn\kerA = 0.

Since fa |ker A , . . . , <pn|kerA are chosen to be linearly independent, it follows that Xi =
• • • = Xn = 0, and consequently, that ^ o A = 0 . Since A is surjective by hypothesis,
this means that rfr = 0, which contradicts the assumption that \/r =£ 0. Let SC :=
£) n X. Then X has codimension n in si <g> <£ and is dense in X. Set «^ :=
Certainly, ^ is a dense subspace of £ and contained in si • S — A(s/ (g) g). Basic
linear algebra yields

d im(^ • S) A(3tr) < dim(s/ ® < )̂̂ T = n.

Because of (2), 0\& is continuous with respect to the quotient norm on & induced
by A|^r. It is therefore sufficient to show that this quotient norm is equivalent to the
given norm. As we have previously seen, A maps X onto E. From the open mapping
theorem it follows that the given norm on E and the quotient norm induced by A\x

are equivalent. Therefore, we must show that 5C n ker A is dense in X D ker A. Since
sf ® s/ ig> & is dense in A%A.%E, the continuity of F yields

cl r(s/ <8) s/ ® S) = cl r(A®A®E).

Hence, we have

c l u n k e r A) D c l T ( ^ ® s/ ® <f) = cl T(A®A®£) = XflkerA, by (3).

Since the converse inclusion holds trivially, this completes the proof. •

Admittedly, the hypotheses of Lemma 1.1 are often not easily verifiable. In case
E = A, however, there is a connection with (bounded) Hochschild cohomology (see
[Joh2] or [Hel] for general background on cohomology of Banach algebras). Let €„,,„
denote the one-dimensional annihilator bimodule over A, that is Cann = C with the
module operation

a-X:=0 and X • a := 0 (ae A, XeC).

Let A and P be defined as in Lemma 1.1 (with E = A), and let A®AA be de-
fined as in [Hel], that is A®AA — (A<8>A)cir(A®A®A). If A is surjective, [Hel,
Corollary II.3.20] yields

= r(A®A®A)°/(ker A)° = ((ker A)/cir(A®A®A))*.
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[5] Automatic continuity and second order cohomology 235

Consequently, if J(?2(A, C.^) is finite-dimensional, we have

dim Jif2(A, C^) = dim(ker A)/cir(A®A®A).

The following corollary is now an immediate consequence of Lemma 1.1.

COROLLARY 1.2. Let A be a Banach algebra such that

is surjective, and such that there is n e No with dimJf?2(A, On,,) = n. Further, let
si be a dense subalgebra of A, and let 6 be a linear map from A into a Banach space
such that

||0(a&)||<C||a||||6|| (a, be*/)

for some constant C > 0. Then there is a dense subspace & of A with codimension
at most n in s/2 such that 9\je is continuous.

A particularly pleasant case of Corollary 1.2 occurs whenever n = 0. In this
case 9 is continuous on all of s/2, which is a subalgebra of A. From the discussion
preceding Corollary 1.2, it is clear that J^2(A, C^) — {0} and the surjectivity of A
are equivalent to A®AA = A, where the isomorphism is induced via A.

COROLLARY 1.3. Let A be a Banach algebra such that A®AA = A, let s/ be a
dense subalgebra of A, and let 6 be a linear map from A into a Banach space such
that

(a, be*/)

for some constant C > 0. Then G\^ is continuous.

REMARK 1.4. Banach algebras A such that A®AA = A were termed self-induced
by Gr0nbaek in [Gr0]. Self-induced Banach algebras seem to be the largest class of
Banach algebras for which a sensible theory of Morita equivalence can be developed
(see [Gr0]). Every Banach algebra with a (one-sided) bounded approximate identity
is self-induced.

2. Homomorphisms from E&E*

Let £ be a Banach space. Then there are several Banach algebras naturally
associated with it.
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236 Volker Runde [6]

Let 38(E) denote the Banach algebra of all bounded linear operators on E. In
[Johl], Johnson showed that the automatic continuity problem for homomorphisms
from SS(E) has a positive solution provided E = E © E. Analogous results for some
Banach spaces E such that E ^ E © E were obtained much later by Ogden ([Ogd])
and Willis ([Wil3]). On the other hand, there are Banach spaces E such that there is a
discontinuous homomorphism from 38{E) into a Banach algebra ([DLW]). Another
Banach algebra naturally associated with E is &/(E), the operator norm closure of the
bounded, finite rank operators. In [DJ], Dales and Jarchow proved that, if E has the
bounded approximation property and satisfies E = E (& E, the automatic continuity
problem for homomorphisms from stf(E) has a positive solution whereas there are
examples of Banach spaces E for which the solution is negative.

In in this section we wish to consider yet another Banach algebra associated with
E. Recall that for any Banach space E, the projective tensor product E®E* becomes
a Banach algebra through

(x <g> 4>)(y ® i/r) := (y, 4>)x ® V (x,y e E, (f>,ir e E*).

There is a natural epimorphism from E®E* onto J/(E), the algebra of nuclear oper-
ators on E, which becomes a Banach algebra if it is equipped with the corresponding
quotient norm, the so-called nuclear norm. In [DJ], Dales and Jarchow construct a
discontinuous homomorphism from Jf(E) whenever E is infinite-dimensional. Via
composition with the canonical epimorphism E®E* —> ^Y(E) we thus obtain a
discontinuous homomorphism from £<§>£* for each infinite-dimensional E. As we
shall see, however, for a large class of Banach spaces E, every homomorphism from
E®E* is continuous on (E®E*)2.

Before we prove our first result, note that E®£* is also a (unital) Banach 38(E)-
bimodule via

T • (x (g> </>):= Tx <g> <f> and (x ® </») • T := x <g> T*<f>

(x 6 E,<t>e E*, T

In the terminology of [Run3], E&E* is a compatible Banach ^(£)-bimodule.

THEOREM 2.1. Let E be a Banach space such that E = E © E, let B be a Banach
algebra, and let 8 : E®E* —>• B be a homomorphism. Then #|(£®£.)2 is continuous.

PROOF. Let

(4) J?:={TzB8(E) : (E®E*) x (E®E*) B (x, y) i-> 6(x • T • y) is continuous).

Then, obviously, ^ is an ideal of 3S(E). A standard application of the main bound-
edness theorem [DW, Theorem 1.3] shows that for every two sequences (Rn)™=i and
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[7] Automatic continuity and second order cohomology 237

(Sn)™=i in BS{E) such that RnSm = 0 for n ^ m, there is N e N such that RnSn e </
for n > N. Utilizing the hypothesis that E = E (& E as in [Johl], we obtain se-
quences (Pn)£L, and (£?«)£li of projections in 9S{E) such that id£ = Pi + Q\, and
PnQn = G«P« = 0, Pn = Pn+i + Qn+l and @(E)Pn@{E) = @{E)Qn@{E) for
« € N. It is easily seen that Qn Qm = 0 for n ^ m, and hence, by the foregoing, there
is N 6 N such that Qn e ^ for all n > A7. Let N be minimal with this property, and
assume that N >2. Since

(5) PNe@{E)PN@{E) = @(E)QN@{E)cJ,

we have P/v-i = P/v + QN £ ^ as well. The same argument as in (5) then yields
Q/v_i 6 ^ , contradicting the minimality of N. Consequently, (3i e / . Again the
argument in (5) can be applied and yields P\ e ^ . Therefore, id£ = Pi + Q\ e ^ ,
that is there is C > 0 such that

(6) l|0(*y)ll<C||*||||y|| {x,yeE®E*).

By [Gro, 4.6(i)], we have (£<8>£*)<i>£g,£.(£<§>£*) = E®E*. By Corollary 1.3, this
means that the restriction of 6 to {E®E*)2 is continuous. •

REMARK 2.2. 1. Note that with the help of Corollary 1.3, we were able to
conclude from (6) that #|(£,§IE.)2 is continuous although E®E* in general does not
have a bounded left or right approximate identity. Suppose that E®E* has a bounded
left or right approximate identity. Since ^V{E) is a quotient of E®E*, it follows that
Jf(E) has a bounded approximate identity of the same type. As Dales and Jarchow
point out in [DJ], this is possible only if dim E < oo.

2. Let 0 be a discontinuous homomorphism from ^V{E) into a Banach algebra, and
letjr : E®E* —> JV{E) be the canonical epimorphism. Then 6 o it is a discontinuous
homomorphism from E®E* whose restriction to (E<g>E*)2 is continuous. We see,
however, no way to conclude from there that 9\^(E^ is continuous.

As we already mentioned, there are Banach spaces E for which fail to satisfy
E = E 0 E, but such that the automatic continuity for homomorphisms from SB(E~)
still has a positive solution: these are the so-called James space ([Wil3]) and the
space "if ([0, con]), where rj is a non-zero ordinal and o)n is the smallest ordinal with
cardinality X, ([Ogd]).

In order to tackle those cases, we require the following lemma.

LEMMA 2.3. Let E be a Banach space, let A be a Banach subalgebra of
which contains the finite rank operators and has bounded left or right approximate
identity, and let 9 be a linear map from E®E* into another Banach space such that,
for each a € A, the bilinear map

(£®£*) x (£<£>£*) B (x, y)\-> 0{x-a- y)
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238 Volker Runde [8]

is continuous. Then the bilinear map

(E®E*) x (E®E*) 9 (x, y) h-> 6{xy)

is also continuous.

PROOF. We treat the case where A has a bounded left approximate identity first.
Let F be the target space of 9, and let 3B2(E®E*, F) denote the Banach space of all
bounded, bilinear maps from E®E* into F. We claim that the map

( 7 ) A - » 382{E®E*, F), a h + ( ( £ < § > £ * ) x ( £ < § > £ * ) B (x, y)t+9(x-a- y))

is bounded. To prove this, we assume that (7) is unbounded. Applying the uniform
boundedness theorem twice, we obtain JC0, Jo 6 E®E* such that A s a \-+ 9(xo-a-yo)
is unbounded; in particular, there is a sequence (aJ^L, in A such that an -*• 0 and
||0(jto • an • yo)|| ^ oo. By a variant of Cohen's factorization theorem ([HR2, (32.23)
Theorem]), there is b e A and a sequence (cn)Jjl, in A such that cn —• 0 and an = bcn

for n e N . Since by hypothesis the map (£<g>£*) x (£<§>£*) 9 (JC, y) i-̂ - 0(x • i • y)
is continuous, and since cn • y0 —> 0, we see that

0(xoanyo) — 9(x0b • (cn • yo)) ->• 0,

which contradicts our choice of the sequence ( a , , ) ^ . Consequently, there is C > 0
such that

\\0<x - a - y ) \ \ < C\\x\\ \\a\\ \ \ y \ \ ( a € A , x , y € E ® E * ) .

Let (ea)a be a left approximate identity for A bounded by K > 0. Since A contains
the finite rank operators, it follows immediately that eax -*• x for all x 6 E. From
the definition of the left module action of B8(E)—and hence of A—on E®E*, we see
that (ea)a is also a bounded left approximate identity for E®E*. Let x, y € E®E*,
and let e > 0. Then another variant of Cohen's factorization theorem ([HR2, (32.22)
Theorem]) yields a e A with ||a|| < K and z e E®E* with ||>> — z\\ < € and y = a-z.
Then we have

||0(jey)|| = \\9{x • a • z)\\ < C\\x\\ \\a\\ \\z\\ < C/c||x||(||y|| + e).

Since e > 0 is arbitrary, this means that

l|0(*3OII<Gc||jc||||y|| (x,yeE®E*)

as claimed.
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[9] Automatic continuity and second order cohomology 239

We now sketch the proof in the case where A has a bounded right approximate
identity. As in the first case, we see that (7) is bounded. Let (ea)a be a right
approximate identity for A, and let Af := [a* : a G A). Then A* is a Banach
subalgebra of SB{E*), and it is easily seen that (e*a)a is a bounded left approximate
identity for A1. Although, unless E is reflexive, Af need not contain all of the finite
rank operators on £*, it does contain all operators of the form E* B ifr !->• {x, i/)4>;
this is enough to ascertain that e*a<\> ->• <p for all (/> € E*. From the definition of
the right module action of A on E®E*, we see that (ea)a is also a bounded right
approximate identity for E<g>E*. The remainder of the proof is exactly as in the first
case. •

For the definition of the so-called James space, see [Wil3].

THEOREM 2.4. Let E be the James space, or let E = ^([O, con]), where r) is a non-
zero ordinal, let B be a Banach algebra, and let 6 : E®E* —*• Bbea homomorphism.
Then 6\(EQ)E.)2 is continuous.

PROOF (sketch). Define ^ as in (4), and use the main boundedness theorem as in
the proofs of [Wil3, Proposition 7] and [Ogd, Theorem 6.18], respectively, to show that
^ contains a closed subalgebra A of 3S(E) which contains the finite rank operators
and has a bounded right approximative identity. From Lemma 2.3, we conclude that
there is C > 0 such that

As in the proof of Theorem 2.1, we conclude with the help of Corollary 1.3 that that
is continuous. •

Since both the James space and each space ^([0, &>,,]) has the approximation
property, the canonical epimorphism E®E* —y Jf(E) is in fact an isomorphism
under the hypotheses of Theorem 2.4. Hence, we could have formulated Theorem 2.4
equally well in terms of J/(E}.

3. Homomorphisms from £l (SL(2,1))

In [Run3], we proved that, for certain factorizable, locally compact groups G,
every homomorphism from V{G) into a Banach algebra is continuous on a dense
subalgebra of V (G) ([Run3, Theorem 4.2]). One serious limitation of our technique
was that the group G had to be amenable. As a consequence, G = SL(2, R) both
with its usual topology and as a discrete group was beyond our reach.

In this section we apply Corollary 1.2, to give at least a partial answer to [Run3,
Question 2].
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240 Volker Runde [10]

THEOREM 3.1. Let B be a Banach algebra, and let 9 : £'(SL(2, R)) -*• B be a
homomorphism. Then there is a dense subspace & ofll(SL(2, R)) with codimension
at most one in a dense subalgebra ofll(SL(2, R)) such thatO\g is continuous.

PROOF. The first half of the proof is very similar to that of [Run3, Theorem 4.2].
As an immediate consequence of its Iwasawa decomposition (see, for example,

[Lan]), SL(2, R) is factorizable, that is there are abelian subgroups Hit... ,Hn of
SL(2, R) such that SL(2, R) = H{-Hn (in fact, n = 3 will do). Fory = 1, . . . , n,
let

Ji := {</> e l\Ht) : ll(SL(2, R)) x tl(SL(2,1))
9 (/> 8) h > #( / * 4> * g) is continuous}.

For; = 1, . . . , n, let Sj be the hull of Jj in <tv(W/), the Gelfand space of l\Hj)\ a
routine application of the main boundedness theorem ascertains that 5, is finite. Let

I(Sj) :={<peel(Hj):t\Sl = 0 } (/ = 1. • • • . « ) •

By [Wil2, Lemma 2.1], there are * , , . . . , xm e SL(2, R) such that the right ideal

„*/(5,-) * Sx-i *

is closed and has finite codimension in tl{SL{2, R)). Fory = 1, . . . , n, let

7(5;) := {<j> € €'(«,-) : supp(^) n 5, = 0}.

As in the proof of [Run3, Theorem 4.2], we see that there is a constant C > 0 such
that

(8)

(f,ge ll(SL(2, R)), 4>eSXk* 7(5;) * S,-., j = 1 , . . . , n, * = 1, . . . , m).

Let
m n

*=1 ; = 1

be equipped with the ̂ -norm, and define

n : X - * € '(5L(2, R)), ( / , , . . . , /„,„) M. / , + ••• + / n , m .

Note that n ( X ) = 7. Let
m n
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[11] Automatic continuity and second order cohomology 241

Obviously, 2£ is dense in X. Define a bilinear map

0 : i\SL(2, R)) x 2C -*- B, (f,x) t-> 0(f * Tl(x)).

Due to (8), © is bounded and thus extends to a bounded bilinear map I1 (SL(2, R)) x
X -* B, which we shall denote by 0 as well. We claim that 0 drops to a bounded,
bilinear map 0 : / x / -> B. Le t / 6 / , and letx, y e X such that Tl(x) = / and
n (y) = 0. Further, let (**)*!] be a sequence in «£* such that** -*• x, and note that, for
each* 6 N,thebilinearmap^1(5L(2, to))xll(SL(2, R)) 9 (g, ft) H* 0(g*Tl(xk)*h)
is continuous. Hence, we have

©(/, y) = 0(5, * Tl(x), y) = lim ©(^ * U(xk), y)

= lim 9(Si * n(jrt) * U(y)) = 0,

where 8t is the point mass at the group identity. With J :— T\(3£), we thus have

(9) \\d(f *g)\\ = \\8{f, g)\\ <

with some
Let

constant C >o.

l,R)) - I ' = E u
xeSL(2,R)

J*: E
xeSL(2,K)

be the so-called augmentation ideal of ll(SL(2, R)). Obviously, £j(5L(2, R)) is a
closed ideal of £l (SL(2, R)) with codimension one. Moreover, it follows from [HR1,
(22.22)(h)] that il

0(SL(2, R)) is the only proper closed ideal of l\SL(2, R)) with
finite codimension. Since / has finite codimension, the closed, two-sided ideal

[f e l\SL(2, R)) : €'(5L(2, R)) * / C /} C /

has finite codimension as well, and consequently contains l\(SL(2, R)). Hence, we
have either I=tl(SL(2, R)) or /=£j(5L(2, R)). Suppose first that I-il(SL(2, R)).
Then ^ is a dense right ideal of il(SL(2, R)) and therefore equals £1(5L(2, R)). In
this case, (9) immediately yields the continuity of 0 on all of £l(SL(2, R)). We may
therefore assume without loss of generality that / = £Q(SL(2, R)).

We wish to apply Corollary 1.2. First, observe that by [Wil2, Lemma 2.2] the
multiplication map A : 7®/ -» / is onto. To finish the proof, we have to compute
Jf2(t0(SL(2, R)), Cann). From well known facts about Hochschild cohomology, it
follows that

Jif2(£1
0(SL(2, R)), Cann) = M'2(l\SL(2, R))t Q ,
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where the module actions of il(SL(2, R)) on C are induced through the trivial
SL(2, R)-module action

(10) x-X:=X. and A • x := X (x e SL(2, R), X e Q.

As pointed out on [Joh2, page 28] (see also [Gri]), we have

Ji?2(Ll{SL(2, R)), C) = Hf\SL(2, R), C),

where our notation for bounded group cohomology is as in [Gri]. As pointed out
on [Gri, page 121], H?\SH2, R), C) is the complexification of Hf\SL(2, R), R),
where the module actions of SL(2, R) on R are defined as in (10). Finally, Matsumoto
and Morita compute in [MM] that H£\SL{2, R), R) = R. In view of the foregoing,
we obtain

JtrHt^SLiZ, R)), Cann) = C.

Corollary 1.2 then yields a dense subspace & of / with codimension at most one
in J^2 such that 8\& is continuous. Let § := O i + &. Then 9\g is continuous,
and S has codimension at most one in O , + J1, which is a dense subalgebra of

R)). •

REMARK 3.2. 1. Certainly, Theorem 3.1 would be much more appealing if we
could prove the continuity of 9 on a dense subalgebra of tl(SL(2, R)). In fact, if our
conjecture on the existence of discontinuous homomorphisms from group algebras
stated in [Runl] is correct, 6 should be continuous on all of £'(SL(2, R)). However,
we are unable to prove these stronger assertions.

2. It would be desirable to have an analogue of Theorem 3.1 for homomorphisms
from L'(SL(2, R)). In fact, most of the proof can be modified to fit the non-discrete
situation (see the proof of [Run3, Theorem 4.2]). The problem here is that we do not
know how to compute ^2(L^(SL(2, R), C J .
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