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ON THE MAXIMAL OFFSPRING IN A
CRITICAL BRANCHING PROCESS
WITH INFINITE VARIANCE
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Abstract

We investigate the maximal number Mk of offspring amongst all individuals in a critical
Galton–Watson process started with k ancestors. We show that when the reproduction
law has a regularly varying tail with index −α for 1 < α < 2, then k−1Mk converges in
distribution to a Frechet law with shape parameter 1 and scale parameter depending only
on α.
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1. Introduction and main results

There exists in the literature a variety of results about extremes in branching processes;
see the surveys by Yanev [11], [12] and the references therein. In particular, Rahinov and
Yanev [9] have characterized the asymptotic behavior as n → ∞ of the maximal offspring
at the nth generation conditionally on the event that the extinction has not yet occurred. In a
different direction, Pakes [8] considered the order statistic of scores in branching processes, and
more precisely asymptotics of the largest score up to and including the nth generation, again
conditionally on the event that extinction does not occur before the nth generation. In this vein,
we also mention the recent contributions of Lebedev [6], [7] to the eternal branching process.
The purpose of this work is to point at a simple result in this area which does not seem to have
been observed before.

Let F denote the distribution function of some probability measure on Z+, and write F̄ =
1 − F for its tail. We assume throughout this paper that

F̄ (n) = n−α�(n), (1)

where 1 < α < 2 and � is a slowly varying function. For each k ≥ 1, we consider a Bienaymé–
Galton–Watson process Z = (Zn, n ≥ 0) started from Z0 = k ancestors and with reproduction
law given by F . We are interested in the maximal offspring until extinction, viz.

Mk = max{Xi : 1 ≤ i ≤ Tk},

where Tk = ∑∞
n=0 Zn denotes the size of the total population and Xi is the number of children

of the ith individual (the choice of the enumeration of individuals is obviously irrelevant).
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Figure 1: Graph of the map α �→ β.

In the subcritical case
∑∞

i=0 F̄ (i) = m < 1, it is known from the law of large numbers that
Tk ∼ k/(1 − m) almost surely when k → ∞, and it follows readily from extreme value theory
that if we introduce a sequence (nk)k∈N such that F̄ (nk) = n−α

k �(nk) ∼ 1/k then

lim
k→∞ P(Mk ≤ xnk) = exp

(
− x−α

1 − m

)
, x > 0.

In the supercritical case
∑∞

i=0 F̄ (i) > 1, the probability of extinction tends to 0 as k → ∞,
and, therefore, so does the probability that Mk < ∞. We thus focus henceforth on the critical
case ∞∑

i=0

F̄ (i) = 1 (2)

and state our main result.

Theorem 1. Under assumptions (1) and (2), k−1Mk converges in distribution as k → ∞ to a
Frechet law with shape parameter 1. More precisely, for every x > 0, we have

lim
k→∞ P(Mk ≤ kx) = exp

(
−β

x

)
,

where the scale parameter β > 0 is the unique solution to the equation

∞∑
n=0

(−1)nβn

(n − α)n! = 0. (3)

The graph of the map α �→ β is displayed in Figure 1.
Of course, Mk can be viewed as the maximum of k independent and identically distributed

(i.i.d.) copies of M1, and we should expect a weak limit theorem for Mk involving an extreme
value distribution. Nonetheless, it is quite remarkable that the slowly varying function � plays
no role in this limit theorem, and that the index α appears only in the scale parameter β of the
limiting Frechet distribution, but not in the shape parameter.
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It is also interesting to note the following consequence of a classical result due to Gnedenko
(see, for instance Proposition 1.11 of [10]) combined with Theorem 1.

Corollary 1. Under assumptions (1) and (2), the tail distribution of M1 fulfills

P(M1 > x) ∼ β

x
as x → ∞,

where β > 0 is the unique solution to (3).

Note that M1 thus has an infinite expectation even though the mean offspring of a typical
individual is 1.

By Gnedenko’s theorem, the asymptotics stated in Theorem 1 and Corollary 1 are equivalent.
Usually, it is more natural to establish first that the tail distribution of some random variable
is regularly varying and to then deduce the limiting behavior of the maximum of i.i.d. copies.
However, this is not the approach that we will use here. More precisely, hypothesis (1) is a
necessary and sufficient condition for the distribution F to belong to the domain of attraction of
a spectrally positive stable law with index α. Using the classical connection between downward
skip-free random walks and branching processes, and standard arguments of weak convergence
on the space of càdlàg paths, this enables us to reduce the proof of Theorem 1 to the determination
of the distribution of the maximal size of jumps in a spectrally positive stable Lévy process
up to its first hitting time of −1. The latter is achieved by rather straightforward arguments of
fluctuation theory for Lévy processes without negative jumps.

The proof of Theorem 1 is presented in the next section, and miscellaneous comments are
made in Section 3.

2. Proof of Theorem 1

Introduce a sequence X1, X2, . . . of i.i.d. variables distributed according to F , and consider
the downward skip-free random walk

Sn = X1 + · · · + Xn − n.

It is a well-known fact observed by Harris (see Section 6 of [3]) that the Bienaymé–Galton–
Watson branching process with reproduction law F and started with k ancestors can be con-
structed from the random walk stopped at its first hitting time of level −k,

Tk = min{i : Si = −k}.
In this setting, Tk corresponds to the total size of the population generated by the branching
process (so our notation is coherent) and the maximal offspring until extinction is closely related
to the maximal step of the random walk until time Tk . More precisely, there is the identity

Mk = max{Xi : 1 ≤ i ≤ Tk}.
Assumptions (1) and (2) ensure that the random walk S belongs to the domain of attraction

of a spectrally positive stable Lévy process with index α, say ξ = (ξt , t ≥ 0). This means that
there exists a sequence (ak)k≥1 of positive real numbers with limk→∞ ak = ∞ such that(

1

k
S	akt
, t ≥ 0

)
⇒ (ξt , t ≥ 0), (4)

where ‘⇒’ denotes convergence in distribution as k → ∞, in the sense of Skorokhod on the
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space of càdlàg paths. See, for instance, Theorem 16.14 of [4]. More precisely, ξ is a process
with independent and stationary increments, which fulfills the following scaling property:

for any c > 0, (c−1/αξct , t ≥ 0) has the same law as ξ.

By standard arguments, convergence (4) can be extended to processes stopped at their first
passage times, in the sense that if we introduce the first passage process

τx = inf{t : − ξt > x}, x ≥ 0

(so (τx)x≥0 is a stable subordinator with index 1/α), then

(
1

k
S	akt
, t ≤ Tk

ak

)
⇒ (ξt , t ≤ τ1).

More precisely, although first passage times are discontinuous functionals for Skorokhod’s
topology, the function x �→ τx is continuous at each fixed x ≥ 0 almost surely and in particular
at x = 1. This readily yields the sought extension. Because convergence in the sense of
Skorokhod implies uniform convergence after suitable time changes, it follows that if we denote
by �∗

t the largest jump made by ξ on the time interval [0, t], i.e.

�∗
t = max{�s = ξs − ξs− : 0 ≤ s ≤ t},

then

lim
k→∞

1

k
Mk = �∗

τ1
in distribution.

By Gnedenko’s theorem, this entails that �∗
τ1

has the Frechet distribution with shape param-
eter 1, and we only need to determine its scale parameter. We state this as a lemma that may
be of independent interest.

Lemma 1. Let ξ be a spectrally positive stable Lévy process with index α ∈ (1, 2). The
distribution of the size of its largest jump until the hitting time of −1 is given by

P(�∗
τ1

≤ y) = exp

(
−β

y

)
, y > 0,

where β > 0 is the unique solution to (3).

Proof. Thanks to the scaling property, there is no loss of generality in assuming that the
Lévy measure � of ξ is simply

�(dx) = x−α−1 dx, x > 0.

Recall that the Laplace exponent � of ξ is given by the Lévy–Khintchin formula

�(q) =
∫ ∞

0
(e−qx − 1 + qx)�(dx) = 	(2 − α)

α(α − 1)
qα, q ≥ 0,

and then
E(exp(−qξt )) = exp(t�(q)).
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Fix y > 0, and let δy = inf{t : �t > y} denote the first instant when ξ makes a jump of
size greater than y. Also, introduce, for every t ≥ 0,

ξ
y
t = ξt −

∑
0≤s≤t

�s1{�s>y},

i.e. ξy = (ξ
y
t , t ≥ 0) is the spectrally positive Lévy process obtained from ξ by suppressing all

the jumps of size greater than y. In particular, its Laplace exponent is given by

�y(q) =
∫ y

0
(e−qx − 1 + qx)�(dx) + q

∫ ∞

y

x�(dx)

=
∫ y

0
(e−qx − 1 + qx)x−1−α dx + q

y1−α

α − 1
.

Introduce now the first passage time of ξy at −1, i.e.

τ
y
1 = inf{t : ξ

y
t = −1},

and note that the events {�∗
τ1

≤ y} and {τy
1 < δy} coincide. Recall further from the Lévy–Itô

decomposition of Lévy processes that ξy and a fortiori τy
1 are independent of δy . Since the latter

has the exponential distribution with parameter �̄(y) = �((y, ∞)) = α−1y−α , we deduce
that

P(�∗
τ1

≤ y) = P(τ
y
1 < δy) = E(exp(−α−1y−ατ

y
1 )).

It is well known (see, for instance, Theorem VII.1 of [1] or Theorem 3.12 of [5]) that the
right-hand side can be expressed as

E(exp(−α−1y−ατ
y
1 )) = exp(−b(y)),

where b(y) > 0 is the unique solution to �y(b(y)) = α−1y−α . Thus, we are led to solving the
equation ∫ y

0
(e−b(y)x − 1 + b(y)x)x−1−α dx + b(y)

y1−α

α − 1
= α−1y−α.

The change of variable x = yu yields

∫ 1

0
(e−b(y)yu − 1 + b(y)yu)u−1−α du + b(y)y

α − 1
= 1

α
,

and setting β = yb(y), we finally arrive at

∫ 1

0
(e−βu − 1 + βu)u−1−α du + β

α − 1
= 1

α
. (5)

Using the series expansion of e−βu, we see that (3) and (5) are equivalent.
Finally, note that the function

q →
∫ 1

0
(e−qu − 1 + qu)u−1−α du + q

α − 1

is convex and strictly increasing on [0, ∞), and, thus, (5) has a unique solution.
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3. Some comments

1. Amateurs of special functions will recognize that (3) can be re-expressed in terms of the
incomplete gamma function. Specifically, recall that, for Re(a) > 0,

γ (a, x) =
∫ x

0
e−t ta−1 dt =

∞∑
n=0

(−1)nxa+n

(a + n)n!

is the incomplete gamma function; see Equation 8.354.1 of [2]. The modified function

γ ∗(a, x) = x−a

	(a)
γ (a, x)

is analytic with respect to a and x (cf. Equation 8.353.1 of [2]), and, therefore, the solution β

to (3) is the unique positive root to the equation γ ∗(−α, β) = 0.
2. In connection with Lemma 1, we recall that the distribution of the maximal jump size up

to time t , �∗
t , is given by

P(�∗
t ≤ x) = exp(−t�̄(x)) = exp(−tcx−α),

where �̄ stands for the tail of the Lévy measure and c > 0 is some constant. Let us assume for
simplicity that ξ is normalized as in the proof of Lemma 1, so that c = 1/α. In this situation,
the Laplace transform of τ1 is

E(exp(−qτ1)) =
(

α(α − 1)

	(2 − α)
q

)1/α

,

and we deduce that if T is a random time distributed as τ1 and independent of ξ , then

P(�∗
T ≤ x) = E

(
exp

(
− 1

αxα
τ1

))
= exp

(
−

(
α − 1

	(2 − α)

)1/α

x−1
)

.

We stress that, thanks to the scaling property, the distribution of �∗
T does not depend on the

normalization that has been chosen for ξ . We see that �∗
T has again the Frechet law with shape

parameter 1, but the scale parameter differs from the solution to (3).
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