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Abstract. Estimates are given for the amplitudes of stochastically excited oscillations in Main Sequence stars 
and cool giants; these were obtained using the equipartition between convective and pulsational energy 
which was originally proposed by Goldreich and Keeley. The amplitudes of both velocity and luminosity 
perturbation generally increase with increasing mass along the Main Sequence as long as convection 
transports a major fraction of the total flux, and the amplitudes also increase with the age of the model. 
The 1.5 M 0 ZAMS model, of spectral type FO, has velocity amplitudes ten times larger than those found 
in the Sun. For very luminous red supergiants luminosity amplitudes of up to about OTl are predicted, in 
rough agreement with observations presented by Maeder. 

1. Introduction 

There would be an obvious intrinsic interest in the discovery of stellar analogues to the 
solar 5 min oscillations of low degree. More important, however, is the fact that 
detection and detailed observation of such oscillations might enable the extension to 
other stars of the seismological investigations (e.g. Christensen-Dalsgaard and Gough, 
1976) which are now beginning to yield information about the structure of the Sun 
(Scuflairee/fl/., 1981; Christensen-Dalsgaard and Gough, 1980b, 1981; Shibahashi and 
Osaki, 1982). In addition, the variation of oscillation amplitude with stellar parameters 
would be of great interest in connection with the determination of the excitation 
mechanism for these oscillations. 

An immediate problem facing any attempt to detect such oscillations, at least in 
solar-type stars, is their very small amplitude. Thus the velocity amplitudes of at most 
15-40 c m s - 1 for each mode of oscillation which is observed in the Sun (Grec et ai, 
1980; Claverie etai, 1981) are probably below the limit of present spectroscopic 
techniques; the relative luminosity amplitudes of 2-4 x 10~6 (Deubner, 1981; 
Woodard and Hudson, 1983) would be observable in a star (Deubner found evidence 
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for the oscillations in sunlight reflected from Neptune), but only in observations 
dedicated to a single star for several nights. 

Traub et al. (1977) attempted to detect stellar 5 min oscillations using the PEPSIOS 
spectrometer. The criterion used to select the stars observed was the presence of Ca 
emission, which was taken as evidence for waves heating a chromosphere. These 
observations clearly showed the solar 5 min oscillations, but failed to find oscillations 
in the other stars, giving an upper limit of about 5 m s - 1 on the total velocity amplitude. 
In addition M. A. Smith (private communication) has found evidence for velocity 
fluctuations in two giants (Arcturus and Aldebaran) which he tentatively interprets as 
oscillations that may be related to the solar 5 min oscillations. 

The obvious difficulty in observing these oscillations, and the long observing sequences 
needed for each star, make desirable some guidance for the choice of stars to observe. 
Such stars should clearly have as large amplitudes, as possible. In addition the periods 
of oscillation should be sufficiently short to allow removal of drift in the observations 
(e.g. caused by variations in the electronics, or by atmospheric extinction). Finally, if 
frequency resolved observations are sought, the frequency separation between the 
dominant peaks in the spectrum of oscillation should ideally be large enough to be 
resolved with a single night's observations. 

The purpose of the present paper is to give theoretical estimates of amplitudes, periods 
and frequency separations for a selection of stellar models. The periods, and hence the 
frequency separations, for a given model are easily calculated from linear theory. To 
obtain estimates of oscillation amplitudes a model for the excitation of the oscillations 
is needed, and this is at present far less certain. We shall adopt as premise that the solar 
5 min oscillations are not self-excited (i.e. that they are stable according to linear theory), 
but that they are excited stochastically by convection. It is true that the linear 
non-adiabatic calculations of Ando and Osaki (1975, 1977) showed instability of the 
solar 5 min oscillations. However these calculations assumed that the equilibrium value 
of the mean intensity of radiation was equal to the Planck function everywhere (cf. 
Christensen-Dalsgaard and Frandsen, 1983), and, probably more importantly, they 
neglected the Lagrangian perturbation in the divergence of the convective flux. Later 
calculations by Berthomieu et al. (1980) and Baker and Gough (cf. Gough, 1980) that 
included the perturbation in the convective flux found the modes in the 5 min range to 
be stable. Under these circumstances the hypothesis of stochastic excitation appears to 
be the most likely alternative. 

Goldreich and Keeley (1977b) made a simplified analysis of this excitation mechanism. 
They found that the resulting amplitude of oscillation is such that there is approximate 
equality between the energy, integrated over the star, in one mode of oscillation and the 
kinetic energy in one convective eddy whose time scale is the same as the period of the 
oscillation. Keeley (1977, 1980) and Gough (1980) showed that this equipartition of 
energy predicts roughly the observed amplitudes of the solar 5 min oscillations (cf. also 
Christensen-Dalsgaard and Gough, 1982). We shall use it, in a form made precise below, 
to estimate oscillation amplitudes for other stars. 
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2. The Calculation 

Complete stellar models were calculated using the code described by Christensen-
Dalsgaard (1982; in the following C-D82) with a small modification in the way the 
variation in the super-adiabatic gradient was taken into account in the determination 
of the mesh. The Cox and Tabor (1976) opacity tables were used, and the parameters 
were the same as for Model sequence 1 of C-D82. The models comprised a set of 
Zero-Age Main Sequence models with masses between 0.8 and 1.8 MQ (M0 being the 
mass of the Sun), as well as a continuation of sequence 1 of C-D82 to well into the 
hydrogen shell-burning phase. 

In addition to the complete models envelope models were calculated, to explore the 
properties of stars further from the Main Sequence. These envelopes were assumed to 
be chemically homogeneous and with constant luminosity; the physics was the same as 
in the calculation of the complete models. To approximate stars in the hydrogen 
shell-burning phase sets of envelopes with varying effective temperature, but constant 
mass M and luminosity L were computed, the relation between M and L being 
approximately as found in Iben's (1964) evolution calculations. 

The complete models were transferred to a mesh more suitable for pulsation 
calculations using four point Lagrangian interpolation. This mesh was based partly 
on the variation in pressure and temperature, partly on the asymptotic proper
ties of high-order acoustic oscillations, in the manner of Christensen-Dalsgaard 
(1977); the same mesh was used directly in the calculation of the envelope 
models. 

Observations of stellar oscillation, by necessity made in integrated light, are dominated 
by modes with values of the degree /less than about 4 (Dziembowski, 1977; Christensen-
Dalsgaard and Gough, 1980a), and the relevant properties of such modes depend little 
on / (Christensen-Dalsgaard and Gough, 1982). Hence we have only calculated radial 
modes of oscillation, by solving the equations of linear non-adiabatic oscillation. 
Radiation was treated in the Eddington approximation (e.g. Unno and Spiegel, 1966), 
and we neglected 6(div Fc), where b denotes Lagrangian perturbation and ¥c is the 
convective flux. The mechanical surface boundary condition was derived from matching 
the solution onto the outward decaying solution of the adiabatic wave-equation in an 
isothermal atmosphere and was applied at optical depth T = 0.01. At the inner boundary 
the oscillations were assumed to be adiabatic; in the complete models a second inner 
boundary condition was obtained by expansion around the centre, whereas the displace
ment was assumed to vanish at the bottom of the envelope models. With these boundary 
conditions the frequencies of oscillation are determined as eigenvalues of the pulsation 
equations. 

For every model considered we have calculated all modes of oscillation in a range 
sufficiently large to determine the maximum amplitudes in velocity and luminosity 
perturbation, and to study in some detail the variation in the amplitudes around the 
maximum. As an upper bound on the frequencies we have used Lamb's (1909) acoustical 
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cut-off frequency 

v c = ^ , (2.1) 
4ncs 

where T, = (8\np/dln p)s is an adiabatic exponent, p, p, and s being pressure, density 
and specific entropy, respectively, gs is the surface gravity and cs is the sound speed in 
the (assumed) isothermal atmosphere bounding the model. The energy equipartition 
between convection and pulsation derives from the fact that turbulent viscosity appears 
to dominate the linear damping of the oscillations (Goldreich and Keeley, 1977a); thus 
the dynamics of convection controls both the excitation and the damping of the 
oscillations. However there is a tendency for modes with frequency v close to or above 
vc to behave like running waves in the atmosphere; this leads to a relative increase in 
the atmospheric amplitude of such modes and so for these the radiative atmospheric 
damping may become dominant (see also Christensen-Dalsgaard and Frandsen, 1983). 
This would cause their amplitudes to be smaller than predicted by energy equipartition. 
(It might be noted that this argument suggests that claims of detection of stellar 
oscillations with frequencies significantly exceeding v,, which can of course easily be 
estimated, should be viewed with some suspicion. Such oscillations probably do not 
represent large-scale pulsation of the star). 

The oscillation amplitude calculated on the basis of energy equipartition depends on 
the details of the description of convection and the precise definition of the convective 
time scale. We have adopted the mixing length formulation for a static model given by 
Gough (1977), with parameters chosen to make the convective flux agree with that of 
Bohm-Vitense (1958). The time scale was taken to be the mean lifetime zc of a convective 
eddy (Gough, Equations (4.23) and (4.26)); the mean kinetic energy in an eddy was 
calculated as 

Ec = ip,l?, (2.2) 

where pt is the mean turbulent pressure (Gough, Equation (3.16)) and lc is the mixing 
length, as usual taken to be a constant (in this case 1.6364) multiple of the pressure scale 
height. This choice of xc and Ec is clearly not unique; however as shown in Section 3 
it does appear to give roughly correct amplitudes for the Sun, without the introduction 
of additional scaling factors. Furthermore the variation with stellar parameters in the 
predicted amplitude is probably not very sensitive to the precise formulation. 

In a given model Ec and xc can thus be calculated as functions of the distance r from 
the centre of the model. At the edges of the convection zone the velocity tends to zero 
and ic tends to infinity; ic has a minimum Tr>min which is generally close to where the 
superadiabatic gradient is largest. For a mode with period 77 greater than t( min there 
are at least two points, with r = r„ say, in the convection zone where xc = 77; we have 
calculated the oscillation amplitude by demanding that the amplitude of the kinetic 
energy of oscillation be equal to the sum of Ec over these points, that is 

E =L 

L o s c — 2 
p|v„J2dK.= l£ r ( r , ) . (2.3) 
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Here vosc is the amplitude of the oscillation velocity and the integral is over the volume 
V of the equilibrium model. The results would change little if the maximum over the 
energies of the resonant eddies, rather than their sum, had been used. 

The present, grossly simplified, model of stochastic excitation predicts that modes 
with periods shorter than Tcmin are not excited. In reality there would be a contribution 
to the excitation of these modes from convective eddies with longer time scales, and from 
smaller eddies resulting from the turbulent breakdown of the dominant eddies. Thus one 
would expect a gradual decrease in amplitude at periods shorter than T£?min, rather than 
the sharp cut-off predicted here. 

It is convenient to express the pulsational energy as 

Emc = \Mv}Smc, (2.4) 

where vs is the radial component of the surface velocity amplitude and 

! 
pW dV/MUO2, (2.5) 

£ being the eigenfunction of linear oscillation, £r its radial component and rs the surface 
radius of the star (notice that Equations (2.3)-(2.5) can be applied to non-radial as well 
as to radial oscillations). Thus <fosc can be found from linear theory, and then 

vr = 
2 £,2?c(r,)-

Mc 

1/2 

(2.6) 

Finally the relative surface luminosity perturbation can be calculated from v, as 

bLJLs = Xsvs, (2.7) 

where Xs = {bLJLs)/vs may be found from a linear calculation. 

3. Results 

We first consider the calibration against observations of solar oscillations. It might be 
argued that the criterion for 'resonance', viz. 77 = TC, is arbitrary and should be replaced 
by 77 = yxc, where y is a factor to be calibrated against the solar data. On Figure 1 are 
shown the predicted velocity amplitudes, as functions of the frequency, for different 
values of y. In each case the amplitude increases monotonically with v until the cut-off 
frequency vmax = l/(yrc m i n ) , and the dominant effect of changing y is clearly to shift 
vmax. For y = 1, vmax almost coincides with the observed position of maximum power, 
and the maximum velocity, about 15 cm s~', is consistent with the observed value. Of 
course the observed spectra show a gradual decrease in power towerds higher frequency, 
rather than the sharp cut-off found here; but as argued in the preceeding section this 
would be smoothed in a more detailed description of the excitation. Thus we have used 
y = 1 in the following. The maximum amplitude of the relative luminosity perturbation 

https://doi.org/10.1017/S0252921100095828 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100095828


474 

.24 

.22 

.20 

. 16 

- ^ 14 

O 
CD 
CO 

.12 

> " .10 

.08 

.06 -

.04 

.02 

J0RGEN CHRISTENSEN-DALSGAARD AND S0REN FRANDSEN 

H — I — I — | — I — I — I — I — | — I — I — I — I — | — I — I — I — I — | — I — I — I — I — | — I — I — I — I — | — I — I — I — I — T 

1 . 5 

_ i i I i i _ i I i 1 'i .'2'1 ' \.t> \9**' ' I'.O1 d.gi d.di.b M..^1 

2 . 0 2 . 5 3 .0 3 .5 4 . 0 4 . 5 5 . 0 5 . 5 

v (m Hz) 
Fig. 1. Predicted surface velocity amplitudes vs in a model of the present Sun, as functions of the cyclic 
frequency v of oscillation, for various values of the ratio y between the pulsation period and the time scale 
of the 'resonating' convective eddy. For clarity the values for the discrete modes of oscillation have been 

connected with continuous lines. The curves are labelled with the value of y. 

is then 3.5 x 10~6, fairly close to the value observed by Woodard and Hudson (1983). 
It should also be noticed that the ratio found here between the luminosity perturbation 
and the velocity is in reasonable agreement with the value obtained by Gough (1980), 
who treated the radiation in the diffusion approximation but included the perturbation 
in the convective flux. 

The main results concerning the complete stellar models are presented in Table I for 
the ZAMS models and in Table II for the 1 MQ evolution sequence. The value given 
for Av is the frequency difference between two consecutive modes at the velocity 
maximum; as the frequency spacing is nearly uniform for high-order acoustic modes 
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TABLE I 

Properties of oscillations of ZAMS models. M, refr and L are the mass, effective temperature and luminosity 
of the model, respectively, MQ and L0being the solar values; vs mali and (bLJLs)mslli are the maximum values 
of the surface velocity and relative luminosity perturbation, and 77max is the period corresponding to, and 

Av the frequency difference between two adjacent modes at, the maximum velocity. 

M/MQ 

0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 

Tcfr 

4880 
5285 
5646 
5916 
6178 
6457 
6778 
7184 
7640 
8072 
8475 

L/LQ 

0.25 
0.44 
0.71 
1.13 
1.70 
2.49 
3.49 
4.74 
6.26 
8.06 

10.2 

^s, max 

(cm s~') 

3 
6 

10 
15 
20 
25 
37 

144 
72 
71 
72 

(hLJLXn 

6 x 10-7 

1.5 x 10~6 

2.5 x 10"6 

3.4 x 10~6 

4.2 x 10"6 

5.1 x 10~6 

6.2 x 10"6 

1.3 x 10^5 

1.0 x 10~5 

2.7 x 10-6 

2.7 x 10-5 

' m a x 

(min) 

4 
4 
4 
5 
5 
5 

10 
18 
9 

10 
7 

Av 
("Hz) 

204 
184 
165 
142 
124 
110 
96 
89 
94 
93 
90 

TABLE II 

Properties of oscillations of the models in a 1 MQ evolution sequence. The notation is as in Table I. 

Age 
(109yr) 

0 
2.65 
4.75 
9.68 

11.71 

^ 

5646 
5713 
5770 
5784 
5359 

L/LQ 

0.71 
0.85 
1.00 
1.68 
2.35 

"S, max 

(cm s~') 

10 
13 
15 
26 
34 

(8L,/i,L„ 

2.5 x 10-" 
3.0 x 10~6 

3.5 x 10"6 

6.2 x 10-6 

9.3 x 10~6 

m a x 

(min) 

4 
5 
5 
8 

15 

Av 
(uHz) 

165 
150 
137 
96 
59 

(e.g. Vandakurov, 1967) this value is representative for the range of frequencies where 
the amplitudes are large. 

The ZAMS models extend well into the region of the b Scuti stars; as in other linear 
calculations (see e.g. the review by Dziembowski, 1980) a number of modes were found 
to be unstable in the models with M > 1.4 M 0 . For such modes the amplitude estimates 
based on energy equipartition are presumably invalid. However, except at 1.5 MQ, the 
predicted maximum amplitude occurs for modes that were found to be linearly stable. 

There is clearly a marked increase in the predicted velocity amplitudes with increasing 
stellar mass until 1.5 MQ, and a similar, but more erratic, increase in the luminosity 
amplitude. Furthermore there is also a significant increase in the amplitudes as the 1 MQ 

model evolves. To understand this behaviour we must study the dependence of the 
pulsational and convective energy on stellar parameters. The details are clearly quite 
complicated, but it is possible to get a qualitative understanding of the dominant 
features. The relation between the energy and the surface amplitude of the oscillations 
may be estimated from asymptotic theory. The modes are evanescent in a region close 
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to the surface whose depth decreases with increasing oscillation frequency. Thus the 
energy density in the mode increases with increasing depth until the oscillatory region, 
where the amplitude of the energy density is roughly constant, is reached; the increase 
in the energy density decreases with increasing v, and so does Sosc. From the asymptotic 
theory for high-order acoustic modes (e.g. Vandakurov, 1967), modified to take into 
account the nonvanishing surface temperature of a realistic model (Christensen-
Dalsgaard and Gough, 1980b) one may show that 

C^--WvJ f-, (3.1) 
An p rs J c 

o 

where ps is the photosperic, and p the mean, density of the model, and cv is the value 
in the atmosphere of the sound speed c; the dependence of <?osc on v is determined by 
3F{v/vc), where the acoustical cut-off frequency vc is given in Equation (2.1), and 

m = — l -±^—, 0.2) 

i[Jm{Q-^{z)Ym{Qf 

*(z) - / - ' ( 0 " a ( z ) 7 - ( C ) , (3.3) 

rw + 1(0-«(z)UO 
and 

<x(z) = z~' - (z~2 - l)1/2 ; { = (m + l)z . (3.4) 

Here m is the effective polytropic index of the region close to the surface and Jm and 
Ym are Bessel functions. When v/vc <̂  1, 

^ ( v / v c ) * | r ( m + l)2[i(m + l X v / v J ] - ^ * 1 ' , 

where Tis the Gamma function; this rapid increase of Sosc with decreasing v reflects 
the increasing depth of the outer evanescent region. 

The behaviour of the convective energy is more difficult to analyze, but the general 
trend may be understood in simple terms. Clearly Ec may be expected to increase roughly 
in proportion to the convective flux and the volume of the dominant convective eddy. 
A more detailed analysis shows that when the heat loss from a convective eddy during 
its lifetime is small, 

Ec~T^-Vad)-^g;iFc 

~ p « / 3 f 2 / 3 ( 7 y & ) 3 > ( 3 5 ) 

where V = dln7ydln/? and Vad = (d\nT/d\np)s; when evaluated at the depth 
corresponding to TC min, p1/3T3 roughly scales as its photospheric value. The dependence 
of Ec on gs reflects the variation in the volume of the convective eddy. 

We can now qualitatively account for the variation in the oscillation velocity found 
in Tables I and II. Along the ZAMS gs decreases with increasing mass for M < 1.2 M0 
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and is roughly constant for larger masses, whereas Teff increases. Furthermore ps 

decreases with increasing TefT; in fact we have approximately 

P^P-^- (3.6) 
•^Xs Teff 

(e.g. Schwarzschild, 1958), where /iv and tcs are the mean molecular weight and the 
opacity in the photosphere, Sk is the gas constant and fi is of order unity, and in the 
relevant temperature range x is a rapidly increasing function of T. The net effect is an 
increase in Ec with increasing mass, until the point where convection ceases to transport 

1 0 FT i i i | r-|—i—i—|—i—i—r-1—i—rn—i—i—]—r-r-[— | i i i —| i i i—|—|—n—i i | I—I I I = 

T* (m Hz) 

Fig. 2. The variation of Ec/M and 1/TC, EC being the energy in a convective eddy and TC. its time scale, 
through the upper convection zones in a selection of ZAMS models. The curves are labelled with M/MQ, 

where M is the mass of the model and MQ the mass of the Sun. 
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the major part of the total energy flux. The variation in Sosc is dominated by the decrease 
in ps with increasing mass (cf. Equation (3.1)). Thus the variations in Ec and Sosc both 
contribute to the general increase in vs with M shown in Table I. The beginning decrease 
in the most massive models is caused by a decrease in the efficiency of convection, which 
in the 1.8 MQ model carries at most about 40% of the flux. 

It is of some interest to study in more detail the variation of the computed quantities. 
Figure 2 shows the run of i~x and Ec/M in a number of ZAMS models. In each case 
the upper edge of the convection zone corresponds to large xc and small Ec. With 
increasing depth in the convection zone TC decreases and Ec increases, until \. reaches 
a minimum whose position is generally close to that of the maximum in the superadiabatic 

1 0 F T I I I |—I—|—I—I—|—I—|—I—|—|—I—|—I—|—|—|—|—|—I—|—|—|—|—|—|—[—|—|—|—|—|—|—|—|—|—r~!—I—TE 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

0 .5 1.0 1.5 2 . 0 2 . 5 3 .0 3 . 5 4 . 0 4 . 5 

i/(m Hz) 
Fig. 3. The dimensionless pulsation energy Soac (defined in Equation (2.5)) for radial modes in the models 
on Figure 2, as functions of the cyclic oscillation frequency v. For clarity the values for the discrete modes 

have been connected with continuous lines. The curves are labelled with M/MQ. 
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gradient. In the low-mass models, with deep convection zones, Ec continues to increase 
until close to the lower boundary of the convection zone where it tends to zero with the 
convective velocity. In high-mass models, on the other hand, convection only carries 
a significant fraction of the total flux near the middle of the convection zone, and Ec 

begins to decrease at a depth only slightly larger than the depth corresponding to the 
minimum in xc. In the models of highest mass in Table I mixing length theory predicts 
the existence of two separate convection zones, one corresponding to the ionization of 
H and the first ionization of He, and the other to the ionization of H e + . For these 
models only the H convection zone is included in Figure 1; the He + convection zone 
has time scales longer than the periods of the relevant oscillations. 

The variation in iosc with oscillation frequency, for the same models, is presented on 
Figure 3. All radial modes up to the acoustical cut-off frequency, or within the range of 
the convective time scales, have been included; for clarity the discrete values have been 
connected by continuous lines. The figure clearly shows the rapid increase in <?osc at 
small frequencies, predicted by Equation (3.1), as well as the decrease in Sosc with 
increasing stellar mass. 

Finally Figure 4 shows the predicted velocity amplitudes as functions of the oscillation 
frequency. Both the total convective energy and the pulsational energy generally increases 
with increasing time scale, and hence the variation of the velocity with frequency 
depends on the balance between these two effects. For the lower-mass stars the variation 
in <fosc dominates, and the velocity is largest at the cut-off frequency T"^ , , . For higher 
mass, however, vc is reduced (partly because of the reduction in the mean molecular 
weight and in T, caused by ionization in the atmosphere) so much that <fosc varies 
relatively little for frequencies close to i~J^in. Hence here the increase in Ec with 
increasing xc dominates, leading to an amplitude maximum at intermediate frequencies; 
this is especially pronounced in the 1.5 MQ model. For models of even higher mass, with 
two separate convection zones, the decrease in Ec at the lower boundary of the upper 
zone contributes to the decrease in the velocity at low frequencies and shifts the velocity 
maximum to somewhat higher frequencies. 

In models with masses up to 1.6 M 0 the variation in Xs is small, and the luminosity 
amplitudes follow the velocities fairly closely. At higher masses the behaviour of Xs is 
less regular. Thus the 1.7 MQ model has an exceptionally low value of Xs, leading to the 
small {bL/L)s shown in Table I, whereas Xs in the 1.8 MQ model is large, causing a 
relatively high luminosity amplitude for this model. The reason for this behaviour of Xx 

is not clear, but it may be related to differences between the two models in the structure 
of the convection zone. In particular the maximum efficiency of convection in the upper 
convection zone is reduced markedly from the 1.7 MGtothe 1.8 MQ model. Furthermore 
the upper edge of the convection zone is at a relatively small optical depth in these 
models, so that the surface luminosity perturbation is probably strongly affected by the 
behaviour of the luminosity perturbation in the convection zone. This also implies that 
the predicted luminosity perturbation might be quite sensitive to the neglect of the 
convective flux perturbation, and it should therefore be regarded as preliminary for the 
higher-mass models. In the lower-mass models, including the Sun, the upper boundary 
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Fig. 4. Predicted surface velocity amplitudes us for the models on Figure 2, as functions of v(cf. the caption 

to Figure 3). 

of the convection zone is deeper and the effects of the neglect of the convective flux 
perturbation are probably less important. However a computation including the 
convective flux is clearly needed. 

The mean frequency separation A v decreases with increasing mass of the model. This 
is largely an effect of the increasing radius. In fact zlv can be estimated from asymptotic 
theory (e.g. Vandakurov, 1967) as 

Avx 2 dr/c (3.7) 

and the variation in the sound speed with mass is relatively small. 
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Along the 1 MQ evolution sequence (cf. Table II) the increase in velocity amplitude 
comes predominantly from an increase in Ec, caused by the decrease in surface gravity 
(cf. Equation (3.5)); in all cases the maximum amplitude occurs at the cut-off frequency 
T
c~min- The change in the behaviour of Xs is small, so that the variation in the luminosity 

perturbation follows the surface velocity closely. The decrease in A v with age largely 
reflects the increase in the radius. 

From Equation (3.5) the amplitudes might be expected to generally increase as one 
moves away from the Main Sequence. In fact, as the luminosity varies much more 
rapidly than the mass, the amplitude is predicted to increase rapidly with increasing 
luminosity at fixed effective temperature. For variations in Teff at fixed mass and 
luminosity the change in surface gravity dominates over the change in flux, and so the 
amplitudes are predicted to increase with decreasing TefT. These predictions are largely 
confirmed by our results on envelope models of high luminosity, presented in Table III. 
The very long time scales and small frequency separations for these models are clearly 
caused by their low surface gravities and large radii. Furthermore the acoustical cut-off 
frequency decreases more rapidly with increasing radius than does the frequency v, of 
the fundamental radial oscillation; hence the number of modes with v < vf is decreased, 
and in fact for several of the models in Table III the maximum amplitude is found for 
the fundamental radial mode. 

TABLE III 

Properties of oscillations of envelope models. The relation between mass and luminosity is derived from 
Iben's (1964) evolution calculations. The notation is as in Table I. 

M/MQ 

5 
-
-
-
9 
-
-
-
-

12 
-
-
-

15 
-
-
-
-
-
_ 

L/LQ 

103 

-
-
-

104 

-
-
-
-

3 x 104 

-
-
-

105 

-
-
-
-
-
_ 

TM 

6800 
5770 
5000 
4500 

6800 
5770 
5000 
4500 
4000 

5000 
4500 
4000 
3750 

6800 
5770 
5000 
4500 
4000 
3750 
3500 

J,max 
(kms- 1 ) 

0.014 
0.015 
0.021 
0.015 

0.021 
0.046 
0.095 
0.12 
0.054 

0.093 
0.20 
0.25 
0.16 

0.011 
0.085 
0.13 
0.19 
0.44 
1.0 
1.8 

(bLJLs)m^ 

1.1 
1.7 
3.1 
3.6 

2.2 
5.2 
1.9 
2.5 
1.4 

1.8 
5.2 
7.3 
5.0 

6.4 
7.9 
2.4 
5.0 

x 10-4 

x 10-4 

x 1 0 4 

x 10-4 

x 10"4 

x 10-4 

x 10-3 

x 10-3 

x 10"3 

x 10-3 

x 10-3 

x 10-3 

x 10-3 

x 10-5 

x 10-4 

x 10-3 

x 10"3 

0.018 
0.046 
0.074 

' J m a x 

(days) 

0.32 
0.56 
3.5 
1.2 

2.0 
2.9 
5.2 

37 
60 

12 
18 

130 
170 

45 
20 
31 

230 
370 
480 
110 

Av 
(uHz) 

2.65 
1.82 
1.13 
0.75 

0.64 
0.43 
0.30 
0.21 
0.15 

0.16 
0.12 
0.085 
0.064 

0.11 
0.086 
0.074 
0.064 
0.052 
0.040 
0.027 
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4. Observational Implications 

Given the results of the preceeding section, we may consider the prospects for observing 
stellar analogues to the solar 5 min oscillations. On the basis of the amplitudes alone 
stars somewhat hotter or more evolved than the present Sun appear to offer the best 
chances. For main sequence stars with an effective temperature of 7000-7500 K velocity 
amplitudes of up to 10 times higher, and luminosity amplitudes up to 5 times higher, than 
for the present Sun were obtained. The amplitudes are still too small to be easily 
detectable; however the fact that evidence for the solar luminosity oscillations, reflected 
in the light of Neptune, was obtained by Deubner (1981) suggests that one should be 
able to observe luminosity oscillations with reasonable certainty in stars of spectral types 
somewhat earlier than the Sun. Velocity measurements are probably beyond present-day 
techniques, but may eventually become feasible. 

For the detection of the oscillations high frequency resolution is not needed. However 
to be of use for seismology the observations must provide values of individual 
frequencies, and this puts constraints on the frequency separation between the individual 
modes. As shown by e.g. Loumos and Deeming (1978) the frequency resolution is 1.5/T 
for a single observation of length T; if spectra resulting from many such observations 
are averaged the resolution is improved to \/T (Christensen-Dalsgaard and Gough, 
1982). For observations with T = 8 hr, which is probably about the maximum duration 
of stellar observations from moderate latitudes, the corresponding resolutions are 52 
and 35 uHz, respectively. When comparing these values with the theoretical estimates 
of A v given in Tables I and II should be kept in mind that the latter refer only to the 
radial modes. For measurements of luminosity or velocity oscillations in integrated 
starlight modes of degree 0, 1, and 2 are expected to dominate (Dziembowski, 1977). 
Unless very high resolution is achieved one would therefore (cf. Christensen-Dalsgaard 
and Gough, 1982) expect the observed spectrum to consist of almost uniformly spaced 
peaks corresponding alternately to modes of degree 0 and 2, and to a mode of degree 1, 
the spacing between adjacent peaks being half the value of A v given in Tables I or II. 
Thus to be resolved with a single night of observation, or an average of several such 
nights, the spectrum of oscillations of a star should have a A v of at least about 100 or 
70 uHz, respectively. Evidently the higher-mass ZAMS stars or the more evolved 
1 MQ stars are close to these limits. For evolved stars of mass significantly greater than 
1 MQ frequency resolution is probably impossible if only single-night observations, 
analyzed separately, are used. Thus one clearly has to find a balance between the 
demands of high amplitude and large frequency separation, the optimum being probably 
slightly evolved stars somewhat, but not too much, hotter than the Sun. 

With more extensive observations it may become possible to improve the resolution 
by combining several nights' observations coherently on the assumption that the 
oscillations have a sufficiently long lifetime, although the problems of aliasing would 
then have to be dealt with. For solar oscillations such analyses were carried out by 
Deubner (1981), Claverie etal. (1981), and Bos and Hill (1983). Alternatively a 
continuous record could be obtained by combining data from several different obser-
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vatories spaced around the Earth; and it may ultimately become possible to observe 
stars for extended periods of time from the South Pole, as was done by Grec et al. (1980) 
in the case of the Sun. 

Further from the Main Sequence the periods become so long, and A v so small, that 
frequency resolved spectra would require months or even years of observation, and A v 
may eventually get so small that the modes appear to merge due to their finite lifetime. 
However it might still be possible to observe the oscillations as apparently irregular 
fluctuations in brightness or velocity, and from such observations to determine the 
overall distribution of power with frequency. In the range of stellar parameters covered 
by Table III the predicted maximum amplitudes are so large that the fluctuations should 
be seen with reasonable ease in ordinary photometric observations. In fact there may 
be some evidence that such fluctuations have been observed. In an extensive set of 
luminosity measurements made by Rufener, Maeder (1980) found luminosity fluc
tuations of up to 0T1 among giants and supergiants. The amplitudes of these fluc
tuations, as a function of effective temperature, appears to have a minimum in the 
neighbourhood of the Cepheid instability strip, and this suggests that different mecha
nisms are at work among high- and low-temperature stars. If so, it seems possible that 
stochastically excited oscillations might be responsible for the fluctuations in the 
low-temperature region. Indeed the observations have the same trend, of increasing 
amplitude with increasing luminosity or decreasing effective temperature, as the results 
in Table III, and the observed and predicted amplitudes agree in order of magnitude. 
Radial velocity fluctuations of the order of 1 km s_ 1, observed by Gun and Griffin 
(1979) in stars belonging to M3, might also be caused by stochastically excited 
oscillations. It is tempting to speculate that irregular and semiregular variability among 
red giants represents a further extension of this phenomenon; the oscillations of the true 
red variables are probably caused by linear instability. - Clearly further observations 
and more theoretical work is needed to clarify these possibilities. 

5. Discussion 

The physical model used in predicting the oscillation amplitudes, viz. equipartition 
between pulsational energy in one mode and kinetic energy in one 'resonating' convective 
eddy, is undoubtedly very rough. It is perhaps best regarded as a scaling law which, after 
being calibrated against the Sun, may be used to estimate how the amplitudes vary with 
stellar type. Thus the general trends in the neighbourhood of the Sun, i.e. the increase 
in amplitude with mass or age, are probably correct if the oscillations are indeed caused 
by stochastic excitation, whereas the predicted properties for models further from the 
Sun are far less reliable. 

A major uncertainty is the use of traditional mixing length theory to describe the 
dynamics of the convective motion. Although the inferred time scales for solar 
convection are not in obvious conflict with observations of solar granulation, we clearly 
have almost no observational evidence for the distribution of energy among the 
convective eddies, and for other stars we have information about neither time scales nor 
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energies. In particular it appears from anelastic modal calculations (Latour et ah 1981) 
that mixing length theory overestimates the convective flux in relatively hot stars with 
thin convection zones. If this is the case the convective energies are almost certainly 
overestimated as well, and the predicted amplitudes for the hotter stars in Table I would 
have to be reduced. Estimates of convective time scales and energies from more detailed 
calculations would provide useful information on this issue. 

Even if the spectrum of convection had been known, we would still need a consistent 
scheme for calculating from this the surface amplitudes of the oscillations. It is 
encouraging that Gough and Poyet (Poyet, 1983) have made progress towards 
formulating such a scheme. Thus there is hope that a more reliable basis for making the 
amplitude estimates may soon become available. 

Given the uncertainties in the theoretical results any observational test would clearly 
be highly valuable. Detection of stochastically excited oscillations in other main sequency 
stars and measurement of their amplitude would provide such a test, but has not yet 
been made. However as mentioned in Section 4 Maeder (1980) has found luminosity 
fluctuations in relatively cool supergiants, which agree roughly in magnitude and in the 
dependence on stellar luminosity and effective temperature with the results obtained in 
Section 3. The association of these fluctuations with oscillations has not been 
demonstrated. They could perhaps be caused by direct fluctuations in the convective 
flux(Schwarzschild, 1975), or by inhomogeneities in a stellar wind. Further observations, 
in particular of the relation between the luminosity fluctuations and possible fluctuations 
in radial velocity (which should be relatively easy to measure, if the estimates in Table III 
are realistic), may permit a choice between these different possibilities. Confirmation 
that the fluctuations are caused by oscillations would not only provide an immediate 
test of the results obtained here, but would also imply that this type of oscillations could 
be studied over a fairly large region of the HR diagram, with amplitudes large enough 
to allow traditional photometric techniques to be used. 

6. Conclusion 

From the results obtained here it seems reasonable to hope that 5 min oscillations of 
main sequence stars will be detected in a not too distant future, and that it will become 
possible to measure individual frequencies of such oscillations. The observational effort 
required is undoubtedly large; but the results should give direct information about the 
structure of Main Sequence stars and would therefore be very valuable in testing the 
theory of stellar evolution. The first quantity to be determined would probably be the 
mean frequency separation Av which, as pointed out in Section 3, to a large extent is 
a measure of the radius of the star. However with observations of sufficiently high 
frequency resolution to resolve the individual modes, it should be possible to assign 
values of/ to the individual frequencies from the observed amplitudes and the distribution 
of modes, as has been done for the solar oscillations, (see e.g. Christensen-Dalsgaard, 
1980); the frequencies would then give more detailed information about the structure 
of the star. Even higher resolution might enable detection of rotational splitting of the 
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frequencies of modes with / > 0; this has apparently been achieved by Claverie etal. 
(1981) for the Sun, and would give information about the rotation rate of the star, 
possibly eventually even about its variation with position in the star. 

It is worth pointing out that observations of this type of oscillations might also be 
useful in the study of stellar convection. The calculation of the oscillation amplitudes 
resulting from a given convective velocity field is probably considerably simpler than a 
direct computation of the convective velocities. Furthermore, although identification of 
individual frequencies may be difficult for stars that are not close to the Main Sequence, 
it may still be possible in such stars to determine the broad variation of power with 
frequency. Thus, if the general idea that these oscillations are excited stochastically by 
convection is correct, one may hope to be able to perform at least a limited inversion 
on the observed amplitudes, to get information about the properties of the convection. 
Such information, which can then potentially be obtained over a wide range of stellar 
parameters, would clearly be very useful in testing theories of stellar convection. 
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