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The intrinsic uncertainty of fluid properties, including the equation-of-state, viscosity and
thermal conductivity, on boundary layer stability has scarcely been addressed. When a
fluid is operating in the vicinity of the Widom line (defined as the maximum of isobaric
specific heat) in supercritical state, its properties exhibit highly non-ideal behavior,
which is an ongoing research field leading to refined and more accurate fluid property
databases. Upon crossing the Widom line, new mechanisms of flow instability emerge,
feasibly leading to changes in dominating modes that yield turbulence. The present work
investigates the sensitivity of three-dimensional boundary layer modal instability to these
intrinsic uncertainties in fluid properties. The uncertainty, regardless of its source and
the fluid regimes, gives rise to distortions of all profiles that constitute the inputs of
the stability operator. The effect of these distortions on flow stability is measured by
sensitivity coefficients, which are formulated with the adjoint operator and validated
against linear modal stability analysis. The results are presented for carbon dioxide at a
representative supercritical pressure of approximately 80 bar. The sensitivity to different
inputs of the stability operator across various thermodynamic regimes shows an immense
range of sensitivity amplitude. A balancing relationship between the density gradient and
its perturbation leads to a quadratic effect across the Widom line, provoking significant
sensitivity to distortions of the second derivative of the pressure with respect to the density,
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∂2 p/∂ρ2. From an application-oriented point of view, one important question is whether
the correct baseflow profiles can be meaningfully analysed by the simplified ideal-fluid
model. The integrated modal disturbance growth – the N factor calculated with different
partly idealised models – indicates that the answer depends strongly on the thermodynamic
regime investigated.

Key words: boundary-layer stability

1. Introduction
Non-ideal compressible fluids are increasingly used in various applications for improved
efficiency and reduced pollution (Guardone et al. 2024). Examples include power
generation (White et al. 2021), heat exchangers (Chai & Tassou 2020) and fuel injections
(Bellan 2020). ‘Non-ideal’ describes fluids that do not conform to the ideal gas equation-
of-state and exhibit unique phenomena such as pseudo-boiling (Banuti 2015), heat transfer
deterioration (Pizzarelli 2018) and non-classical rarefaction shock waves (Alferez &
Touber 2017). These non-ideal characteristics pose significant challenges to the traditional
ideal gas framework used for predicting flows subject to distortions and laminar–turbulent
transition (Li et al. 2024).

In addition to the complexity of a non-ideal fluid, the difficulty of predicting flow
transition is essentially due to its high sensitivity and the multi-fold path from laminar to
turbulence (Reshotko 2008), which depends not only on the flow configuration, but also the
form and amplitude of external perturbations present in the environment. Consequently,
the dominant mechanisms are varied. In the linear regime, well-known examples are
Tollmien–Schlichting waves due to eigenmodal growth of instabilities, the second mode
in hypersonic boundary layer flows (Mack 1984), cross-flow waves resulting from a three-
dimensional swept flow (Saric, Reed & White 2003), centrifugal instabilities due to the
presence of concave surfaces (Saric 1994) and streamwise velocity streaks following
non-modal growth (Trefethen et al. 1993; Schmid & Henningson 2001), among others.

In a typical linear stability analysis, the growth rate and dispersion relations are
obtained for a pre-calculated laminar baseflow. However, actual flows are inevitably
affected by numerous extraneous factors that are not thoroughly accounted for by the
theoretical model. Examples include free stream turbulence (Hunt & Graham 1978),
particles (Browne et al. 2021), noise (Schneider 2001) and leading-edge contamination
(Spalart 1989), to name a few. To connect to realistic configurations, a key question is how
robust the analytical results are and to what extent the growth rate will change when certain
distortions are present. Additionally, determining the appropriate distortion that leads to a
desired transition promotion or delay is crucial for controling purposes.

The above requirement aligns with the operator perturbation theory (Kato 2013), a
well-developed field in mathematics (Bottaro, Corbett & Luchini 2003). In the context
of flow instability, seminal works were performed by Pralits et al. (2000); Bottaro et al.
(2003); Marquet, Sipp & Jacquin (2008); Bagheri, Brandt & Henningson (2009) and
Brandt et al. (2011) for parabolised stability equations, local and global modal stability
analyses, feedback control design, and non-modal growth, respectively. By adopting the
adjoint equations (see the review by Luchini & Bottaro 2014), a measure of the system’s
response to input variations is formulated. The computed sensitivity field indicates the
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regions where flow distortions most effectively modify the growth rate, thereby pointing
to optimal control strategies.

Recent research on sensitivity analysis has extended to account for high-speed boundary
layer flows. Park & Zaki (2019) investigated a Mach-4.5 flat-plate boundary layer, focusing
on the sensitivity properties of the fast and slow modes, whose synchronisation gives
rise to Mack’s second mode (Fedorov & Tumin 2011). Guo et al. (2021) recognised two
routes for sensitivity: one where distortion influences the baseflow, leading to variations in
the linear stability operator, and another where the stability changes directly. Chen et al.
(2024) found that for an inclined blunt cone, the structural sensitive region is located
on the windward side, just downstream of the inlet. Poulain et al. (2024) formulated the
sensitivity based on global instability and resolvent analysis. They identified the optimal
locations for steady wall blow/suction and heating/cooling, some of which were shown to
successfully damp Mack’s first/second modes and boundary layer streaks simultaneously.

In relation to the current study, Brynjell-Rahkola et al. (2017) conducted a meaningful
analysis on the sensitivity of a three-dimensional (3-D) Falkner–Skan–Cooke boundary
layer flow to numerical details. Despite significant knowledge gained regarding the
sensitivity of boundary layer stability, studies so far have been mostly limited to ideal
gases. The idea here aligns with Juniper & Sujith (2018), who emphasised that ‘the
systematic approach in adjoint methods requires an accurate thermoacoustic model ’.
Recent efforts on supercritical fluids have discovered new inviscid instabilities (see
Robinet & Gloerfelt 2019, for a short review) occurring during pseudo-boiling, where
the fluid shifts from liquid-like to gas-like behaviour (Simeoni et al. 2010). Pseudo-boiling
represents significant non-ideal thermodynamic regions of a supercritical fluid where the
phase change vanishes and is replaced by substantial mutations in thermodynamic and
transport properties. These highly non-ideal regions are recognised by the Widom line
(Banuti 2015), typically defined as the maximum of the isobaric-specific heat (C p).

Linear stability analyses on canonical flows of supercritical fluids explored so far
have demonstrated commonalities – the presence of a new inviscid instability that
dominates. For example, the binary mixing layer was shown to be destabilised by a
new thermodynamically induced instability (Ly & Ihme 2022), which can affect the
performance of supercritical fuel injection systems. Plane Poiseuille and Couette flows
can both become inviscidly unstable upon crossing the Widom line (Ren, Fu & Pecnik
2019a; Bugeat et al. 2024). Under similar conditions, two-dimensional (2-D) boundary
layers are subject to dual-mode instability, where the flow is dominated by new inviscid
instability in addition to the conventional viscous Tollmien–Schlichting waves (Ren et al.
2019b). Moreover, in 3-D boundary layers of accelerating flows with wall cooling, the
dominating cross-flow (CF) modes are replaced by the 2-D inviscid mode, which has a
growth rate significantly more prominent than that of the CF modes, despite the strong
favourable pressure gradient (Ren & Kloker 2022a).

The above correlative phenomena have motivated recent efforts to develop novel solvers
and to understand the fundamental mechanisms. To the best of the authors’ knowledge,
Boldini et al. (2025) has recently introduced the first open-source high-order solver
‘CUBENS’ for single-phase non-ideal fluids in canonical geometries. Bugeat et al. (2024)
showed that for stratified plane Couette flow, a minimum in the kinematic viscosity of the
baseflow profile produces a generalised inflection point that fulfils Fjørtoft’s generalised
inviscid instability criterion (Fjørtoft 1950). They further extended Rayleigh’s criterion
(Rayleigh 1880) to stratified flows, demonstrating that the excess of density-weighted
vorticity (attributed to shear and inertial baroclinic effects) relative to its spatial thickness
is responsible for the inviscid instability. Specifically, different fluid models featuring an
extremum of the kinematic viscosity were devised to verify the generalised stability model.
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In contrast to Couette flow, boundary layer flows are non-parallel, requiring further
theoretical work to better understand the dual-mode instability (Bugeat, Boldini & Pecnik
2022). By analysing the boundary layer equation, Ren & Kloker (2022a) concluded that
in a 3-D boundary layer, the tremendous negative near-wall viscosity gradient ∂μ/∂y is
responsible for the inflectional shape of the streamwise velocity profile. This viscosity
gradient, upon wall cooling, can be mathematically expressed as

∂μ

∂y

∣∣∣∣
(−)

= ∂μ

∂T

∣∣∣∣
(+)

∂T

∂y

∣∣∣∣
(+)

+ ∂μ

∂ρ

∣∣∣∣
(+)

∂ρ

∂y

∣∣∣∣
(−, dominating).

(1.1)

Along with the increase of ∂ρ/∂y in the pseudo-boiling regime, an inflection point is
established (note that the first term on the right-hand side is positive for a gas or gas-
like fluid, cf. figure 3). Meanwhile, the cross-flow component ws , responsible for the
CF instability, is influenced by the boundary layer’s density distributions through the
balancing relationship of the centripetal and centrifugal forces on a curved streamline.

A rational equation-of-state (EOS) and laws of transport properties are essential for both
the baseflow and the stability operator, to capture the behaviour correctly. Numerically,
look-up tables are used to obtain non-ideal fluid properties during the integration of
flow equations. Widely used databases include the NIST (National Institute of Standards
and Technology) Reference Fluid Thermodynamic and Transport Properties Database
(RefProp) (Huber et al. 2022) and the open-source library CoolProp (Bell et al. 2014).
In both Refprop and Coolprop, the Helmholtz energy form for a fundamental EOS is used:

α(τ, δ) = αid + αr = αid +
∑

k

Nkδ
dk τ tk +

∑
k

Nkδ
dk τ tk exp(−δlk ), (1.2)

where τ = T/Tc and δ = ρ/ρc are the reduced temperature and density (by critical values),
respectively, α is the reduced molar Helmholtz energy, αid is the ideal gas contribution,
and αr is the real-fluid contribution.Additionally, Nk are coefficients obtained by fitting
experimental data, and the exponents dk , tk and lk are also determined by regression. To
recover the state equation p = f (ρ, T ), the following thermodynamic relationship is used:

p

ρRT
= 1 + δ

(
∂αr

∂δ

)
τ

. (1.3)

However, it is important to note that to better represent properties in the critical region,
additional terms are necessary in (1.2), which can make the expression extremely complex
(sometimes with more than 50 terms). Due to the empirical nature of the equation,
RefProp and CoolProp retain the equation-of-state in an implicit form, but one that
closely aligns with physical values – achieving uncertainties that approach the level of
the underlying experimental data, in line with the objectives of such libraries. Therefore,
the constraints on EOS imposed by thermodynamic stability (see Section II.C of Menikoff
& Plohr 1989) shall be satisfied. Accurately describing transport properties, especially
in non-ideal regimes, is a challenging and ongoing task that depends heavily on precise
experimental measurements. These libraries incorporate various empirical and theoretical
(fluid-specific) models for transport properties (see Huber et al. 2016, for an example of
thermal conductivity in CO2).

Figure 1 compares the gradient of thermal conductivity with respect to temperature, one
of the inputs for the flow stability operator. Data were generated using RefProp (version
8.0.4) and CoolProp (version 6.4.1). As shown, panel (b) suffers from model imperfections
and non-smooth behaviour near the critical temperature. Even far from the critical point,
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Figure 1. Comparison of the fluid property ∂κ/∂T (in dimension Wm−1 K−2) for carbon dioxide. The values
are generated using (a) RefProp and (b) CoolProp. (c) Differences between the values generated by the two
look-up tables. The red circle marks the critical point and the red line represents the isobar at 80.

the values differ significantly between the two databases. The overall difference (see panel
c) is generally of a similar order as the values, reflecting considerable uncertainties. Ren
& Kloker (2022b) demonstrates that even slight adjustments to the stability operator
can substantially influence modal growth, emphasising the importance of considering
non-ideal gas behaviours. However, the root causes of this sensitivity variation are still
unexplored, pointing to the need for a formalised sensitivity framework to gain deeper
understanding. To date, the sensitivity characteristics of boundary layer stability in relation
to these fluid properties remain unclear.

We aim to characterise and quantify the behaviour by examining the sensitivity of
linear stability to each of the inputs of the stability operator. This study will highlight
the importance of accurately including the thermodynamic and transport properties of the
non-ideal fluid, which are often missed in conventional hydrodynamic stability theory
when a temperature gradient crosses the Widom line. Additionally, the possibility of
simplifying the fluid model in other regimes will be discussed. The organisation of the
paper is as follows: § 2 defines the problem, clarifies the coupling between fluid properties,
the laminar baseflow and the linear instability, followed by the derivation of sensitivity
profiles; § 3 discusses the results for sensitivity; and § 4 presents the conclusions.

2. Problem definition and sensitivity

2.1. Governing equations and flow conditions
The flow satisfies the conservation laws for mass, momentum and energy for a generic
fluid (Navier–Stokes equations). In Cartesian coordinates and dimensionless form, this
reads

∂ρ

∂t
+ ∂

(
ρu j

)
∂x j

= 0, (2.1a)

∂ (ρui )

∂t
+ ∂

(
ρui u j − σi j

)
∂x j

= 0, (2.1b)

∂ (ρe)

∂t
+ ∂

(
ρeu j + q j

)
∂x j

− σi j
∂ui

∂x j
= 0. (2.1c)

1007 A7-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.100


J. Ren, Y. Wu, X. Mao, C. Wang and M. Kloker

150

100

50

0
1 2 3 4 5

x

0

0.2

0.4

0.6

0.8

1

super.

ideal

trans.

sub.

(a) (b)
p 

(b
ar

)
150

100

50

0
1 2 3 4 5

x

0

0.2

0.4

0.6

0.8

1

super.

ideal

trans.

sub.

P
re

ss
u
re

 c
o
ef

fi
ci

en
t

→→

10.8 1.2 1.4 1.6 1.8 2 2.2 2.4
0.2

0.4

0.6

0.8

1

1.2

1.4

Tr = T/Tc

p r
 =

 p
/p

c

Widom line

Critical point

Liquid
-like

w ∞ w w w∞
Gas-like Ideal gas

w∞w

Pseudo-boiling

Vaporisation line

0 0.2 0.4 0.6 0.8 1

z = p/ρRT

(c)

Figure 2. Distribution of pressure (left axis) and pressure coefficient (right axis) for (a) wall cooling and
(b) heating cases. (c) Pressure–temperature (P−T ) diagram of carbon dioxide. The contours represent the
compressibility factor z̄ = p/(ρRT ). Above the critical point (red dot), the Widom line is plotted using a white
dashed line. The fluid regimes are considered along the isobar of 80 (p/pc = 1.0844). Four groups of cases
are shown with yellow (wall-heating) and cyan (wall-cooling) lines. These lines characterise the distribution of
flow temperature, with wall and free stream values denoted by w and ∞, respectively.

Here, the subscripts i, j denote vector/matrix components in a 3-D space and follow
Einstein’s summation rule. With this denotation, (x1, x2, x3) = (x, y, z) are coordinated
along the streamwise, wall-normal and spanwise directions. Similarly, (u1, u2, u3) =
(u, v, w) stand for velocity components along (x, y, z). The stress tensor σi j and heat
flux q j are given by

σi j = μ

Re

(
∂ui

∂x j
+ ∂u j

∂xi

)
+ λ

Re
δi j

∂uk

∂xk
− pδi j , (2.2a)

q j = − κ

RePr Ec

∂T

∂x j
, (2.2b)
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Acronym Relative to the
pseudo-critical point
(Widom line)

Fluid
characteristics

T∞, Tw (wall
heating)

T∞, Tw (wall
cooling)

Sub Subcritical Liquid-like (280.0, 298.7) K (280.0, 262.5) K
Trans Transcritical Pseudo-boiling (300.0, 320.0) K (320.0, 300.0) K
Super Supercritical Gas-like (400.0, 426.7) K (400.0, 375.0) K
Ideal Supercritical Ideal-gas (700.0, 746.7) K (700.0, 656.3) K

Table 1. A summary of flow cases investigated.

where Re, Pr and Ec are the Reynolds, Prandtl and Eckert numbers, δi j stands for the
Kronecker delta, μ for viscosity, κ for thermal conductivity, p for pressure, and λ is the
Lamé constant (set to −2μ/3 in this study). Equations (2.1) and (2.2) are closed with
the relations for thermodynamic and transport properties. For a genetical fluid of pure
substance, these relations are written as binary functions of density and temperature,[

p, e, μ, κ
] = [

p, e, μ, κ
]
(ρ, T ) . (2.3)

We consider 3-D laminar boundary layers with a favourable pressure gradient.
The pressure coefficient distribution matches the redesigned DLR experiment (Barth,
Hein & Rosemann 2018) on CF instability, leading to an established p(x), as shown
in figure 2(a,b). In all cases, the static pressure p∞ is fixed at 80 bar and the pressure
thus follows Bernoulli’s relation. We prescribe various free stream and wall temperatures
(T∞, Tw) to explore the physics of four representative regimes: liquid-like, pseudo-
boiling, gas-like and ideal gas, as shown in figure 2(c). Specifically, relative to the
pseudo-critical (pseudo-boiling) temperature Tpc = 307.7 K, the boundary temperatures
are summarised in table 1. The temperature ratios are maintained at Tw/T∞ = 16/15
and 15/16 for wall heating and cooling, respectively. An identical Reynolds number
(Re = ρ∞U∞L ref/μ∞ = 1.4687 × 105) as in the experiment and a low Mach number
(Ma = U∞/c∞ = 0.2) have been used. The choice of these parameters ensures that the
flow has exact comparability with typical cross-flow instabilities in the ideal-gas regime,
in which the same dimensionless baseflow and neutral curve is obtained (Dörr & Kloker
2017; Ren & Kloker 2022a).

2.2. The laminar baseflow
Matching the pressure coefficient distribution of the DLR experiments results in a
non-self-similar laminar baseflow where the shape factor (ratio of displacement to
momentum-loss thickness) is not constant. This laminar baseflow is obtained by solving
the parabolised Navier–Stokes (PNS) equations. In steady and non-separating boundary
layer flows, the streamwise viscous gradient is notably smaller than the wall-normal
component. Therefore, the PNS equations are derived from the full Navier–Stokes
equations by neglecting the streamwise gradient in the viscous terms. The resulting
equations in their 2-D form are given by

A
∂ Q
∂x

+ B
∂ Q
∂ y

= RHS, (2.4)
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A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u ρ 0 0 0

0 ρu − 1
Re

∂μ

∂y
0 0

0 − 1
Re

∂λ

∂y
ρu 0 0

0 0 0 ρu 0

ρu
∂e

∂ρ
p 0 0 ρu

∂e

∂T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.5)

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v 0 ρ 0 0
0 b2,2 0 0 0
∂p

∂ρ
0 b3,3 0

∂p

∂T
0 0 0 b4,4 0

ρv
∂e

∂ρ
− μ

Re

∂u

∂y
p − 2μ + λ

Re

∂v

∂y
− μ

Re

∂w

∂y
b5,5

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (2.6)

b2,2 = ρv − 1
Re

∂μ

∂y
− μ

Re
D

b3,3 = ρv − 1
Re

∂ (2μ + λ)
∂y

− 2μ + λ
Re

D

b4,4 = ρv − 1
Re

∂μ

∂y
− μ

Re
D

b5,5 = ρv
∂e

∂T
− 1

RePr Ec

∂κ

∂y
− κ

RePr Ec
D

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (2.7)

RHS = (0, −dp/dx, 0, 0, 0)T . (2.8)
The Prandtl (Pr = μ∞C p∞/κ∞) and Eckert (Ec = u2∞/C p∞T∞) numbers are not
independent and can be calculated based on Re, Ma and the temperature conditions
prescribed in table 1. The symbol e denotes the internal energy. The operator D in (2.7)
stands for the wall-normal derivative. In numerically solving the PNS equations by an
implicit Euler scheme, the system is linearised by ‘lagging’ the coefficients A and B
relative to the solution vector Q = (ρ, u, v, w, T )T in an iterative procedure. Namely,
sub-iterations are carried out to update A and B from q at each station of the streamwise
marching to obtain the correct, fully nonlinear values. When external perturbations are not
present, the boundary conditions are

y = ye : ∂u

∂y
= ∂w

∂y
= 0, ρ = ρe (x) , T = Te (x) ; (2.9a)

y = 0 : u = v = w = 0, T = Tw. (2.9b)
We employ the subscript e to denote local boundary layer edge values. At the upper edge of
the boundary layer, both velocity components u and w are subject to Neumann conditions,
while the gradient ∂v/∂y does not vanish due to the presence of streamwise pressure
gradients. Thus, ve is calculated based on the continuity equation. The potential flow
values ρe(x) and Te(x) are given by the isentropic relations (where S stands for entropy):

S (ρe (x) , p (x)) = S (ρ∞, p∞) , S (Te (x) , p (x)) = S (T∞, p∞) . (2.10)
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At the wall, no-slip velocity and a specified wall temperature apply (see table 1). The
wall density is not prescribed; instead, it is allowed to vary to ensure that the pressure
gradient at the wall is zero, thereby satisfying the momentum equation in the wall-normal
direction. The PNS equations are integrated downstream, starting from an initial profile
at x = x0. In this study, we specify the streamwise and spanwise velocities u(x0, y) and
w(x0, y) using the Falkner–Skan–Cooke (FSC) solution (Cooke 1950), with v(x0, y) = 0.
The thermodynamic variables (ρ, T ) are either given as the potential-flow values (applying
isentropic relations) or extrapolated from existing downstream data, ensuring that the
influence of the initial profiles is insignificant.

2.3. Linear instability and the sensitivity framework

Considering flow instability, the flow variables q̃ = (ρ̃, ũ, ṽ, w̃, T̃ )T are decomposed into
the laminar baseflow Q (steady state) and its perturbations q′:

q̃ (x, y, z, t) = Q (x, y) + q ′ (x, y, z, t) . (2.11)

The stability equations are derived by subtracting the governing equations for q̃ and Q,
both of which satisfy the Navier–Stokes equations. We investigate the perturbations in
Fourier space by introducing the ansatz:

q ′ (x, y, z, t) = q̂ (y) exp (iαx + iβz − iωt) + c.c., (2.12)

with c.c. denoting the complex conjugate. The linearised stability equations are derived
and written in a compact form:

L ( Q, α, β, ω, Re, Ma) q̂ = 0. (2.13)

Equation (2.13) constitutes an eigenvalue problem whose dimensions are (5 × 5) before
spatial discretisation. The detailed expressions are provided in Appendix A. We investigate
the problem with Q, β, ω, Re and Ma as inputs, while α and q̂ are the eigenvalue and
eigenfunction to be solved (spatial mode). We present the constituent elements of operator
L in (2.14). Compared with the scalar parameters β, ω, Re and Ma (not shown in (2.14)),
Q includes not only the baseflow profiles (ρ, u, v, T – including boundary conditions, p)
but also the equation-of-state, viscosity, and thermal conductivity, which depend on these
profiles. In other words, the intrinsic properties of the fluid, presented in Q, critically
influence the stability and determine the type and outcome of the problem.

L =

⎛
⎜⎜⎜⎝

[b] [b] [b] [b] 0
[b][EoS][μ] [b][μ] [b][μ] [μ] [b][EoS][μ]
[b][EoS][μ] [μ] [b][μ] [μ] [b][EoS][μ]
[b][EoS][μ] [μ] [b][μ] [b][μ] [b][EoS][μ]

[b][EoS][μ][κ] [b][μ] [b][EoS][μ] [b][μ] [b][EoS][μ][κ]

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
[b] - baseflow profiles: ρ, u, w, T

[EoS] - equation of state:
∂p

∂ρ
,

∂p

∂T
,
∂2 p

∂ρ2 ,
∂2 p

∂T 2 ,
∂2 p

∂ρ∂T
,

∂e

∂ρ
,

∂e

∂T

[μ] - viscosity:μ,
∂μ

∂ρ
,
∂μ

∂T
,
∂2μ

∂ρ2 ,
∂2μ

∂T 2 ,
∂2μ

∂ρ∂T

[κ] - thermal conductivity: κ,
∂κ

∂ρ
,

∂κ

∂T
,
∂2κ

∂ρ2 ,
∂2κ

∂T 2 ,
∂2κ

∂ρ∂T

(2.14)
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∂p/∂T

∂2μ/∂ρ2

∂2p/∂ρ2

∂2μ/∂T2

∂2p/∂T2

∂2μ/∂ρ∂T

∂2p/∂ρ∂T ∂e/∂ρ

[EoS]

0.5
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[b]

Tρuy

y

y y

w∞

01 1

∂κ/∂ρ ∂κ/∂T ∂2κ/∂ρ2 ∂2κ/∂T2 ∂2κ/∂ρ∂T

∂e/∂T∂p/∂ρ

Figure 3. An overview of the inputs in the stability operator. Panels (a)–(d) show [b] baseflow profiles, [EoS]
equation-of-state, [μ] viscosity and [κ] thermal conductivity, respectively. The pseudo-boiling and ideal gas
regimes are plotted with solid and dashed lines, respectively (both under wall cooling). The red circle denotes
the pseudo-critical point.

Symbols with square brackets have been used to distinguish the four groups of inputs, with
the variables associated with each group listed at the bottom of (2.14). Specifically, [b]
represents baseflow profiles (density, velocities in the x- and z-directions, and temperature
as functions of y), [EoS] represents the equation-of-state (profiles of thermodynamic
derivatives of pressure and internal energy), and [μ] and [κ] represent viscosity, thermal
conductivity and their gradients with respect to temperature and density. Compared with
the Orr–Sommerfeld equation (and also to the compressible perfect/ideal gas set-up), there
is an increase in the number of inputs, specifically within the three groups [EoS], [μ] and
[κ]. To gain an overview of all the inputs, we compare the wall-normal profiles between
pseudo-boiling (solid lines) and ideal gas (dashed lines) regimes in figure 3. According to
the state postulate, the groups [EoS], [μ] and [κ] are functions of ρ and T . In the stage
of numerically obtaining the baseflow, ρ and T (and u and w) in turn depend on the
models for [EoS], [μ] and [κ] (see § 2.2 and the discussion in § 2.4). From earlier works
(see reviews in Guardone et al. 2024), the non-ideal properties of a fluid can drive the
baseflow to be inflectional, supporting a new inviscid mode that dominates the instability,
which may significantly promote flow transition. However, it remains poorly understood
how sensitive the flow stability is to the intrinsic properties of a fluid. Specifically, how
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important is each input, and to what degree does it influence the results? Is it feasible to
ignore some of them or use idealised laws?

The answer will be pursued following the sensitivity framework. We consider a
distortion δ Q to the input Q, and thus (2.13) becomes

L ( Q + δ Q, α + δα) (q̂ + δq̂) = 0, (2.15)

in which δα and δq̂ are corresponding changes in the eigenvalue and eigenfunction induced
by δ Q. For brevity, we have omitted the other fixed parameters (β, ω, Re and Ma). Taking
Taylor’s expansion of operator L yields

L ( Q + δ Q, α + δα) = L ( Q, α) + ∂L
∂ Q

δ Q + ∂L
∂α

δα + O
(
δ2

)
, (2.16)

where the gradient is defined as

∂L
∂ Q

δ Q = lim
s→0

L ( Q + sδ Q) − L ( Q)

s
. (2.17)

We substitute (2.16) into (2.15) and subtract the equation for the undistorted state (2.13).
The equation at O(δ) reads

∂L
∂α

q̂δα + ∂L
∂ Q

δ Qq̂ + Lδq̂ = 0. (2.18)

Equation (2.18) forms a tripartite relation between the distortion δ Q and the induced δα

and δq̂. Further to this relation, we define the sensitivity coefficient S Q , which satisfies

δα = 〈
S Q, δ Q

〉
. (2.19)

Here, 〈〉 stands for the inner product between two vectors: 〈a, b〉 = ∫ ∞
0 aH b dy, H implies

Hermitian transpose. The sensitivity coefficient, through (2.19), measures the reactivity of
the eigenvalue relative to the baseflow distortion δ Q. To find the analytical expression for
S Q , we seek the adjoint problem defined by the following relations:〈

q̂†
, Lq̂

〉
=

〈
L†q̂†

, q̂
〉
= 0. (2.20)

The superscript † is used for adjoint variables and operators. The analytical process
deriving the adjoint equations has been provided in Appendix B. The inner product of
q̂† with (2.18) eliminates its last term, giving

δα = −
〈
q̂†

, ∂L
∂ Q δ Qq̂

〉
〈
q̂†

, ∂L
∂α

q̂
〉 . (2.21)

Upon normalisation of the denominator (see Appendix C),〈
q̂†

,
∂L
∂α

q̂
〉
= 1. (2.22)

Equation (2.21) is simplified as

δα = −
〈
q̂†

,
∂L
∂ Q

δ Qq̂
〉
. (2.23)

Comparing (2.23) and (2.19), the sensitivity coefficients S Q are obtained by integrating
(2.23) by parts. We provide their specific expressions in Appendix D (the superscript ∗
indicates the complex conjugate of a variable) for all the inputs discussed in figure 3.
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2.4. Distortions of the baseflow and coupling to the linear stability
Recall § 2.2, where the governing equations of the baseflow are nonlinear and the
coefficient matrix in (2.4) is a function of the solution vector. Here, we rewrite the equation
in a more specific form:

A ( Q, [μ], [κ], [EoS]) ∂ Q
∂x

+ B ( Q, [μ], [κ], [EoS]) ∂ Q
∂y

= RHS. (2.24)

We consider uncertainties in the fluid properties, such as distortions in viscosity δμ (as
well as in other terms of [μ], [κ] and [EoS]). We solve (2.4) twice (with and without
distorted fluid properties) to determine δ Q, which does not require small distortion
amplitudes. Additionally, to understand the influence of δμ on the other components, take
Taylor’s expansion of (2.24),(

A + ∂A
∂ Q

δ Q + ∂A
∂μ

δμ + O
(
δ2

)) ∂ ( Q + δ Q)

∂x
+(

B + ∂B
∂ Q

δ Q + ∂B
∂μ

δμ + O
(
δ2

)) ∂ ( Q + δ Q)

∂y
= RHS.

(2.25)

In the linear regime (when δ is small), by subtracting (2.25) and (2.24), keeping terms of
order O(δ):

A
∂δ Q
∂x

+ B
∂δ Q
∂y

= δRHS, (2.26)

where

δRHS = − (
A (δ Q) + A (δμ)

) ∂ Q
∂x

− (
B (δ Q) + B (δμ)

) ∂ Q
∂y

, (2.27)

A (δ Q) = ∂A
∂ Q

δ Q = lim
s→0

A ( Q + sδ Q) − A ( Q)

s
, (2.28)

A (δμ) = ∂A
∂μ

δμ. (2.29)

In this linear regime, δ Q can be obtained iteratively, as in PNS, by ‘lagging’
the coefficients of A(δ Q) and B(δ Q). Scrutinising (2.26), one recognises that a
scalar deviation δμ can induce distortions in all components of the baseflow δ Q =
(δρ, δu, δv, δw, δT )T through the coupling of the distorted matrices (A(δ Q), A(δμ),
B(δ Q), B(δμ), and the corresponding raw state Q. Figure 4 provides an overview
of the baseflow distortions induced by viscosity alterations: δμ = σμ(ρ, T ). Here,
σ = ±10 % and ±20 %, leading to a bulk alteration in the μ(y) profile as given by
the fluid property database. These profiles show that distortions remain within the
boundary layer thickness and their amplitudes stay largely constant moving downstream.
Specifically, δμ = ±20 %μ gives rise to (δu)max ≈ 5 %U∞. The stability diagram showing
the imaginary part of the eigenvalue αi indicates the steady cross-flow mode grows from
around x = 0.5, reaching a maximum around x = 1.0 and continues growing downstream.

The influence of uncertainties in viscosity on the other terms of the baseflow is
presented in figure 5. Solid and dashed lines represent the actual distortion and the linear
approximation, respectively. The viscosity distortion was applied in proportion to the
original model: δμ = σμ(ρ, T ) with σ ∈ [0, 50 %]. Linear behaviour is evident when
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Figure 4. (a) Distortions of the streamwise velocity, δu/ue, induced by viscosity alterations (δμ =
±10 %μ, ±20 %μ). (b) The raw state baseflow profiles of u and w and (c) the corresponding stability diagram
of the steady (ω = 0) cross-flow instability. In panel (b), the dashed line stands for the boundary-layer thickness
based on 0.99u/U∞, and the dotted lines denote u/U∞ = w/U∞ = 1. The flow is in the supercritical regime,
subject to wall heating, with gas-like fluid properties.
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Figure 5. Baseflow distortions induced by uncertainties in the viscosity model. The flow is in the supercritical
regime. Viscosity distortion was applied in proportion to the original model, ranging from 0 % to 50 %, as
shown on the x-axis of each panel.
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Figure 6. Distortion magnitude of the baseflow components log(||δ Q||2). The flow in the subcritical,
transcritical, supercritical and ideal regimes are compared. In each regime, the uncertainty is driven by [μ],
[κ] and [EoS], corresponding to columns 1–3 (with wall heating) and 4–6 (with wall cooling). The driving
terms are highlighted with a rectangle of dotted lines.

σ ≤ 10 %. The influence is measured with the normalised 2-norm, with some results scaled
according to the line legend (for better presentation). Here, the normalised 2-norm,

|| Q||2 =
√

1
N

∑N

i=1
Q2

i , (2.30)

is a measure of the amplitude of the distortions accounting for the overall distortions. One
may also choose to exclude the influence of the number of grid points (N ) by using the
∞-norm, which considers only the maximum distortion over the wall-normal coordinates.
Since the presented uncertainty is driven by viscosity, the term δ(∂μ/∂T ) ≈ σ(∂μ/∂T ),
though large, stays within the linear range. The uncertainty in viscosity induces distortions
in all components of the baseflow, with considerable magnitudes in δu, δw and terms
related to pressure.

It is meaningful to compare fluid regimes, wall temperature and sources of uncertainties
in figure 6. The distortion magnitude log(||δ Q||2) of the baseflow components is presented
as a heat map. The driving uncertainty is prescribed as δμ = σμ(ρ, T ), δκ = σκ(ρ, T )

and δp = σ p(ρ, T ), with σ = 10 %. Although the figure contains a wealth of data, key
knowledge is obtained as follows.
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Baseflow distortion

     δu, δw, δρ, δT
and the rest of δ [EoS], δ [μ], δ [κ] 

 

Induce Contribute to

Uncertainties in intrisinic properties

                δ [EoS], δ [μ], δ [κ] 
(a combination of one or several groups)

δQ
Sensitivity

coefficients
Eigenvalue 

& eigenvector

distortionsSQ

Figure 7. Relational diagram depicting the uncertainties in intrinsic fluid properties, the baseflow distortions
and their influences on the eigenvalue problem.

1. Comparing different fluid regimes, distortions in the ideal fluid are the smallest,
followed by the supercritical, subcritical and transcritical cases, indicating an
enhancing effect of non-ideal fluid properties on the induced distortion.

2. The driving uncertainty (see dotted rectangles in each column) leads to distortions in
all other components of the baseflow. When the uncertainty comes from the equations
of state, the driving terms remain the largest (compared with their induced distortions)
across different flow regimes. Both viscosity and thermal conductivity uncertainties
give rise to significant distortions in the pressure terms. The influence of thermal
conductivity uncertainties is relatively smallest.

3. Uncertainties in the viscosity lead to the strongest distortion of the primary baseflow
profile [b], regardless of the flow regime and wall temperature. Velocities (u and w)
are more distorted by any of the studied uncertainties compared with temperature T
and density ρ.

4. Wall heating, compared with wall cooling, does not make an essential difference
except for the transcritical case, where wall cooling shows larger distortions than the
heating counterpart.

Going through (2.14) and Appendix A, one notes that the fluid properties are directly
inputs to the stability operator (Guo et al. 2021; Poulain et al. 2024). The fluid properties,
the baseflow and the stability operator form a coupled system as summarised in figure 7.
The intrinsic uncertainty influences the system in an integrated manner: the primary
baseflow profiles [b] are distorted, which, together with the distorted fluid properties, form
inputs to the stability operator. These distortions in the eigenvalue problem are measured
by the sensitivity coefficients, which will be discussed next.

3. Results and discussions

3.1. Input distortions and the induced eigenvalue shifts
Since latent uncertainty can lead to distortions of various shapes, we begin by comparing
three types of distortions (listed in table 2). First, white noise is assigned to assess the
robustness of stability when exposed to a realistic environment, such as a laboratory
experiment or a flight test. The second signal corresponds to structural sensitivity, where
some inputs are biased due to an inaccurate fluid model. Third, we consider the distortion
generating the maximum growth rate shift, which represents the border of sensitivity at
a specific amplitude and serves as a measure of sensitivity. Figure 8 provides a profile
of ∂μ/∂ρ in the pseudo-boiling regime with wall cooling. Unlike an ideal gas, the
term ∂μ/∂ρ is non-zero. Figure 8 illustrates the shapes of these distortions, with their
amplitudes intentionally assigned large for illustration purposes.
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Distortion type Symbol Stands for

White noise δ Qnoise Random environmental perturbations
Structural δ Qproperty Distortions due to inacurate fluid models
Structural δ Qmax Distortion leading to maximum shift of the growth rate

Table 2. Distortions of different types.
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0 0.5

∂μ/∂ρ
1.0 1.5 2.0

Q + δQnoise

Q + δQproperty

Q + δQmax

Q 
y

Figure 8. A portray of different distortions on ∂μ/∂ρ.
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Figure 9. Illustration of eigenvalue shift validating the sensitivity framework. (a) The eigenvalue trajectory
with distorted ∂μ/∂ρ; (b) error of eigenvalue prediction as a function of the departure parameter ε according
to (3.1).

The sensitivity coefficients derived in Appendix D have been validated by comparing
the distorted eigenvalue using direct estimation (2.13) and the sensitivity framework (2.19).
Figure 9(a) illustrates this comparison. The case investigated involves pseudo-boiling with
wall cooling. We evaluate the sensitivity of the eigenvalue at ω = 40, β = 100 and x = 1.0,
corresponding to a typical inviscid instability mode found in a recent investigation (see
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figure 12b of Ren & Kloker 2022a). The distortion

δ Qproperty|non-zero component = −ε∂μ/∂ρ (3.1)

is applied to ∂μ/∂ρ, where 0 ≤ ε ≤ 1 is the parameter controlling the amplitude. As ε

increases from 0 to 1, the input ∂μ/∂ρ is incrementally deformed by an ideal gas model
until ∂μ/∂ρ = 0 (fully ideal). As shown in figure 9(a), the sensitivity coefficients provide
an accurate prediction in the linear range, and the error (see panel b) becomes noticeable
from ε = 0.12. We note that this value does however not provide a constant limit criterion
for the linear regime, as the distortions can act on other input variables.

3.2. The sensitivity coefficients and a scalar measure
For the pseudo-boiling regime with wall cooling, we present profiles of all the sensitivity
coefficients in figure 10. Solid lines represent the real parts, while dashed lines represent
the imaginary parts. The wave number and frequency values correspond to the case
in figure 9. Arrows indicate the location of the Widom line and the boundary layer
thickness δ0 (u/u∞ = 0.99). All panels are plotted from the wall to the height of δ0.
Without exception, each profile shows shears near the Widom line and decays to zero
towards the wall and upper boundaries. Distinctive differences between the profiles lie
in the amplitude, spanning from O(10−1) to O(109). Given such a range of magnitudes
on a logarithmic scale, the dominating terms are recognised. For clarity, we have
applied a yellow background for values of O(104) and higher. Before discussing different
thermodynamic regimes, we propose a scalar measure for the degree of sensitivity.

Since the distortion shape can be arbitrary, the focus is placed on the distortion that leads
to the maximum shift of the eigenvalue (Giannetti & Luchini 2007). According to (2.19),
and accounting for the non-imaginary nature of physical distortions, the inner product
reaches its maximum when δ Q equals the real or imaginary part of S Q . In other words,
δ Q = ±imag(S Q) results in the highest growth rate shift αi , while δ Q = ±real(S Q) leads
to the maximum shift of the chordwise wavenumber αr . To avoid ambiguity, we focus on
the growth rate and define δ Qmax as ±imag(S Q).

To better understand the eigenvalue shift induced by δ Qmax relative to δ Qnoise of the
same amplitude, we present the comparison in figure 11. As seen in panel (a), the distortion

δ Q = real(S Q exp iθ), (3.2)

with 0 ≤ θ < 2π , leads to an elliptic trajectory of the eigenvalue. The eigenvalues
corresponding to δ Q (θ = 0, π/2, π, 3π/2) are highlighted with red dots. When the
coherence of the distortions is lost and replaced with random noise, the eigenvalue
shifts are significantly narrowed, as shown in panel (b), which corresponds to the central
rectangle highlighted in panel (a). In both cases, we have maintained an amplitude of

‖δ Q‖2 = 10−3/
√

N , with N = 200. (3.3)

In contrast to panel (a), where the eigenvalue shift is ‘optimised’ along an elliptical
trajectory, the introduction of random distortion causes the eigenvalue to remain closer
to its undistorted value, with the displacement appearing random as well. This difference
aligns with the sensitivity coefficient defined in (2.19). Consequently, within the linear
sensitivity regime, a random distortion is less likely to cause significant deviations in the
eigenvalue.

So far, we have examined the eigenvalue shift at a fixed chordwise position
(corresponding to x = 1). To account for the integral effects and gain an initial
understanding of the sensitivity to different inputs, we plot the N factor (integral of the
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Figure 10. Assembly of sensitivity coefficients in the pseudo-boiling regime with wall cooling. Solid and
dashed lines represent the real and imaginary parts, respectively.
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Figure 11. (a) The eigenvalue shift due to δ Qmax (red dots), the term distorted is ∂μ/∂ρ; (b) similar to panel
(a), but with δ Qnoise at the same amplitude (measured with 2-norm).

growth rate) as a function of the streamwise coordinate in figure 12. Twenty-three terms
corresponding to (2.14) have been calculated. The distortion corresponds to δ Qmax with a
2-norm of 10−3/

√
200. Recalling the inviscid nature of the new mode (connected to the

main flow), one notices that the growth rate is significantly larger than that of conventional
(also largely inviscid) cross-flow modes (connected to the true cross-flow ws) and reaches
an N factor of 33.3 at x = 5. Temperature distortions lead to a dramatic N factor change,
followed by density and ∂p/∂ρ, which agrees with the local amplitude seen in figure 10.
We have tabulated the top seven terms in table 3. If the temperature and density are
correctly obtained in the baseflow stage, ensuring an accurate EOS is essential for a
rational transition prediction.

The result has also been tested as a weak function of the spanwise wavenumber β, as
shown in Appendix E. Based on the above discussions, we propose a scalar measure of
sensitivity:

M = |δαi |∥∥δ Qmax
∥∥

2

. (3.4)

This measure demonstrates the maximum possible response of the growth rate to
distortions scaled by its normalised norm, thereby indicating the sensitivity to certain
inputs. Note that the choice of the norm is not exclusive. See also the discussion for
baseflow distortions (2.30). The normalised norm provides an intuitive indicator of the
sensitivity amplitude which does not influence the sensitivity coefficients and the induced
eigenvalue distortions. Instead of concentrating on the shape of the sensitivity coefficients,
M helps to compare across different cases and regimes.

3.3. Sensitivity crossing different thermodynamic regimes
The non-ideal gas properties primarily depend on the thermodynamic regimes of the fluid.
We compare the stability diagram and the sensitivity measure M in figure 13 for regimes
introduced in table 1, grouped into wall heating and cooling. To allow for comparison
across different regimes and without loss of generality, the parameters (x = 1.0, ω = 15,
β = 80) have been chosen for the investigations below (see figure 2 of Ren & Kloker
2022b). According their panels (b) and (c), the neutral curves and growth rates are only
quantitatively different, except for the transcritical regime with wall cooling, where the
instability is dominated by a new inviscid mode. In figure 13, the term ‘distorted’ is listed
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Figure 12. N factor influenced by δ Qmax. The amplitude of an individual distortion is ‖δ Q‖2 = 10−3/
√

200.
The red and green curves show positive and negative shifts, respectively. The numbers 1 · · · 23 correspond to
input terms (see (2.14)) sorted by the impact on the N factor in descending order (see table 3). The instability
is in the pseudo-boiling regime with dominating inviscid instability.

x = 2.04 x = 3.08 x = 4.04 x = 5.00

1. T 2947.1 % 4504.6 % 5801.6 % 6938.3 %
2. ρ 119.4 % 167.2 % 205.1 % 237.1 %
3. ∂p/∂ρ 44.6 % 67.7 % 87.1 % 104.2 %
4. ∂2 p/∂ρ2 13.3 % 17.9 % 21.6 % 24.7 %
5. u 2.5 % 3.6 % 4.5 % 5.2 %
6. w 2.2 % 3.2 % 4.1 % 4.9 %
7. ∂p/∂T 0.4 % 0.5 % 0.7 % 0.8 %

Table 3. δN/N at four uniformly distributed observation points.

on the figure’s left and sorted according to the sensitivity measure in the transcritical
regime. Considering a representative growth rate of O(1), a sensitivity measure of M =
1 (log M = 0) will give δαi = 0.001 at a distortion amplitude of 10−3, which starts to
become visible. Note that the shape of the distortion was assumed to be the best case
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Figure 13. A comparison of sensitivity across different regimes and between different input variables. The
numbers on the heatmap specify the log value of the sensitivity measure: log(M).

(recall figure 11). With this estimation, the sensitivity to distortions with negative values
of log(M) is minimal.

Going through the sensitivity measure of all eight cases presented in figure 13 implies an
analogous ranking of various terms, showing that different flow regimes only moderately
influence the relative position of each input of the stability operator. The temperature
and density profiles are the most consequential. Subsequently, the term ∂2 p/∂ρ2 stands
out only for the pseudo-boiling case with wall cooling. For the ideal regime, baseflow
profiles remain more influential than other thermodynamic and transport properties. Some
terms are zero (e.g. ∂μ/∂ρ, ∂κ/∂ρ) per the ideal assumption, and random or structural
distortions with moderate amplitude will not invoke a significant shift in the growth rate,
indicating their less active roles in the system. We notice that the transport properties ([μ]
and [κ] profiles) are less influential for all the regimes. This implies that the ideal case
will be robust provided the six key terms, T, ρ, u, w, ∂p/∂T, ∂p/∂ρ, are not distorted. In
contrast, the pseudo-boiling regimes are sensitive to more terms: ∂2 p/∂ρ2, ∂2 p/∂ρ∂T for
wall heating and, in addition, ∂μ/∂ρ, μ, ∂2μ/∂ρ2, κ for wall cooling.
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3.4. Magnitude range of sensitivities to various inputs
The sensitivity profiles (figure 10) and their measure (figure 13) demonstrate a magnitude
range of approximately O(1010). The reason is explored here by analysing different
sensitivity profiles and their mathematical constituents. We examine the pseudo-boiling
case with wall cooling. From (D4), the dominating terms are written as

ST = ∂

∂y

(
∂2 p

∂ρ∂T
ρ̂∗v̂† + ∂2 p

∂T 2 T̂ ∗v̂†
)

︸ ︷︷ ︸
ST (1)

+ visc.

= ∂

∂y

(
∂2 p

∂ρ∂T
ρ̂∗v̂†

)
︸ ︷︷ ︸

ST (1a)

+ ∂

∂y

(
∂2 p

∂T 2 T̂ ∗v̂†
)

︸ ︷︷ ︸
ST (1b)

+ visc.

= ∂

∂y

(
∂2 p

∂ρ∂T

)
ρ̂∗v̂†

︸ ︷︷ ︸
ST (1a1)

+ ∂2 p

∂ρ∂T

∂ρ̂∗

∂y
v̂†

︸ ︷︷ ︸
ST (1a2)

+ ∂2 p

∂ρ∂T
ρ̂∗ ∂v̂†

∂y︸ ︷︷ ︸
ST (1a3)

+ ST (1b) + visc.,

(3.5)

with ‘visc.’ standing for viscous terms. The distribution of key terms are plotted in
figure 14. As inferred from figure 14(a–c), the terms ST (1) significantly dominate the
sum of the rest terms, which are viscous (scaled by Re = 1.4687 × 105). Among ST (1),
ST (1a) is much larger than ST (1b). We plot in panels (d)–(f ) the physical terms related
to ST (1). As can be seen, the gradients of the terms ρ̂∗, v̂† and ∂2 p/∂ρ∂T synchronise
around the Widom line, leading to the large amplitude of ST .

Are viscous terms always negligible? The composition of Sρ , Su and Sw is plotted in
figure 15. Similar to ST , Sρ is dominated by an inviscid term

Sρ = ∂

∂y

(
∂2 p

∂ρ2 ρ̂∗v̂† + ∂2 p

∂ρ∂T
T̂ ∗v̂†

)
︸ ︷︷ ︸

Sρ(1)

+ · · · (3.6)

Compared with (D5), the rest of the terms include viscous and inviscid terms. However,
a single dominating term does not exist for Su and Sw. We re-write these two profiles in
(3.7) and (3.8). As seen in figure 15, the viscous terms influence the profile in the leading
order (only Su(3) and Sw(3) can be ignored), showing the significance of viscous terms
though the Reynolds number scales them.

Su = ∂

∂y

(
ρv̂∗û†

)
︸ ︷︷ ︸

Su(1)

+ iα∗
(

ρ̂∗ρ̂† + ρû∗û† + ρv̂∗v̂† + ρŵ∗ŵ† + ρ
∂e

∂ρ
ρ̂∗T̂ † + ρ

∂e

∂T
T̂ ∗T̂ †

)
︸ ︷︷ ︸

Su(2)

+ 1
Re

∂

∂y

[
2μ

(
iα∗v̂∗ − ∂ û∗

∂y

)
T̂ † + ∂μ

∂T
T̂ ∗

(
∂ û†

∂y
− 2

∂u

∂y
T̂ † + iα∗v̂†

)]
︸ ︷︷ ︸

Su(3)

+ 1
Re

∂

∂y

[
∂μ

∂ρ
ρ̂∗

(
∂ û†

∂y
− 2

∂u

∂y
T̂ † + iα∗v̂†

)]
︸ ︷︷ ︸

Su(4)

,

(3.7)

1007 A7-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.100


Journal of Fluid Mechanics

5

4

3

2

1

0
–2 0 2

×10–3
5

4

3

2

1

0
–2 0 2

×10–3

×109 ×109

5

4

3

2

1

0
–2 0 2

×10–3

×109

y

5

4

3

2

1

0

×10–3
5

4

3

2

1

0

×10–3

×10–5×107

5

4

3

2

1

0

×10–3

y

ST,r ST,r(1) ST,r(1a)

ST,r(1a1)
ST,r(1a2)

ST,r(1a3)

ST,i(1)

ST,i(1a)

ST,r,i(1b)

ST,r(1a)

ST,i
ST,r(1)

ST,r,i(rest)

ST,i(1)

Widom line

0 0 02 10 20 200 400 6004

ideal

(a)

(d) (e) ( f )

(b) (c)

∂2p/∂ρ∂T
∂2p/∂T2

υr
υi

†

†
ˆ
ˆ

Figure 14. Illustration of key terms for the sensitivity profile ST corresponding to (3.5): (a) ST and ST (1); (b)
ST (1a) and ST (1b); (c) ST (1a1), ST (1a2) and ST (1a3); (d–f ) the components composing ST (1).

5

4

3

2

1

0

× 10–3

× 107 × 106

5

4

3

2

1

0

× 10–3

5

4

3

2

1

0

× 10–3

Sρ

Sw

Sρ(1)

Sw(1)

Sw(2)
Sw(3)
Sw(4)

Su
Su(1)

Su(2)
Su(3)
Su(4)

Sρ(rest)

y

–10 –5 0 0 01 1–1 –12

Sρ,r Su,r × 106Sw,r

(a) (b) (c)

Figure 15. Sensitivity to distortions of ρ, u and w (panels a–c). We show dominating terms (the real parts) of
each profile.

1007 A7-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.100


J. Ren, Y. Wu, X. Mao, C. Wang and M. Kloker

Sw = ∂

∂y

(
ρv̂∗ŵ†

)
︸ ︷︷ ︸

Sw(1)

+ iβ

(
ρ̂∗ρ̂† + ρû∗û† + ρv̂∗v̂† + ρŵ∗ŵ† + ρ

∂e

∂ρ
ρ̂∗T̂ † + ρ

∂e

∂T
T̂ ∗T̂ †

)
︸ ︷︷ ︸

Sw(2)

+ iβ

Re

∂

∂y

(
2μv̂∗T̂ † + ∂μ

∂ρ
ρ̂∗v̂† + ∂μ

∂T
T̂ ∗v̂†

)
︸ ︷︷ ︸

Sw(3)

+ 1
Re

∂

∂y

[
∂μ

∂T
T̂ ∗Dŵ† + ∂μ

∂ρ
ρ̂∗Dŵ† − 2

(
μDŵ∗T̂ † + ∂μ

∂ρ

∂w

∂y
ρ̂∗T̂ † + ∂μ

∂T

∂w

∂y
T̂ ∗T̂ †

)]
︸ ︷︷ ︸

Sw(4)

.

(3.8)

Take a column-wise comparison on figure 13, the sensitivity to ∂2 p/∂ρ2 stands out
in the pseudo-boiling regime with wall cooling. Recall (D7), the sensitvity coefficient
amounts to a single term −∂ρ/∂y(ρ̂∗v̂†). In figure 16, we compare the real parts of these
terms across different regimes. From panel (a), we observe that the terms in the pseudo-
boiling case is four orders of magnitude larger than in other regimes, in accordance with
figure 13. Panels (b)–(d) unveil that the differences are due to ∂ρ/∂y and ρ̂. Both terms
are largely two orders larger than the rest of the cases. In fact, according to the continuity
equation,

∂ρ  + (iαu – iω + iβw) ρ + (iαu + Dv +iβw) ρ = 0    
   ∂y

term Dρ
term ρ term ρ 

(leads to)
(3.9)

the term Dρ is balanced by terms ρ and ρ̂.
As seen from figures 16(e)–16(h), all three terms are in the same order of magnitude

regardless of the thermodynamic regime. Simultaneously, juxtaposing the four panels
reveals that the pseudo-boiling regime has a significantly larger amplitude of the three
balancing terms according to (3.8), clarifying the differences observed in panel (a).
The non-ideal gas behaviour constitutes a quadratic effect, magnifying the influence of
∂ρ/∂y on sensitivities into its square (through the product with term ρ̂). At the same
time, we notice that the thermodynamic derivatives (e.g. ∂2 p/(∂ρ∂T ) and ∂2 p/∂T 2)
and their wall-normal gradients are significantly larger in the pseudo-boiling regime (see
figure 14f ). Multiplication with ρ̂ leads to tremendous sensitivity to temperature and
density distortions.

As another example, the sensitivity to ∂μ/∂ρ is studied according to (D9). The
sensitivity coefficients contain 15 terms, which are presented in figure 17, comparing
across different thermodynamic regimes. Since the amplitude for the pseudo-boiling case
is more prominent in the wall-cooling case, we have scaled their amplitudes with a factor
of 10, as indicated on the axis of panel (b). With wall cooling, we find terms 1 and 10 stand
out in the transcritical case, say, (∂u/∂y)Dρ̂∗û† and (∂w/∂y)Dρ̂∗ŵ†, both terms are led
by Dρ̂∗. This again attributes to the variation of the density near the Widom line. We also
noticed that some terms 4–9 and 12, 14 and 15 remain small for all the cases.
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Taking an overview of the sensitivity coefficients, it is unambiguous that the sensitivity
can be uniformly written as

Sensitivity  = Σ wave number   . 
1— . Re, PrEc

quadratic effect, Dρ → ρ

       (Pseudo-boiling) 

(D, D2) q  . (D, D2) q* .  (D, D2) q †  ˆˆ

ˆ

optional, profile dependent

(3.10)

where q, q̂∗ and q̂† stand for the baseflow, the eigenfunction (complex conjugate) and the
adjoint eigenfunction inclusive of their spatial gradients. The sensitivity is fully viscous
for the viscosity and thermal conductivity, while mixed for the baseflow and EOS profiles,
inducing a significant decrease of sensitivity to viscosity and thermal conductivity terms
shown in figure 13.

This subsection examined the sensitivity both term wise and case wise. The impact of
all inputs differs significantly, with a magnitude range of approximately O(1010). In the
pseudo-boiling regime, the wall-normal gradient of baseflow profiles (e.g. ρ, ∂2 p/∂ρ∂T
and ∂2 p/∂T 2) and the density perturbation ρ̂ become large simultaneously following
the balancing relation of the continuity equation. The overall sensitivity thus increases
with a boost due to a quadratic effect in certain terms (e.g. sensitivity to ∂2 p/∂ρ2) that
remain small in other regimes. Special care must be taken in modelling, experiments or
applications, as a slight deviation may lead to a significant shift in the transition location.

3.5. Fluid model relaxation
Based on the above discussions and towards an effective engineering prediction, one
naturally raises the question of how accurate it is to use an empirical law for specific
inputs in different thermodynamic regimes. Considering the dependence of the baseflow
and stability operator on fluid properties (recall figure 7), the outcome depends on two
factors: the departure of the input from its actual value and the eigenvalue sensitivity to it.
The error is thus proportional to the non-ideality of the fluid regime. For example, if one
uses ideal gas laws for all the fluid properties, the non-ideal gas behaviour will be totally
ignored, and the difference will be significant in the highly non-ideal regime. An extreme
example is in the transcritical regime for wall cooling, where the calculated mode will be
a cross-flow mode rather than the 2-D inviscid mode, whose growth rate is much larger.

However, if the baseflow has been correctly solved numerically or measured in
experiments, while in the stage of stability analysis, the inputs related to the EOS or
transport properties are supplied with ideal-gas models, how reliable are the results? This
is the classic issue of using a ‘standard’ simplified stability solver on complex-physics
baseflow profiles. This also means that no distortion amplitudes need to be specified
as before. We supplement the discussion by analysing the N-factors based on stability
calculations. The biased inputs are subject to ideal models for EOS (p = ρRT ), viscosity
(Sutherland’s law) and thermal conductivity (Sutherland’s law), as shown in figure 18.
Recall the sensitivity measure presented in figure 13. Provided the primary baseflow
profiles (group [b] in (2.14)) are correct, in the gas-like regime, the sensitivity is only
noteworthy for terms ∂p/∂T and ∂p/∂ρ. Both inputs can be satisfactorily characterised
using the ideal gas equation-of-state, not leading to a visible difference in the N-factor.
Furthermore, the liquid-like regime shows concern for [μ] terms, while the pseudo-boiling
regime requires that [EoS] and [μ] terms be adequately accounted for. In particular, the
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are subject to β = 80, ω = 0 (steady CF mode), except the last panel with β = 80, ω = 20 (inviscid TS mode).

Fluid regime Wall temperature Instability mode Idealisable models

Subcritical Heating/cooling CF mode [EoS], [κ]
Transcritical Heating CF mode [κ]
Transcritical Cooling Inviscid TS mode None
Supercritical Heating/cooling CF mode [EoS], [μ], [κ]

Table 4. A summary of idealisable fluid models for linear stability analysis, provided correct baseflow
profiles (u, w, ρ, T ) are supplied.

inviscid TS mode additionally requires [κ] terms, as the N-factor and the absolute error
are much more considerable.

Table 4 summarises the idealisable fluid models for stability analysis, indicating, for
each fluid regime, which terms can be safely taken from the simple ideal model when
correct baseflow profiles are supplied. This means that the induced distortions and the
corresponding sensitivity are weak enough not to induce a notable change in the N factor.
Table 4 provides a first estimation of standard stability solvers in predicting flow transition
in different fluid regimes, where only the supercritical regime (gas-like), approximately
similar to an ideal gas, is applicable to ideal gas models. This assessment is qualitative
and assumes a low-Mach-number configuration; the error can increase or decrease when
the flow temperature range approaches or recedes from the Widom line, where viscous
heating effects may become significant at higher Mach numbers.
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4. Conclusions
The investigation examines the sensitivity of three-dimensional boundary layer modal
instability to intrinsic uncertainties in fluid properties, including the equation-of-state
(EoS) and transport properties. We adopt a representative fluid, supercritical CO2 at
80 bar (static pressure), which exhibits significant non-ideal gas behaviour crossing the
Widom line. The flow matches the redesigned DLR experiment with identical pressure
coefficient distribution (strong favourable pressure gradient), Reynolds number and a low
Mach number. Distinguishable thermodynamic regimes – liquid-like, pseudo-boiling, gas-
like and ideal gas – emerge by prescribing respective temperature boundary conditions.
The mechanisms for linear instability found recently (Ren & Kloker 2022a) demonstrate a
changeover of the dominant mode from conventional cross-flow (CF) instability to inviscid
Tollmien–Schlichting (TS) type in the pseudo-boiling regime with wall cooling, despite
the strong favourable pressure gradient.

The sensitivity of linear stability is a response of a coupled system, including the
acquisition of the laminar baseflow and the eigenvalue problem. Uncertainties in any
one or combination of terms of the EoS, viscosity and thermal conductivity give rise
to distortions in primary baseflow profiles (u, w, ρ, T ) and all profiles related to fluid
properties needed for the stability analysis. The shape and amplitude of these distortions
are discussed and found to be dependent on the source of uncertainty and fluid regimes.

Further, these distortions are measured by the sensitivity coefficients, whose product
indicates the alterations of the eigenvalue. The sensitivity coefficients are theoretically
formulated for each input of the stability operator using the adjoint equations, indicating
the eigenvalue shift when performing the inner product with corresponding physical
distortions. The adjoint equations have been validated using the bi-orthogonal relationship,
and all sensitivity coefficients have been validated against linear stability calculations
with distorted inputs. Considering that an actual distortion can be arbitrary (e.g. random
noise) or structural (e.g. model deviation), we propose a unified measure for the degree
of sensitivity that describes the maximum possible eigenvalue shift. It is worth noting
that the adjoint-equation-based linear sensitivity provides details to understand the
system’s response to the bias of specific inputs, thereby directing the most effective
control strategies. The method also efficiently predicts growth rate shifts due to different
distortions. However, one may circumvent the details and obtain a stability prediction
directly with distorted inputs, which is less effective. However, the amplitude of the
distortion can be considerable in this case.

The sensitivity has been investigated for all inputs of the stability operator and compared
horizontally across different thermodynamic regimes. A range of its amplitude spanning
the order of 1010 for different inputs is found and attributed to the scaling of the Reynolds
number for viscosity-related terms and different wall-normal gradients of the baseflow and
perturbation profiles. The sensitivity is significantly larger (by 1–2 orders of magnitude) in
the pseudo-boiling regime. In particular, a quadratic effect has been uncovered. The boost
of ∂ρ/∂y results in an equivalent rise for ρ̂ through a balancing relation of the continuity
equation. The product of ∂ρ/∂y and ρ̂ gives rise to a quadratic sensitivity increase to
∂2 p/∂ρ2 across the Widom line. Meanwhile, the tremendous sensitivity to temperature
and density terms – especially regarding the respective direct baseflow profiles – is also
due to large thermodynamic derivatives (e.g. ∂2 p/(∂ρ∂T ) and ∂2 p/∂T 2) and their wall-
normal gradients.

Towards practical applications for transition prediction, the N-factor deviation has been
investigated when certain groups of terms are given following an ideal gas assumption,
based on the use of the correct, non-ideal baseflow profiles. In other words, a standard
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instability solver is applied to the fully non-ideal baseflow. In particular, we show that in
the gas-like regime, using the idealised equation-of-state (EOS), viscosity and thermal
conductivity do not provoke noticeable differences. The liquid-like regime requires
viscosity to be correctly modelled, while the pseudo-boiling regime needs all elements
to be correct except for the thermal conductivity for the CF mode. Accurately predicting
the inviscid TS mode’s growth rate requires proper modelling of all the above elements
– employing an ideal-fluid solver to the correct baseflow profiles gives a meaningless
instability result.

The present research focused on the sensitivity of flow stability to intrinsic uncertainties
in fluid properties. This question arises from the ever-growing industrial demand and the
ongoing upgrades and improvements of fluid property databases. The different sensitivity
behaviours found in this research indicate that an accurate model describing the fluid is
essential in highly non-ideal regimes, particularly for the accurate description of the new
dominating inviscid mode.
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Appendix A. The stability operator L
The specific expressions of the linear stability operator introduced in (2.14) are as
follows.

L1,1 = −iαu + iω − iβw, L1,2 = −iαρ, L1,3 = −ρD − ∂ρ

∂y
, L1,4 = −iβρ. (A1)

L2,1 = −iα
∂p

∂ρ
+ 1

Re

∂μ

∂ρ

∂u

∂y
D + 1

Re

∂μ

∂ρ

∂2u

∂y2 + 1
Re

∂u

∂y

(
∂2μ

∂ρ2
∂ρ

∂y
+ ∂2μ

∂ρ∂T

∂T

∂y

)
. (A2)

L2,2 = −α2 (2μ + λ)
Re

− iαρu + iωρ + 1
Re

∂μ

∂y
D − iβρw + μ

Re
D2 − β2μ

Re
. (A3)

L2,3 = iα (μ + λ) D

Re
+ iα

Re

∂μ

∂y
− ρ

∂u

∂y
, L2,4 = −αβ (μ + λ)

Re
. (A4)

L2,5 = −iα
∂p

∂T
+ 1

Re

∂μ

∂T

∂u

∂y
D + 1

Re

∂μ

∂T

∂2u

∂y2 + 1
Re

∂u

∂y

(
∂2μ

∂T 2
∂T

∂y
+ ∂2μ

∂T ∂ρ

∂ρ

∂y

)
. (A5)

L3,1 = iα

Re

∂μ

∂ρ

∂u

∂y
− ∂p

∂ρ
D + iβ

1
Re

∂μ

∂ρ

∂w

∂y
− ∂2 p

∂ρ2
∂ρ

∂y
− ∂2 p

∂ρ∂T

∂T

∂y
. (A6)

L3,2 = iα (μ + λ) D

Re
+ iα

Re

∂λ

∂y
. (A7)
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L3,3 = −α2μ

Re
− iαρu + iωρ + 1

Re

∂ (2μ + λ)
∂y

D − iβρw + 2μ + λ
Re

D2 − β2μ

Re
. (A8)

L3,4 = iβ
1

Re

∂λ

∂y
+ iβ (μ + λ) D

Re
. (A9)

L3,5 = iα

Re

∂μ

∂T

∂u

∂y
− ∂p

∂T
D + iβ

1
Re

∂μ

∂T

∂w

∂y
− ∂2 p

∂T 2
∂T

∂y
− ∂2 p

∂ρ∂T

∂ρ

∂y
. (A10)

L4,1 = 1
Re

∂μ

∂ρ

∂w

∂y
D − iβ

∂p

∂ρ
+ 1

Re

∂μ

∂ρ

∂2w

∂y2 + 1
Re

∂w

∂y

(
∂2μ

∂ρ2
∂ρ

∂y
+ ∂2μ

∂ρ∂T

∂T

∂y

)
. (A11)

L4,2 = −αβ (μ + λ)
Re

, L4,3 = iβ
1

Re

∂μ

∂y
+ iβ (μ + λ) D

Re
− ρ

∂w

∂y
. (A12)

L4,4 = −α2μ

Re
− iαρu + iωρ + 1

Re

∂μ

∂y
D − iβρw + μ

Re
D2 − β2 (2μ + λ)

Re
. (A13)

L4,5 = 1
Re

∂μ

∂T

∂w

∂y
D − iβ

∂p

∂T
+ 1

Re

∂μ

∂T

∂2w

∂y2 + 1
Re

∂w

∂y

(
∂2μ

∂T 2
∂T

∂y
+ ∂2μ

∂T ∂ρ

∂ρ

∂y

)
. (A14)

L5,1 = − iαρu
∂e

∂ρ
+ iωρ

∂e

∂ρ
+ 1

RePr Ec

∂κ

∂ρ

∂T

∂y
D − iβρw

∂e

∂ρ

+ 1
RePr Ec

(
∂κ

∂ρ

∂2T

∂y2 + ∂2κ

∂ρ2
∂ρ

∂y

∂T

∂y
+ ∂2κ

∂ρ∂T

(
∂T

∂y

)2
)

+ 1
Re

∂μ

∂ρ

((
∂u

∂y

)2

+
(

∂w

∂y

)2
)

.

(A15)

L5,2 = −iαp + 2μ

Re

∂u

∂y
D. (A16)

L5,3 = 2iαμ

Re

∂u

∂y
− pD + iβ

2μ

Re

∂w

∂y
− ρ

∂e

∂y
. (A17)

L5,4 = 2μ

Re

∂w

∂y
D − iβp. (A18)

L5,5 = − α2κ

RePr Ec
− iαρu

∂e

∂T
+ iωρ

∂e

∂T
+ 1

RePr Ec

(
∂κ

∂y
+ ∂κ

∂T

∂T

∂y

)
D

− iβρw
∂e

∂T
+ κ

RePr Ec
D2 − κβ2

RePr Ec

+ 1
RePr Ec

(
∂κ

∂T

∂2T

∂y2 + ∂2κ

∂T 2

(
∂T

∂y

)2

+ ∂2κ

∂ρ∂T

∂T

∂y

∂ρ

∂y

)

+ 1
Re

∂μ

∂T

((
∂u

∂y

)2

+
(

∂w

∂y

)2
)

.

(A19)

1007 A7-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.100


Journal of Fluid Mechanics

Appendix B. Derivation of the adjoint equations
We re-write the stability operator based on the order of wall-normal derivative:

L = L0 + L1 D + L2 D2. (B1)

Upon integration by parts,

〈
q̂†

, Lq̂
〉
=

〈(
LH

0 − LH
1 D − ∂LH

1
∂y

+ LH
2 D2 + 2

∂LH
2

∂y
D + ∂2LH

2

∂y2

)
q̂†

, q̂

〉
+ B.T., (B2)

where D = ∂/∂y, B.T. stands for boundary terms produced during integration:

B.T. = q̂†H L1q̂
∣∣∣∞
0︸ ︷︷ ︸

=0

+ q̂†H L2 Dq̂
∣∣∣∞
0︸ ︷︷ ︸

need û†=v̂†=ŵ†=T̂ †=0

− Dq̂†H L2q̂
∣∣∣∞
0

− q̂†H DL2q̂
∣∣∣∞
0︸ ︷︷ ︸

=0

. (B3)

To make sure the B.T. vanishes, we specify the boundary conditions for adjoint vectors:

û† = v̂† = ŵ† = T̂ † = 0, (y = 0, ∞). (B4)

According to the definition of the adjoint equations (2.20), the following relation holds:

L†
(
α†

)
q̂† = L† (

α∗) q̂† ⇔ α† = α∗. (B5)

In addition, the bi-orthogonal relationship is obtained from the definition of the adjoint
equations. Examine q̂i and q̂†

j ,

〈
L†

(
α

†
j

)
q̂†

j , q̂i

〉
=

〈
q̂†

j , L
(
α j

)
q̂i

〉
=

〈
q̂†

j , L (αi ) q̂i

〉
= 0 (B6)

gives

〈
q̂†

j ,
[
L (αi ) − L

(
α j

)]
q̂i

〉
= 0. (B7)

Equations (B5) and (B7) have been used to validate the adjoint equations derived.

Appendix C. Normalisation of the eigenvector and its adjoint

Following discussions in § 2.3, we normalise q̂ and q̂† such that the following term is
equal to unity:
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q̂†

,
∂L
∂α

q̂
〉
=

∫ ∞

0
q̂†H ∂L

∂α
q̂ dy

=
∫ ∞

0
ρ̂†∗ (−iuρ̂ − iρû

)
dy

+
∫ ∞

0
û†∗

(
−i

∂p

∂ρ
ρ̂ + iρuû − i

∂p

∂T
T̂

)
dy

+
∫ ∞

0
û†∗

(
−2α (2μ + λ)

Re
û + i (μ + λ) Dv̂

Re
+ i

Re

∂μ

∂y
v̂ − β (μ + λ)

Re
ŵ

)
dy

+
∫ ∞

0
v̂†∗

(
i

Re

∂μ

∂ρ

∂u

∂y
ρ̂ + i (μ + λ) Dû

Re
+ i

Re

∂λ

∂y
û

)
dy

+
∫ ∞

0
v̂†∗

(
−2αμ

Re
v̂ − iρuv̂ + i

Re

∂μ

∂T

∂u

∂y
T̂

)
dy

+
∫ ∞

0
ŵ†∗

(
−β (μ + λ)

Re
û − 2αμ

Re
ŵ − iρuŵ

)
dy

+
∫ ∞

0
T̂ †∗

(
−iρu

∂e

∂ρ
ρ̂ − i pû + 2iμ

Re

∂u

∂y
v̂ − 2ακ

RePr Ec
T̂ − iρu

∂e

∂T
T̂

)
dy

.

(C1)

Appendix D. Sensitivity coefficients

〈
S Q, δ Q

〉 =
⎛
⎜⎜⎜⎝

Su
Sw

Sρ

ST
Sp

⎞
⎟⎟⎟⎠

H ⎛
⎜⎜⎜⎝

δu
δw

δρ

δT
δp

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

S ∂p
∂ρ

S ∂p
∂T

S ∂2 p
∂ρ2

S ∂2 p
∂T 2

S ∂2 p
∂ρ∂T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

H ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ ∂p
∂ρ

δ ∂p
∂T

δ ∂2 p
∂ρ2

δ ∂2 p
∂T 2

δ ∂2 p
∂ρ∂T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
(

S ∂e
∂ρ

S ∂e
∂T

)H (
δ ∂e

∂ρ

δ ∂e
∂T

)
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Sμ

S ∂μ
∂ρ

S ∂μ
∂T

S ∂2μ

∂ρ2

S ∂2μ

∂T 2

S ∂2μ
∂ρ∂T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

H ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δμ

δ ∂μ
∂ρ

δ ∂μ
∂T

δ ∂2μ

∂ρ2

δ ∂2μ

∂T 2

δ ∂2μ
∂ρ∂T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Sκ

S ∂κ
∂ρ

S ∂κ
∂T

S ∂2κ

∂ρ2

S ∂2κ

∂T 2

S ∂2κ
∂ρ∂T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

H ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δκ

δ ∂κ
∂ρ

δ ∂κ
∂T

δ ∂2κ

∂ρ2

δ ∂2κ

∂T 2

δ ∂2κ
∂ρ∂T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(D1)

Su = ∂

∂y

(
ρv̂∗û†

)
+ iα∗

(
ρ̂∗ρ̂† + ρû∗û† + ρv̂∗v̂† + ρŵ∗ŵ† + ρ

∂e

∂ρ
ρ̂∗T̂ † + ρ

∂e

∂T
T̂ ∗T̂ †

)
(D2)
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+ 2
Re

∂

∂y

[
μ

(
iα∗v̂∗ − ∂ û∗

∂y

)
T̂ †

]

+ 1
Re

∂

∂y

[
∂μ

∂T
T̂ ∗

(
∂ û†

∂y
− 2

∂u

∂y
T̂ † + iα∗v̂†

)]

+ 1
Re

∂

∂y

[
∂μ

∂ρ
ρ̂∗

(
∂ û†

∂y
− 2

∂u

∂y
T̂ † + iα∗v̂†

)]

Sw = ∂

∂y

(
ρv̂∗ŵ†

)
+ iβ

(
ρ̂∗ρ̂† + ρû∗û† + ρv̂∗v̂† + ρŵ∗ŵ† + ρ

∂e

∂ρ
ρ̂∗T̂ † + ρ

∂e

∂T
T̂ ∗T̂ †

)

+ iβ

Re

∂

∂y

(
2μv̂∗T̂ † + ∂μ

∂ρ
ρ̂∗v̂† + ∂μ

∂T
T̂ ∗v̂†

)

+ 1
Re

∂

∂y

(
∂μ

∂T
T̂ ∗Dŵ† + ∂μ

∂ρ
ρ̂∗Dŵ†

)

− 2
Re

∂

∂y

(
μDŵ∗T̂ † + ∂μ

∂ρ

∂w

∂y
ρ̂∗T̂ † + ∂μ

∂T

∂w

∂y
T̂ ∗T̂ †

)
(D3)

ST = ∂

∂y

(
∂2 p

∂ρ∂T
ρ̂∗v̂† + ∂2 p

∂T 2 T̂ ∗v̂†
)

− 1
Re

∂

∂y

(
∂u

∂y

∂2μ

∂ρ∂T
ρ̂∗û† + ∂u

∂y

∂2μ

∂T 2 T̂ ∗û† + ∂w

∂y

∂2μ

∂ρ∂T
ρ̂∗ŵ† + ∂w

∂y

∂2μ

∂T 2 T̂ ∗ŵ†
)

− 1
RePr Ec

∂

∂y

(
∂κ

∂ρ
Dρ̂∗T̂ † + ∂2κ

∂ρ2
∂ρ

∂y
ρ̂∗T̂ † + 2

∂2κ

∂ρ∂T

∂T

∂y
ρ̂∗T̂ †

)

− 1
RePr Ec

∂

∂y

(
∂κ

∂T
DT̂ ∗T̂ † + ∂2κ

∂ρ∂T

∂ρ

∂y
T̂ ∗T̂ † + 2

∂2κ

∂T 2
∂T

∂y
T̂ ∗T̂ †

)

+ 1
RePr Ec

∂2

∂y2

(
∂κ

∂ρ
ρ̂∗T̂ † + ∂κ

∂T
T̂ ∗T̂ †

)
(D4)

Sρ =iα∗û∗ρ̂† − (
Dv̂∗) ρ̂† + ∂

∂y

(
v̂∗ρ̂†

)
+ iβŵ∗ρ̂†

− ∂u

∂y
v̂∗û† − ∂w

∂y
v̂∗ŵ† − ∂e

∂y
v̂∗T̂ †

+ ∂

∂y

(
∂2 p

∂ρ2 ρ̂∗v̂† + ∂2 p

∂ρ∂T
T̂ ∗v̂†

)

+ (
iα∗u − iω + iβw

) (
û∗û† + v̂∗v̂† + ŵ∗ŵ† + ∂e

∂ρ
ρ̂∗T̂ † + ∂e

∂T
T̂ ∗T̂ †

)
+ (D5)

1007 A7-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.100


J. Ren, Y. Wu, X. Mao, C. Wang and M. Kloker

− 1
Re

∂

∂y

(
∂u

∂y

∂2μ

∂ρ2 ρ̂∗û† + ∂u

∂y

∂2μ

∂T ∂ρ
T̂ ∗û† + ∂w

∂y

∂2μ

∂ρ2 ρ̂∗ŵ† + ∂w

∂y

∂2μ

∂T ∂ρ
T̂ ∗ŵ†

)

− 1
RePr Ec

∂

∂y

(
∂2κ

∂ρ2
∂T

∂y
ρ̂∗T̂ † + ∂2κ

∂ρ∂T

∂T

∂y
T̂ ∗T̂ †

)

Sp = (
iα∗û∗ − Dv̂∗ + iβŵ∗) T̂ † (D6)

S ∂p
∂ρ

= iα∗ρ̂∗û† − Dρ̂∗v̂† + iβρ̂∗ŵ†

S ∂p
∂T

= iα∗T̂ ∗û† − DT̂ v̂† + iβ T̂ ∗ŵ†

S ∂2 p
∂ρ2

= −∂ρ

∂y
ρ̂∗v̂†

S ∂2 p
∂T 2

= −∂T

∂y
T̂ ∗v̂†

S ∂2 p
∂ρ∂T

= −
(

∂T

∂y
ρ̂∗ + ∂ρ

∂y
T̂ ∗

)
v̂†

S ∂e
∂ρ

= −ρ
∂ρ

∂y
v̂∗T̂ † + (

iα∗ρu − iωρ + iβρw
)
ρ̂∗T̂ †

S ∂e
∂T

= −ρ
∂T

∂y
v̂∗T̂ † + (

iα∗ρu − iωρ + iβρw
)

T̂ ∗T̂ †

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(D7)

Sμ = 1
Re

(
−4

3
α∗2û∗û† + D2û∗û† − β2û∗û† − 1

3
iα∗Dv̂∗û† − 1

3
α∗βŵ∗û†

)

+ 1
Re

(
−1

3
iα∗Dû∗v̂† − α∗2v̂∗v̂† + 4

3
D2v̂∗v̂† − β2v̂∗v̂† − 1

3
iβ Dŵ∗v̂†

)

+ 1
Re

(
−1

3
α∗βû∗ŵ† − 1

3
iβ Dv̂∗ŵ† − α∗2ŵ∗ŵ† + D2ŵ∗ŵ† − 4

3
β2ŵ∗ŵ†

)

+ 2
Re

(
∂u

∂y
Dû∗T̂ † − iα∗ ∂u

∂y
v̂∗T̂ † − iβ

∂w

∂y
v̂∗T̂ † + ∂w

∂y
Dŵ∗T̂ †

)
(D8)

S ∂μ
∂ρ

= 1
Re

⎛
⎜⎜⎜⎝∂u

∂y
Dρ̂∗û†

︸ ︷︷ ︸
1

+ ∂2u

∂y2 ρ̂∗û†

︸ ︷︷ ︸
2

+ ∂ρ

∂y
Dû∗û†

︸ ︷︷ ︸
3

+ −iα∗ ∂ρ

∂y
v̂∗û†

︸ ︷︷ ︸
4

+ −iα∗ ∂u

∂y
ρ̂∗v̂†

︸ ︷︷ ︸
5

⎞
⎟⎟⎟⎠

+ 1
Re

⎛
⎜⎜⎜⎝−iβ

∂w

∂y
ρ̂∗v̂†

︸ ︷︷ ︸
6

+ 2
3

iα∗ ∂ρ

∂y
û∗v̂†

︸ ︷︷ ︸
7

+ 4
3

∂ρ

∂y
Dv̂∗v̂†

︸ ︷︷ ︸
8

+ 2
3

iβ
∂ρ

∂y
ŵ∗v̂†

︸ ︷︷ ︸
9

+ ∂w

∂y
Dρ̂∗ŵ†

︸ ︷︷ ︸
10

⎞
⎟⎟⎟⎠

+ 1
Re

⎛
⎜⎜⎜⎝∂2w

∂y2 ρ̂∗ŵ†

︸ ︷︷ ︸
11

+ −iβ
∂ρ

∂y
v̂∗ŵ†

︸ ︷︷ ︸
12

+ ∂ρ

∂y
Dŵ∗ŵ†

︸ ︷︷ ︸
13

+
(

∂u

∂y

)2

ρ̂∗T̂ †

︸ ︷︷ ︸
14

+
(

∂w

∂y

)2

ρ̂∗T̂ †

︸ ︷︷ ︸
15

⎞
⎟⎟⎟⎠

(D9)
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S ∂μ
∂T

= 1
Re

(
∂T

∂y
Dû∗û† − iα∗ ∂T

∂y
v̂∗û† + ∂u

∂y
DT̂ ∗û† + ∂2u

∂y2 T̂ ∗û†
)

+ 1
Re

(
2
3

iα∗ ∂T

∂y
û∗v̂† + 4

3
∂T

∂y
Dv̂∗v̂† + 2

3
iβ

∂T

∂y
ŵ∗v̂†

)

+ 1
Re

(
−iα∗ ∂u

∂y
T̂ ∗v̂† − iβ

∂w

∂y
T̂ ∗v̂† − iβ

∂T

∂y
v̂∗ŵ† + ∂T

∂y
Dŵ∗ŵ†

)

+ 1
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(
+∂w

∂y
DT̂ ∗ŵ† + ∂2w

∂y2 T̂ ∗ŵ† +
(

∂u

∂y
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T̂ ∗T̂ † +
(

∂w

∂y

)2

T̂ ∗T̂ †

)
(D10)

S ∂2μ

∂ρ2
= 1

Re

(
∂u

∂y

∂ρ

∂y
ρ̂∗û† + ∂w

∂y

∂ρ

∂y
ρ̂∗ŵ†

)
(D11)
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∂T 2
= 1

Re

(
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∂y

∂T

∂y
T̂ ∗û† + ∂w
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∂T

∂y
T̂ ∗ŵ†

)
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S ∂2μ
∂ρ∂T

= 1
Re

(
∂u

∂y

∂T

∂y
ρ̂∗û† + ∂u
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∂ρ

∂y
T̂ ∗û† + ∂w
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∂T

∂y
ρ̂∗ŵ† + ∂w

∂y

∂ρ

∂y
T̂ ∗ŵ†

)
(D13)

Sκ = 1
RePr Ec

(
−α∗2 + D2 − β2

)
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S ∂κ
∂ρ

= 1
RePr Ec
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∂T

∂y
Dρ̂∗T̂ † + ∂2T

∂y2 ρ̂∗T̂ † + ∂ρ

∂y
DT̂ ∗T̂ †

)

S ∂κ
∂T

= 1
RePr Ec

(
2
∂T

∂y
DT̂ ∗T̂ † + ∂2T

∂y2 T̂ ∗T̂ †
)

S ∂2κ

∂ρ2
= 1

RePr Ec

∂ρ

∂y

∂T

∂y
ρ̂∗T̂ †

S ∂2κ

∂T 2
= 1

RePr Ec

(
∂T

∂y

)2

T̂ ∗T̂ †

S ∂2κ
∂ρ∂T

= 1
RePr Ec

((
∂T

∂y

)2

ρ̂∗T̂ † + ∂T

∂y

∂ρ

∂y
T̂ ∗T̂ †

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(D14)

Appendix E. Influence of the wavenumber on sensitivity
We provide an example of the influence of the spanwise wavenumber on the sensitivity.
Figure 19 shows that the sensitivity measure is only mildly influenced by β, with the rank
of input terms largely unaffected. The fluid is in the pseudo-boiling regime.
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Figure 19. (a) Sensitivity measure log(M) as a function of the wavenumber β. (b) Growth rate versus β. The
fluid is in the pseudo-boiling regime with x = 1, ω = 40 (inviscid TS mode).
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