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Abstract

Aclassical result for the simple symmetric random walk with 2n steps is that the number
of steps above the origin, the time of the last visit to the origin, and the time of the
maximum height all have exactly the same distribution and converge when scaled to the
arcsine law. Motivated by applications in genomics, we study the distributions of these
statistics for the non-Markovian random walk generated from the ascents and descents
of a uniform random permutation and a Mallows(q) permutation and show that they
have the same asymptotic distributions as for the simple random walk. We also give
an unexpected conjecture, along with numerical evidence and a partial proof in special
cases, for the result that the number of steps above the origin by step 2n for the uniform
permutation generated walk has exactly the same discrete arcsine distribution as for the
simple random walk, even though the other statistics for these walks have very different
laws. We also give explicit error bounds to the limit theorems using Stein’s method
for the arcsine distribution, as well as functional central limit theorems and a strong
embedding of the Mallows(q) permutation which is of independent interest.
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1. Introduction

The arcsine distribution appears surprisingly in the study of random walks and Brownian
motion. Let B := (Bt; t ≥ 0) be one-dimensional Brownian motion starting at zero. Let G :=
sup{0 ≤ s ≤ 1 : Bs = 0} be the last exit time of B from zero before time 1, Gmax := inf{0 ≤
s ≤ 1 : Bs = maxu∈[0,1] Bu} be the first time at which B achieves its maximum on [0,1], and

� := ∫ 1
0 1{Bs>0} ds be the occupation time of B above zero before time 1. In [43, 44], Lévy

proved the celebrated result that G, Gmax, and � are all arcsine distributed with density

f (x) = 1

π
√

x(1 − x)
for 0< x< 1. (1.1)

For a random walk Sn := ∑n
k=1 Xk with increments (Xk; k ≥ 1) starting at S0 := 0, the counter-

parts of G, Gmax, and � are given by Gn := max{0 ≤ k ≤ n:Sk = 0}, the index at which the walk
last hits zero before time n, Gmax

n := min{0 ≤ k ≤ n:Sk = max0≤k≤n Sk}, the index at which the
walk first attains its maximum value before time n, �n := ∑n

k=1 1[Sk > 0], the number of times
that the walk is strictly positive up to time n, and Nn := ∑n

k=1 1[Sk−1 ≥ 0, Sk ≥ 0], the num-
ber of edges which lie above zero up to time n. The discrete analog of Lévy’s arcsine law was
established in [2], where the limiting distribution (1.1) was computed in [19, 26]. Feller [28]
gave the following refined treatment:

(i) If the increments (Xk; k ≥ 1) of the walk are exchangeable with continuous distribution,

then �n
(d)= Gmax

n .

(ii) For a simple random walk with P(Xk = ±1) = 1/2 we have N2n
(d)= G2n, which follows

the discrete arcsine law given by

α2n,2k := 1

22n

(
2k

k

)(
2n − 2k

n − k

)
for k ∈ {0, . . . , n}. (1.2)

In the Brownian scaling limit, the above identities imply that �
(d)= Gmax (d)= G. The fact that

G
(d)= Gmax also follows from Lévy’s identity (|Bt|; t ≥ 0)

(d)= ( sups≤t Bs − Bt; t ≥ 0). See [39,
53, 69] and [54, Section 53] for various proofs of Lévy’s arcsine law. The arcsine law has
been further generalized in several different ways, e.g. in [8, 25, 30] to Lévy processes; [4,
13] to multidimensional Brownian motion; [1, 62] to Brownian motion with drift; and [40, 68]
to one-dimensional diffusions. See also [51] for a survey of arcsine laws arising from random
discrete structures.

In this paper we are concerned with the limiting distribution of the Lévy statistics Gn, Gmax
n ,

�n, and Nn of a random walk generated from a class of random permutations. Our motivation
comes from a statistical problem in genomics.

1.1. Motivation from genomics

Understanding the relationship between genes is an important goal of systems biology.
Systematically measuring the co-expression relationships between genes requires appropri-
ate measures of the statistical association between bivariate data. Since gene expression data
routinely require normalization, rank correlations such as Spearman’s rank correlation [45,
p. 221] have been commonly used; see, for example, [55]. Compared to many other measures,
although some information may be lost in the process of converting numerical values to ranks,
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rank correlations are usually advantageous in terms of being invariant to monotonic trans-
formation, and also robust and less sensitive to outliers. In genomics studies, however, these
correlation-based and other kinds of global measures have a practical limitation: they measure
a stationary dependent relationship between genes across all samples. It is very likely that the
patterns of gene association may change or only exist in a subset of the samples, especially
when the samples are pooled from heterogeneous biological conditions. In response to this
consideration, several recent efforts have considered statistics that are based on counting local
patterns of gene expression ranks to take into account the potentially diverse nature of gene
interactions. For instance, denoting the expression profiles for genes X and Y over n conditions
(or n samples) by x = (x1, . . . , xn) and y = (y1, . . . , yn) respectively, the following statistic,
denoted by W2, was introduced in [66] to consider and aggregate possible local interactions:

W2 =
∑

1≤i1<···<ik≤n

(
1[φ(xi1, . . . , xik ) = φ(yi1 , . . . , yik )]

+ 1[φ(xi1, . . . , xik ) = φ( − yi1 , . . . ,−yik )]
)
,

where 1[ · ] denotes the indicator function and φ is the rank function that returns the indices
of elements in a vector after they have been sorted in an increasing order (for example, con-
sider the values (0.5, 1.5, 0.2), which after ordering become (0.2, 0.5, 1.5), described by the
permutation 1 �→ 2, 2 �→ 3, 3 �→ 1; applying the same permutation to the vector (1,2,3), we
thus obtain φ(0.5, 1.5, 0.2) = (3, 1, 2), which is just the sequence of positions that, after order-
ing, indicate where the values were before they were ordered). The statistic W2 aggregates
the interactions across all subsamples of size k ≤ n; indeed, W2 is equal to the total number
of increasing and decreasing subsequences of length k in a suitably permuted sequence. To
see this, suppose σ is a permutation that sorts the elements of y in a decreasing order. Let
z = σ (x) = (z1, . . . , zn) be that permutation applied to x; then W2 can be rewritten as

W2 =
∑

1≤i1<···<ik≤n

(
1[zi1 < · · ·< zik ] + 1[zi1 > . . . > zik ]

)
.

Several variants of W2 have been studied to detect different types of dependent patterns
between x and y (see, for example, [66, 67]).

One variant, for example, is to have k = 2 and consider only increasing patterns in z to
assess a negative dependent relationship between x and y. Denoted by W∗, this variant can
be simply expressed as W∗ =∑1≤i1<i2≤n 1[zi1 < zi2 ]. If a more specific negative dependent
structure is concerned, say gene Y is an active repressor of gene X when the expression level
of gene Y is above a certain value, then we would expect a negative dependent relationship
between x and y, but with that dependence happening only locally among some vector ele-
ments. More specifically, this situation suggests that for a condition/sample, the expression of
gene X is expected to be low when the expression of gene Y is sufficiently high, or equivalently,
this dependence presents between a pair of elements (with each from x and y respectively)
only when the associated element in y is above a certain value. To detect this type of depen-
dent relationship, naturally we may consider the family of statistics W∗

m =∑m
i=1 1[zi < zi+1],

1 ≤ m ≤ n − 1. Note that the elements in y are ordered in a decreasing order. Thus, in this sit-
uation that gene Y is an active repressor of gene X when the expression of gene Y is above
a certain level, there should exist a change point m0 such that W∗

m is significantly high (in
comparison to the null case that x and y are independent) when m<m0, and the significance
would become gradually weakened or disappear as m grows from m0 to n. For mathemati-
cal convenience, considering W∗

m is equivalent to considering Tm =∑m
i=1 (21[zi+1 > zi] − 1),
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1 ≤ m ≤ n − 1. As argued above, exploring the properties of this process-level statistic would
be useful to understand a ‘local’ negative relationship between x and y that happens only
among a subset of vector elements, as well as for detecting when such relationships would
likely occur. To the best of our knowledge, the family of statistics (Tm; 1 ≤ m ≤ n − 1) has not
been theoretically studied in the literature. This statistic provides a motivation for studying the
related problem of the permutation generated random walk.

1.2. Permutation generated random walk

Let π := (π1, . . . , πn+1) be a permutation of [n + 1] := {1, . . . , n + 1}. Let

Xk :=
{

+1 if πk <πk+1,

−1 if πk >πk+1,

and denote by Sn := ∑n
k=1 Xk, S0 := 0, the corresponding walk generated by π . That is, the

walk moves to the right at time k if the permutation has a rise at position k, and the walk moves
to the left at time k if the permutation has a descent at position k. An obvious candidate for π
is the uniform permutation of [n + 1]. This random walk model was first studied in [49] in the
physics literature, and also appeared in the study of zigzag diagrams in [32].

In this article, we consider a more general family of random permutations proposed
by Mallows [47], which includes the uniform random permutation. For 0 ≤ q ≤ 1, the
one-parameter model

Pq(π ) = qinv(π )

Zn,q
for π a permutation of [n]

is referred to as the Mallows(q) permutation of [n], where inv(π ) := #{(i, j) ∈ [n] : i <
j and πi > πj} is the number of inversions of π , and where

Zn,q :=
∑
π

qinv(π ) =
n∏

j=1

j∑
i=1

qi−1 = (1 − q)−n
n∏

j=1

(1 − qj)

is known as the q-factorial. For q = 1, the Mallows(1) permutation is the uniform permuta-
tion of [n]. There have been a number of works on this random permutation model; see, for
example, [6, 23, 31, 33, 60, 63].

Question 1.1. For a random walk generated from the Mallows(q) permutation of [n + 1], what
are the limit laws of the statistics defined at the beginning of Section 1?

For a Mallows(q) permutation of [n + 1], the increments (Xk; 1 ≤ k ≤ n) are not independent
or even exchangeable. Moreover, the associated walk (Sk; 0 ≤ k ≤ n) is not Markov, and as a
result the Andersen–Feller machine does not apply. Indeed, when q = 1 this random walk has
a tendency to change directions more often than a simple symmetric random walk, and thus
tends to cross the origin more frequently. Note that the distribution of the walk (Sk; 0 ≤ k ≤ n) is
completely determined by the up–down sequence or, equivalently, by the descent set D(π ) :=
{k ∈ [n]:πk >πk+1} of the permutation π . The number of permutations given the up–down
sequence can be expressed either as a determinant, or as a sum of multinomial coefficients;
see see [46, Vol. I] and [15, 21, 48, 58, 65]. In particular, the number of permutations with a
fixed number of descents is known as the Eulerian number. See also [59, Section 7.23], [14,
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Section 5], and [18] for the descent theory of permutations. None of these results give a simple
expression for the limiting distributions of Gn/n, Gmax

n /n, �n/n, and Nn/n of a random walk
generated from the uniform permutation.

2. Main results

To answer Question 1.1, we prove a functional central limit theorem for the walk generated
from the Mallows(q) permutation. Although for each n> 0 the associated walk (Sk; 0 ≤ k ≤ n)
is not Markov, the scaling limit is Brownian motion with drift. As a consequence, we derive
the limiting distributions of the Lévy statistics, which can be regarded as generalized arcsine
laws. In the following, let (St; 0 ≤ t ≤ n) be the linear interpolation of the walk (Sk; 0 ≤ k ≤ n).
That is, St = Sj−1 + (t − j + 1)(Sj − Sj−1) for j − 1 ≤ t ≤ j. See [12, Chapter 2] for background
on the weak convergence in the space C[0,1]. The result is stated as follows.

Theorem 2.1 Fix 0< q ≤ 1, and let (Sk; 0 ≤ k ≤ n) be a random walk generated from the
Mallows(q) permutation of [n + 1]. Let

μ := 1 − q

1 + q
, σ :=

√
4q(1 − q + q2)

(1 + q)2(1 + q + q2)
. (2.1)

Then, as n → ∞, (
Snt −μnt

σ
√

n
; 0 ≤ t ≤ 1

)
(d)−→ (Bt; 0 ≤ t ≤ 1),

where
(d)−→ denotes the weak convergence in C[0,1] equipped with the sup-norm topology.

Given the above theorem, it is natural to consider the dragged-down walk Sq
k : = Sk −μk,

0 ≤ k ≤ n. Let Gq
n, Gq,max

n , �q
n , and Nq

n be the Lévy statistics corresponding to the dragged-
down walk. As a direct consequence of Theorem 2.1, the random variables Gq

n/n, Gq,max
n /n,

�
q
n/n, and Nq

n/n all converge to the arcsine distribution whose density is given by (1.1).
The proof of Theorem 2.1 is given in Section 3, and makes use of the Gnedin–Olshanski

construction of the Mallows(q) permutation. By letting q = 1, we get the scaling limit of a
random walk generated from the uniform permutation, which has recently been proved in
the framework of zigzag graphs [64, Proposition 9.1]. For this case, we have the following
corollary.

Corollary 2.2 Let (Sk; 0 ≤ k ≤ n) be a random walk generated from the uniform permutation
of [n + 1]. Then, as n → ∞,(

Snt√
n

; 0 ≤ t ≤ 1

)
(d)−→
(

1√
3

Bt; 0 ≤ t ≤ 1

)
,

where
(d)−→ denotes the weak convergence in C[0,1] equipped with the sup-norm topology.

Consequently, as n → ∞, the random variables Gn/n, Gmax
n /n, and �n/n converge in

distribution to the arcsine law given by the density (1.1).

Now that the limiting process has been established, we can ask the following question.

Question 2.3. For a random walk generated from the Mallows(q) permutation of [n + 1], what
are the error bounds between Gq

n/n, Gq,max/n, �q
n/n, Nq

n/n, and their arcsine limit?
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While we cannot answer these questions directly, we were able to prove partial and related
results. To state these, we need some notation. For two random variables X and Y , we
define the Wasserstein distance as dW(X, Y) := suph∈Lip(1) |Eh(X) −Eh(Y)|, where Lip(1) :=
{h:|h(x) − h(y)| ≤ |x − y|} is the class of Lipschitz-continuous functions with Lipschitz con-
stant 1. For m ≥ 1, let BCm,1 be the class of bounded functions that have m bounded and
continuous derivatives and whose mth derivative is Lipschitz continuous. Let ‖h‖∞ be the
sup-norm of h, and if the kth derivative of h exists, let

|h|k :=
∥∥∥∥∥dkh

dxk

∥∥∥∥∥∞
, |h|k,1 := sup

x,y

∣∣∣∣∣d
kh(x)

dxk
− dkh(y)

dyk

∣∣∣∣∣ 1

|x − y| .

The following results hold true for a simple random walk. However, we have strong
numerical evidence that they are also true for the permutation generated random walk; see
Conjecture 2.5.

Theorem 2.4 Let (Sk; 0 ≤ k ≤ 2n) be a simple symmetric random walk. Then

P(N2n = 2k) = α2k,2n for k ∈ {0, . . . , n}. (2.2)

Moreover, let Z be an arcsine distributed random variable; then

dW

(
N2n

2n
, Z

)
≤ 27

2n
+ 8

n2
. (2.3)

Furthermore, for any h ∈ BC2,1,∣∣∣∣∣Eh

(
N2n

2n

)
−Eh(Z)

∣∣∣∣∣≤ 4|h|2 + |h|2,1
64n

+ |h|2,1
64n2

. (2.4)

Identity (2.2) can be found in [28], the bound (2.3) was proved by [34], and the proof of
(2.4) is deferred to Section 4.

Conjecture 2.5 For a uniform random permutation generated random walk of length 2n + 1,
the probability that there are 2k edges above the origin equals α2n,2k, which is the same as that
of a simple random walk (see (1.2)).

For a walk generated from a permutation of [n + 1], call it a positive walk if Nn = n, and a
negative walk if Nn = 0. In [7] it was proved that the number of positive walks bn generated
from permutations of [n] is n!! (n − 2)!! if n is odd, and [(n − 1)!!]2 if n is even. Computer
enumerations suggest that c2k,2n+1, the number of walks generated from permutations of [2n +
1] with 2k edges above the origin, satisfies

c2k,2n+1 =
(

2n + 1

2k

)
b2kb2n−2k+1. (2.5)

Note that, for the special cases k = 0 and k = n, the formula (2.5) agrees with the known results
in [7]. The formula (2.5) suggests a bijection between permutations of [2n + 1] with 2k positive
edges and pairs of permutations of disjoint subsets of 2n + 1 of respective cardinality 2k and
2n + 1 − 2k whose associated descent walks are positive. A naive idea is to break the walk
into positive and negative excursions, and exclude the final visit to the origin before crossing
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to the other side of the origin in each excursion [2, 9]. However, this approach does not work
since not all pairs of positive walks are obtainable. For example, for n = 3, the pair (1,2,3) and
(7,6,5,4) cannot be obtained. If Conjecture 2.5 holds, we get the arcsine law as the limiting
distribution of N2n/2n with error bounds.

While we are not able to say much about Gn, Gmax
n , and �n with respect to a random walk

generated from the uniform permutation for finite n, we can prove that the limiting distributions
of these Lévy statistics are still arcsine; this is a consequence of the fact that the scaled random
walks converge to Brownian motion.

Classical results in [41, 42, 57] provide strong embeddings of a random walk with
independent increments into Brownian motion. In view of Theorem 2.1, it is also interest-
ing to understand the strong embedding of a random walk generated from the Mallows(q)
permutation. We have the following result.

Theorem 2.6 Fix 0< q ≤ 1, and let (Sk; 0 ≤ k ≤ n) be a random walk generated from the
Mallows(q) permutation of [n + 1]. Let μ and σ be defined by (2.1), and let

β := 2

σ (1 + q)
, η := 2q

1 − q + q2
.

Then, there exist universal constants n0, c1, c2 > 0 such that, for any ε ∈ (0, 1) and n ≥ n0, we
can construct (St; 0 ≤ t ≤ n) and (Bt; 0 ≤ t ≤ n) on the same probability space such that

P

(
sup

0≤t≤n
| 1

σ
(St −μt) − Bt|> c1n

1+ε
4 ( log n)

1
2 β

)
≤ c2(β6 + η)

β2nε log n
.

In fact, a much more general result, namely a strong embedding for m-dependent random
walks, is proved in Section 5.

Also note that there is substantial literature studying the relations between random permu-
tations and Brownian motion. Classical results were surveyed in [3, 50]; see also [5, 35, 36,
38] for recent progress on the Brownian limit of pattern-avoiding permutations.

3. Proof of Theorem 2.1

In this section we prove Theorem 2.1. To establish the result, we first show that the
Mallows(q) permutation can be constructed from one-dependent increments (X1, . . . , Xn); that
is, (X1, . . . , Xj) are independent of (Xj+2, . . . , Xn) for each j ∈ [n − 2]. Then we calculate its
moments and use an invariance principle.

Gnedin and Olshanski [33] provide a nice construction of the Mallows(q) permutation,
which is implicit in the original work [47]. This representation of the Mallows(q) permutation
plays an important role in the proof of Theorem 2.1.

For n> 0 and 0< q< 1, let Gq,n be a truncated geometric random variable on [n] whose
probability distribution is given by

P(Gq,n = k) = qk−1(1 − q)

1 − qn
for k ∈ [n].

Since P(Gq,n = k) → n−1 if q → 1, we can extend the definition of Gq,n to q = 1, which is just
the uniform distribution on [n]. The Mallows(q) permutation π of [n] is constructed as follows.
Let (Yk; k ∈ [n]) be a sequence of independent random variables, where Yk is distributed as
Gn+1−k. Set π1 := Y1 and, for k ≥ 2, let πk := ψ(Yk) where ψ is the increasing bijection from
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[n − k + 1] to [n] \ {π1, π2, . . . , πk−1}. That is, pick π1 according to Gq,n, and remove π1 from
[n]. Then pick π2 as the Gq,n−1th smallest element of [n] \ {π1}, and remove π2 from [n] \ {π1};
and so on. As an immediate consequence of this construction we have that, for the increments
(Xk; k ∈ [n]) of a random walk generated from the Mallows(q) permutation of [n + 1]:

• for each k, P(Xk = 1) = P(Gq,n+1−k ≤ Gq,n−k) = 1/(1 + q), which is independent of k
and n; thus, EXk = (1 − q)/(1 + q) and var Xk = 4q/(1 + q)2;

• the sequence of increments (Xk; k ∈ [n]), though not independent, is two-block factor and
hence one-dependent; see [22] for background.

Such a construction is also used in [33] to construct a random permutation of positive integers,
called the infinite q-shuffle. The latter is further extended in [52] to p-shifted permutations as an
instance of regenerative permutations, and used in [37] to construction symmetric k-dependent
q-coloring of positive integers.

If π is a uniform permutation of [n], the central limit theorem of the number of descents
#D(π ) is well known:

1√
n

(
#D(π ) − n

2

)
(d)−→ 1√

12
N (0, 1),

where N (0, 1) is a standard normal distribution. See See [18, Section 3] for a survey of six
different approaches to proving this fact. The central limit theorem of the number of descents
of the Mallows(q) permutation is known, and is as follows.

Lemma 3.1. (Proposition 5.2 of [14].) Fix 0< q ≤ 1, let π be the Mallows(q) permutation of
[n], and let #D(π ) be the number of descents of π . Then

E#D(π ) = (n − 1)q

1 + q
, var#D(π ) = q

(1 − q + q2)n − 1 + 3q − q2

(1 + q)2(1 + q + q2)
.

Moreover,
1√
n

(
#D(π ) − nq

1 + q

)
(d)−→N

(
0,

q(1 − q + q2)

(1 + q)2(1 + q + q2)

)
.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. We first recall [11, Theorem 5.1]: Let X1, X2, . . . be an m-dependent
sequence, and let s2

n =∑n
i=1 EX2

i . If EXn = 0 for all n ≥ 1, if lim supn→∞ EX2
n <∞, if |s2

n −
nσ 2| = O(1) for some σ 2 > 0, and if

lim
n→∞ s−2−δ

n

n∑
i=1

EX2+δ
i = 0

for some δ > 0, then the invariance principle holds for the sequence X1, X2, . . . with normal-
izing factor σn1/2; that is, the sequence of processes Sn(t), 0 ≤ t ≤ 1, defined by Sn(k/n) =
σ−1n−1/2∑k

i=1 Xi for 0 ≤ k ≤ n and linearly interpolated otherwise, converges weakly to a
standard Brownian motion on the unit interval with respect to the Borel sigma-algebra gener-
ated by the topology of the supremum norm on the space of continuous functions on the unit
interval.

Since the increments of a permutation generated random walk are one-dependent, the
functional central limit theorem is an immediate consequence of [11, Theorem 5.1] and the
moments in Lemma 3.1. �
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4. Proof of Theorem 2.4

4.1. Stein’s method for the arcsine distribution

It is well known that for a simple symmetric walk, G2n and N2n are discrete arcsine dis-
tributed, thus converging to the arcsine distribution. To apply Stein’s method for arcsine
approximation we first need a characterizing operator.

Lemma 4.1 A random variable Z is arcsine distributed if and only if

E[Z(1 − Z)f ′(Z) + (1/2 − Z)f (Z)] = 0

for all functions f ∈ BC2,1[0, 1].

To apply Stein’s method, we proceed as follows. Let Z be an arcsine distributed ran-
dom variable. Then, for any h ∈ Lip(1) or h ∈ BC2,1[0, 1], assume we have a function f that
solves

x(1 − x)f ′(x) + (1/2 − x)f (x) = h(x) −Eh(Z). (4.1)

For an arbitrary random variable W, replace x with W in (4.1) and, by taking expectations, this
yields an expression for Eh(W) −Eh(Z) in terms of just W and f . Our goal is therefore to bound
the expectation of the left-hand side of (4.1) by utilizing properties of f . Extending [24, 34]
developed Stein’s method for the beta distribution (of which arcsine is a special case) and gave
an explicit Wasserstein bound between the discrete and the continuous arcsine distributions.
We will use the framework from [29] to calculate error bounds for the class of test functions
BC2,1.

4.2. Proof of Theorem 2.4

To simplify the notation, let Wn := N2n/2n be the fraction of positive edges of a simple
symmetric random walk. Let�yf (x) := f (x + y) − f (x). We will use the following known facts
for the discrete arcsine distribution. For any function f ∈ BCm,1[0, 1],

E[nWn

(
1 − Wn + 1

2n

)
�1/nf

(
Wn − 1

n

)
+
(

1

2
− Wn

)
f (Wn)] = 0. (4.2)

Moreover,

EWn = 1

2
, EW2

n = 3

8
+ 1

8n
. (4.3)

The identity (4.2) can be read from [24, Lemma 2.9] and [34, Proof of Theorem 1.1]. The
moments are easily derived by plugging in f (x) = 1 and f (x) = x.

Proof of Theorem 2.4. The distribution (2.2) of N2n can be found in [28]. The bound (2.3)
follows from the fact that N2n is discrete arcsine distributed, together with [34, Theorem 1.2].

We prove the bound (2.4) using the generator method. Assume h ∈ BC2,1([0, 1]), and recall
the Stein equation (4.1) for the arcsine distribution. It follows from [29, Theorem 5] that there
exists g ∈ BC2,1([0, 1]) such that x(1 − x)g′′(x) + (1/2 − x)g′(x) = h(x) −Eh(Z), which is just
(4.1) with f = g′. We are therefore required to bound the absolute value of

Eh(Wn) −Eh(Z) =E[Wn(1 − Wn)g′′(Wn) −
(

1

2
− Wn

)
g′(Wn)].
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Applying (4.2) with f being replaced by g’, we obtain

Eh(Wn) −Eh(Z)

=E

[
Wn(1 − Wn)g′′(Wn) − nWn

(
1 − Wn + 1

2n

)
�1/ng′

(
Wn − 1

n

)]

=E

[
Wn(1 − Wn)

(
g′′(Wn) − n�1/ng′

(
Wn − 1

n

))
− Wn

2
�1/ng′

(
Wn − 1

n

)]
.

The second term in the expectation is bounded as∣∣∣∣∣E
[

Wn

2
�1/ng′

(
Wn − 1

n

)] ∣∣∣∣∣≤ EWn

2
· |g|2

n
= |g|2

4n
, (4.4)

and the first term can be bounded as∣∣∣∣∣E
[

nWn(1 − Wn)
∫ Wn

Wn− 1
n

g′′(Wn) − g′′(x) dx

] ∣∣∣∣∣
≤
∣∣∣∣∣E
[

nWn(1 − Wn)|g|2,1
∫ Wn

Wn− 1
n

|Wn − x|dx

] ∣∣∣∣∣
= |g|2,1nE

[
Wn(1 − Wn)

∫ 1
n

0
s ds

]
= |g|2,1

16

(
1

n
+ 1

n2

)
, (4.5)

where the last equality follows from (4.3). Combining (4.4), (4.5), and [29, Theorem 5] (for
relating the bounds on derivatives g with derivatives of h) yields the desired bound. �

Remark 4.2 The above bound is essentially sharp. Take h(x) = x2

2 , Eh(Wn) −Eh(Z) = − 1
16n ,

and the above bound gives |Eh(Wn) −Eh(Z)| ≤ 1
16n + 1

64n2 .

5. Proof of Theorem 2.6

In this section we prove Theorem 2.6. To this end, we prove a general result for strong
embeddings of a random walk with finitely dependent increments.

5.1. Strong embeddings of m-dependent walks

Let n, m be positive integers. Let (Xi; i ∈ [n]) be a sequence of m-dependent random vari-
ables. That is, {X1, . . . , Xj} is independent of {Xj+m+1, . . . , Xn} for each j ∈ [n − m − 1]. Let
(Sk; k ∈ {0, 1, . . . , n}) be a random walk with increments Xi, and (St; 0 ≤ t ≤ n) be the linear
interpolation of (Sk; k ∈ {0, 1, . . . , n}). Assume that the random variables Xi are centered and
scaled such that EXi = 0 for all i ∈ [n] and var(Sn) = n. Let (Bt; t ≥ 0) be a one-dimensional
standard Brownian motion. The idea of strong embedding is to couple (St; 0 ≤ t ≤ n) and
(Bt; 0 ≤ t ≤ n) in such a way that

P

(
sup

0≤t≤n
|St − Bt|> bn

)
= pn (5.1)

for some bn = o(n
1
2 ) and pn = o(1) as n → ∞ (note that the typical fluctuation of Bn is

O(n
1
2 )).
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The study of such embeddings dates back to [57]. When the Xs are independent and

identically distributed, [61] obtained (5.1) with bn =O(n
1
4 ( log n)

1
2 ( log log n)

1
4 ); [20] used

a novel approach to prove that under the additional conditions EX3
i = 0 and EX8

i <∞ we

get bn =O(n
1
6 +ε) for any ε > 0; and [41, 42] further obtained bn =O( log n) under a finite

moment-generating function assumption. See also [10, 17] for recent developments.
We use the argument from [20] to obtain the following result for m-dependent random

variables.

Theorem 5.1 Let (St; 0 ≤ t ≤ n) be the linear interpolation of partial sums of m-dependent

random variables (Xi;i ∈ [n]). Assume that 1 ≤ m ≤ n
1
5 and EXi = 0 for each i ∈ [n]. Further

assume that |Xi| ≤ β for each i ∈ [n], where β > 0 is a constant. Let

η := max
k∈[n],

j∈{0,...,n−k}
|var(Sj+k − Sj) − k|. (5.2)

For any ε ∈ (0, 1), if η≤ nε then there exist positive constants n0, c1, and c2 depending only
on ε such that, for any n ≥ n0, we can define (St; 0 ≤ t ≤ n) and (Bt; 0 ≤ t ≤ n) on the same
probability space such that

P

(
sup

0≤t≤n
|St − Bt|> c1n

1+ε
4 ( log n)

1
2 m

1
2 β

)
≤ c2(m4β6 + η)

mβ2nε log n
.

If m and β are absolute constants and var(Sj+k − Sj) matches k up to an absolute constant,

from Theorem 5.1 we get (5.1) with bn =O(n
1+ε

4 ( log n)
1
2 ) and pn =O(1/(nε log n)) for any

fixed ε ∈ (0, 1).

Proof of Theorem 2.6. We apply Theorem 5.1 with m = 1, and a suitable choice of β and η.

By centering and scaling, we consider the walk (S
′
t ; 0 ≤ t ≤ n) with increments X

′
i = 1

σ
(Xi −μ).

It is easy to see that |X′
i | ≤ 1

σ
max (1 −μ, 1 +μ) = β. According to the result in Section 3,

P(Xk = Xk+1 = 1) = P(Gq,n+1−k ≤ Gq,n−k ≤ Gq,n−k−1) = 1

(1 + q)(1 + q + q2)
,

P(Xk = −1, Xk+1 = 1) = P(Xk+1 = 1) − P(Xk = Xk+1 = 1) = q

1 + q + q2
,

P(Xk = Xk+1 = −1) = P(Xk = −1) − P(Xk = −1, Xk+1 = 1) = q3

(1 + q)(1 + q + q2)
.

By the one-dependence property, elementary computation shows that, for k ≤ n, varS
′
k = k + η,

which leads to the desired result. �

5.2. Proof of Theorem 5.1

The proof of Theorem 5.1 boils down to a series of lemmas. In the following, ‘sufficiently
large n’ means n ≥ n0 for some n0 depending only on ε. We use C and c to denote positive

constants depending only on ε and may differ in different expressions. Let d := �n
1−ε

2 , where
�x is the least integer greater than or equal to x. We divide the interval [0,n] into d subintervals
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by points �jn/d, j ∈ [d], each with length l = �n/d or l = �n/d − 1. The following results
hold for both values of l.

Lemma 5.2 Under the assumptions in Theorem 5.1, we have, for sufficiently large n,

4mβ2 ≥ 1, l ≥ 6m log n. (5.3)

Proof. By the definition of η in (5.2), the m-dependence assumption, and the upper bounds
on η and |Xi|, we have

n − nε ≤ n − η≤ varSn =
n∑

i=1

∑
j:|j−i|≤m

EXiXj ≤ n(2m + 1)β2, m ≥ 1,

which implies 4mβ2 ≥ 1 for sufficiently large n. The second bound in (5.3) follows from the

fact that m ≤ n
1
5 and l ∼ n

1+ε
2 . �

Given two probability measures μ and ν on R, define their Wasserstein-2 distance by

dW2 (μ, ν) =
(

inf
π∈�(μ,ν)

∫
|x − y|2 dπ (x, y)

) 1
2

,

where �(μ, ν) is the space of all probability measures on R
2 with μ and ν as marginals. We

will use the following Wasserstein-2 bound from [27]. We use N (μ, σ 2) to denote the normal
distribution with mean μ and variance σ 2.

Lemma 5.3. (Corollary 2.3 of [27].) Let W =∑n
i=1 ξi be a sum of m-dependent random

variables with Eξi = 0 and EW2 = 1. We have

dW2 (L(W),N (0, 1)) ≤ C0

⎧⎨
⎩m2

n∑
i=1

E|ξi|3 + m3/2

(
n∑

i=1

Eξ4
i

)1/2
⎫⎬
⎭ , (5.4)

where C0 is an absolute constant.

Specializing the above lemma to bounded random variables, we obtain the following result.

Lemma 5.4 Under the assumptions in Theorem 5.1, we have, for sufficiently large n,

dW2 (L(Sl−m), N (0, σ 2)) ≤ Cm2β3, (5.5)

where σ 2 := varSl−m.

Proof. Applying (5.4) to σ−1Sl−m and using |Xi| ≤ β, we obtain

dW2 (L(Sl−m), N (0, σ 2)) = σ dW2 (σ−1Sl−m,N (0, 1))

≤ σC0

⎛
⎝lm2

(
β

σ

)3

+
(

lm3
(
β

σ

)4
) 1

2
⎞
⎠≤ Cm2β3,

where we used 4mβ2 ≥ 1 from (5.3), and σ 2 ≥ l − m − η≥ cl for sufficiently large n from

(5.2), m ≤ n
1
5 , η≤ nε, l ∼ n

1+ε
2 , and ε ∈ (0, 1). �

Lemma 5.5 For sufficiently large n, there exists a coupling of (St; 0 ≤ t ≤ n) and (Bt; 0 ≤ t ≤ n)
such that, with ej := (S�jn/d − S�(j−1)n/d) − (B�jn/d − B�(j−1)n/d), the sequence (e1, . . . , ed)
is one-dependent, and Ee2

j ≤ C(m4β6 + η) for all j ∈ [n].
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Proof. We use 4mβ2 ≥ 1 implicitly below to absorb a few terms into Cm4β6. With σ 2

defined in Lemma 5.4, we have dW2 (N (0, σ 2), N (0, l)) ≤√|l − σ 2| ≤ √
m + η. Combining

(5.5), the above bound, and the m-dependence assumption, we can couple S�jn/d−m −
S�(j−1)n/d and B�jn/d − B�(j−1)n/d for each j ∈ [d] independently with E[(S�jn/d−m −
S�(j−1)n/d) − (B�jn/d − B�(j−1)n/d)]2 ≤ C(m4β6 + η). By the m-dependence assumption, we
can generate X1, . . . , Xn from their conditional distribution given (S�jn/d−m − S�(j−1)n/d; j ∈
[d]), thus obtaining (St; 0 ≤ t ≤ n), and generate (Bt;0 ≤ t ≤ n) given (B�jn/d; j ∈ [d]). Since
E(S�jn/d − S�jn/d−m)2 ≤ Cm2β2, we have E(e2

j ) ≤ C(m4β6 + η). Finally, the one-dependence
of (e1, . . . , ed) follows from the m-dependence assumption. �

Lemma 5.6 Let Tj =∑j
i=1 ei, j ∈ [d]. For any b> 0 and sufficiently large n, P( maxj∈[d] |Tj|>

b) ≤ C(m4β6 + η)d/b2.

Proof. Define T (1)
j =∑i=1,3,5,...

i≤j
ei and T (2)

j =∑i=2,4,6,...
i≤j

ei. By Lemma 5.5, T (1)
j is a sum of

independent random variables with zero mean and finite second moments. By Kolmogorov’s
maximal inequality,

P

(
max

1≤j≤d

∣∣T (1)
j

∣∣> b

2

)
≤ C(m4β6 + η)d

b2
.

The same bound holds for T (2)
j . The lemma is proved by the union bound

P

(
max
j∈[d]

|Tj|> b

)
≤ P

(
max

1≤j≤d
|T (1)

j |> b

2

)
+ P

(
max

1≤j≤d
|T (2)

j |> b

2

)
. �

Lemma 5.7 For any 0< b ≤ 4lβ, we have

P

(
max
j∈[l]

|Sj − jSl/l|> b

)
≤ 2l exp

(
− b2

48lmβ2

)
.

Proof. We first prove a concentration inequality for Sj, j ∈ [l], then use the union bound.

Let h(θ ) =EeθSj , with h(0) = 1. Let S(i)
j = Sj −∑k∈[j]:|k−i|≤m Xk. Using EXi = 0, |Xi| ≤ β, the

m-dependence assumption, and the inequality (cf. [16, Eq. (7)])∣∣∣∣∣e
x − ey

x − y

∣∣∣∣∣≤ 1

2
(ex + ey),

we have, for θ > 0 and θ (2m + 1)β ≤ 1,

h′(θ ) =E(Sje
θSj ) =

j∑
i=1

EXi(e
θSj − eθS(i)

j ) ≤ θ

2

j∑
i=1

E|Xi|
∣∣Sj − S(i)

j

∣∣ (eθSj + eθS(i)
j

)

≤
(

m + 1

2

)
θ lβ2

EeθSj(1 + eθ(2m+1)β ) ≤ 6θ lmβ2h(θ ).

This implies that log h(θ ) ≤ 3lmβ2θ2, and

P(Sj > b/2) ≤ e−θb/2
EeθSj ≤ exp

(
− b2

48lmβ2

)

https://doi.org/10.1017/jpr.2021.14 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.14


864 X. FANG ET AL.

by choosing θ = b/(12lmβ2), provided that b ≤ 4lβ. The same bound holds for −Sj.
Consequently,

P

(
max
j∈[l]

|Sj − jSl/l|> b

)
≤ P

(
max

j∈[l−1]
|Sj|> b/2

)
+ P (|Sl|> b/2)

≤ 2l exp

(
− b2

48lmβ2

)
. �

Lemma 5.8 For any b> 0, we have P( sup0≤t≤l |Bt − tBl/l|> b) ≤ 2e− 2b2
l .

Proof. We have

P

(
sup

0≤t≤l
|Bt − tBl/l|> b

)
≤ P

(
sup

0≤t≤l
(Bt − tBl/l|)> b

)
+ P

(
inf

0≤t≤l
(Bt − tBl/l)<−b

)

= 2P

(
sup

0≤t≤l
(Bt − tBl/l)> b

)
= 2e− 2b2

l ,

where the last equality is the well-known distribution of the maximum of the Brownian bridge
(cf. [56, p. 34]). �

Now we proceed to proving Theorem 5.1.

Proof of Theorem 5.1. Let bl = (96lmβ2 log n)1/2 and b: = b� n
d . Note that, since m ≤

l/(6 log n) from (5.3), bl satisfies the condition bl ≤ 4lβ in Lemma 5.7 for sufficiently large
n. Note also that if sup0≤t≤n |St − Bt|> 3b then either maxj∈[d] |Tj|> b or the fluctuation of
either St or Bt within some subinterval of length l is larger than bl. By the union bound and
Lemmas Lemma 5.6–Lemma 5.8, we have

P

(
sup

0≤t≤n
|St − Bt|> 3b

)

≤ P

(
max
j∈[d]

|Tj|> b

)
+ dP

(
max
j∈[l]

|Sj − jSl/l|> bl

)
+ dP

(
sup

0≤t≤l
|Bt − tBl/l|> bl

)

≤ C(m4β6 + η)d

b2
+ 2dl exp

(
− b2

l

48lmβ2

)
+ 2d exp

(
−2b2

l

l

)

≤ C(m4β6 + η)

nεmβ2 log n
+ C

n
≤ C(m4β6 + η)

mβ2nε log n
,

where we used 4mβ2 ≥ 1 for sufficiently large n. This proves the theorem. �

Acknowledgements

The initial portion of this work was conducted at the meeting ‘Stein’s method and applica-
tions in high-dimensional statistics’ held at the American Institute of Mathematics in August
2018. We are indebted to Bhaswar Bhattacharya, Sourav Chatterjee, Persi Diaconis, and Jon
Wellner for helpful discussions throughout the project. We would also like to express our grat-
itude to John Fry and staff Estelle Basor, Brian Conrey, and Harpreet Kaur at the American

https://doi.org/10.1017/jpr.2021.14 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.14


Arcsine laws for random walks generated from random permutations 865

Institute of Mathematics for their generosity and excellent hospitality in hosting this meet-
ing at the Fry’s Electronics corporate headquarters in San Jose, CA, and Jay Bartroff, Larry
Goldstein, Stanislav Minsker, and Gesine Reinert for organizing such a stimulating meeting.

WT thanks Yuting Ye for communicating the problem of the limiting distribution of the
sojourn time of a random walk generated from the uniform permutation, which brought him
to this work, and Jim Pitman for helpful discussions. SH acknowledges support from the NSF
DMS grant 1501767. XF acknowledges support from Hong Kong RGC ECS 24301617, GRF
14302418, 14304917. We also thank the anonymous referees for their careful reading and for
pointing out some errors in the first draft of the manuscript.

Finally, we thank the Institute for Mathematical Sciences at the National University of
Singapore, where part of this work was undertaken, for their kind support.

References

[1] AKAHORI, J. (1995). Some formulae for a new type of path-dependent option. Ann. Appl. Prob. 5, 383–388.
[2] ANDERSEN, E. S. (1953). On sums of symmetrically dependent random variables. Skand. Aktuarietidskr. 36,

123–138.
[3] ARRATIA, R., BARBOUR, A. AND TAVARÉ, S. (2003). Logarithmic Combinatorial Structures: A Probabilistic

Approach (EMS Monogr. Math. 1). EMS Publishing House, Zurich.
[4] BARLOW, M., PITMAN, J. AND YOR, M. (1989). Une extension multidimensionnelle de la loi de l’arc sinus.

In Séminaire de Probabilités (Lect. Notes Math. 23). Springer, Berlin, pp. 294–314.
[5] BASSINO, F., BOUVEL, M., FÉRAY, V., GERIN, L. AND PIERROT, A. (2018). The Brownian limit of separable

permutations. Ann. Prob. 46, 2134–2189.
[6] BASU, R. AND BHATNAGAR, N. (2017). Limit theorems for longest monotone subsequences in random

Mallows permutations. Ann. Inst. H. Poincaré Prob. Statist. 53, 1934–1951.
[7] BERNARDI, O., DUPLANTIER, B. AND NADEAU, P. (2010). A bijection between well-labelled positive paths

and matchings. Séminaire Lotharingien de Combinatoire 63, B63e.
[8] BERTOIN, J. AND DONEY, R. (1997). Spitzer’s condition for random walks and Lévy processes. Ann. Inst. H.

Poincaré Prob. Statist. 33, 167–178.
[9] BERTOIN, J. (1993). Splitting at the infimum and excursions in half-lines for random walks and Lévy processes.

Stoch. Process. Appl. 47, 17–35.
[10] BHATTACHARJEE, C. AND GOLDSTEIN, L. (2016). On strong embeddings by Stein’s method. Electron. J.

Prob. 21, 1–30.
[11] BILLINGSLEY, P. (1956). The invariance principle for dependent random variables. Trans. Amer. Math. Soc. 83,

250–268.
[12] BILLINGSLEY, P. (1999). Convergence of Probability Measures, 2nd ed. John Wiley, New York.
[13] BINGHAM, N. AND DONEY, R. (1988). On higher-dimensional analogues of the arc-sine law. J. Appl. Prob.

25, 120–131.
[14] BORODIN, A., DIACONIS, P. AND FULMAN, J. (2010). On adding a list of numbers (and other one-dependent

determinantal processes). Bull. Amer. Math. Soc. 47, 639–670.
[15] CARLITZ, L. (1973). Permutations with prescribed pattern. Math. Nachr. 58, 31–53.
[16] CHATTERJEE, S. (2007). Stein’s method for concentration inequalities. Prob. Theory Relat. Fields 138,

305–321.
[17] CHATTERJEE, S. (2012). A new approach to strong embeddings. Prob. Theory Relat. Fields 152, 231–264.
[18] CHATTERJEE, S. AND DIACONIS, P. (2017). A central limit theorem for a new statistic on permutations. Indian

J. Pure Appl. Math. 48, 561–573.
[19] CHUNG, K. L. AND FELLER, W. (1949). On fluctuations in coin-tossing. Proc. Nat. Acad. Sci. 35, 605–608.
[20] CSÖRGÖ, M. AND RÉVÉSZ, P. (1975). A new method to prove Strassen type laws of invariance principle. I. Z.

Wahrscheinlichkeitsth. 31, 255–259.
[21] DE BRUIJN, N. G. (1970). Permutations with given ups and downs. Nieuw Arch. Wiskd. 18, 61–65.
[22] DE VALK, V. (1994). One-Dependent Processes: Two-Block-Factors and Non-Two-Block-Factors (CWI tracts

85). Centrum voor Wiskunde en Informatica, Amsterdam.
[23] DIACONIS, P. (1988). Group Representations in Probability and Statistics (Lect. Notes Monogr. 11). Institute

of Mathematics and Statistics, Hayward, CA.
[24] DÖBLER, C. (2012). A rate of convergence for the arcsine law by Stein’s method. Preprint, arXiv:1207.2401.
[25] DYNKIN, E. B. (1965). Markov Processes Vols. I, II (Grundlehren der Mathematischen Wissenschaften 121,

122). Springer, Berlin.

https://doi.org/10.1017/jpr.2021.14 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.14


866 X. FANG ET AL.

[26] ERDÖS, P. AND KAC, M. (1947). On the number of positive sums of independent random variables. Bull. Amer.
Math. Soc. 53, 1011–1020.

[27] FANG, X. (2019). Wasserstein-2 bounds in normal approximation under local dependence. Electron. J. Prob.
24, 1–14.

[28] FELLER, W. (1968). An Introduction to Probability Theory and Its Applications, 2nd ed. Vol. I. John Wiley,
New York.

[29] GAN, H. L., RÖLLIN, A. AND ROSS, N. (2017). Dirichlet approximation of equilibrium distributions in
Cannings models with mutation. Adv. Appl. Prob. 49, 927–959.

[30] GETOOR, R. AND SHARPE, M. (1994). On the arc-sine laws for Lévy processes. J. Appl. Prob. 31, 76–89.
[31] GLADKICH, A. AND PELED, R. (2018). On the cycle structure of Mallows permutations. Ann. Prob. 46, 1114–

1169.
[32] GNEDIN, A. AND OLSHANSKI, G. (2006). Coherent permutations with descent statistic and the boundary

problem for the graph of zigzag diagrams. Int. Math. Res. Not. 2006, 51968.
[33] GNEDIN, A. AND OLSHANSKI, G. (2010). q-exchangeability via quasi-invariance. Ann. Prob. 38, 2103–2135.
[34] GOLDSTEIN, L. AND REINERT, G. (2013). Stein’s method for the beta distribution and the Polya–Eggenberger

urn. J. Appl. Prob. 50, 1187–1205.
[35] HOFFMAN, C., RIZZOLO, D. AND SLIVKEN, E. (2017a). Pattern-avoiding permutations and Brownian

excursion part I: Shapes and fluctuations. Random Structures Algorithms 50, 394–419.
[36] HOFFMAN, C., RIZZOLO, D. AND SLIVKEN, E. (2017b). Pattern-avoiding permutations and Brownian

excursion, part II: Fixed points. Prob. Theory Relat. Fields 169, 377–424.
[37] HOLROYD, A., HUTCHCROFT, T. AND LEVY, A. (2020). Mallows permutations and finite dependence. Ann.

Prob. 48, 343–379.
[38] JANSON, S. (2017). Patterns in random permutations avoiding the pattern 132. Combinatorics Prob. Comput.

26, 24–51.
[39] KARATZAS, I. AND SHREVE, S. E. (1987). A decomposition of the Brownian path. Statist. Prob. Lett. 5, 87–93.
[40] KASAHARA, Y. AND YANO, Y. (2005). On a generalized arc-sine law for one-dimensional diffusion processes.

Osaka J. Math. 42, 1–10.
[41] KOMLÓS, J., MAJOR, P. AND TUSNÁDY, G. (1975). An approximation of partial sums of independent RVs,

and the sample DF. I. Z. Wahrscheinlichkeitsth. 32, 111–131.
[42] KOMLÓS, J., MAJOR, P. AND TUSNÁDY, G. (1976). An approximation of partial sums of independent RVs,

and the sample DF. II. Z. Wahrscheinlichkeitsth. 34, 33–58.
[43] LÉVY, P. (1939). Sur certains processus stochastiques homogènes. Compositio Math. 7, 283–339.
[44] LÉVY, P. (1965). Processus stochastiques et mouvement brownien. Suivi d’une note de M. Loève. Deuxième

édition revue et augmentée. Gauthier-Villars & Cie, Paris.
[45] MCDONALD, J. H. (2009). Handbook of Biological Statistics. Sparky House Publishing, Baltimore, MD.
[46] MACMAHON, P. A. (1960). Combinatory Analysis. Chelsea Publishing Co., New York.
[47] MALLOWS, C. L. (1957). Non-null ranking models. I. Biometrika 44, 114–130.
[48] NIVEN, I. (1968). A combinatorial problem of finite sequences. Nieuw Arch. Wisk 16, 116–123.
[49] OSHANIN, G. AND VOITURIEZ, R. (2004). Random walk generated by random permutations of

{1, 2, 3, . . . , n + 1}. J. Phys. A 37, 6221.
[50] PITMAN, J. (2006). Combinatorial Stochastic Processes (Lect. Notes Math. 1875). Springer, Berlin.
[51] PITMAN, J. (2018). Random weighted averages, partition structures and generalized arcsine laws. Preprint,

arXiv:1804.07896.
[52] PITMAN, J. AND TANG, W. (2019). Regenerative random permutations of integers. Ann. Prob. 47, 1378–1416.
[53] PITMAN, J. AND YOR, M. (1992). Arcsine laws and interval partitions derived from a stable subordinator. Proc.

London Math. Soc. 65, 326–356.
[54] ROGERS, L. C. G. AND WILLIAMS, D. (1987). Diffusions, Markov Processes, and Martingales, Vol. 2. John

Wiley, New York.
[55] SALARI, K., TIBSHIRANI, R. AND POLLACK, J. R. (2010). DR-Integrator: A new analytic tool for integrating

DNA copy number and gene expression data. Bioinformatics 26, 414–416.
[56] SHORACK, G. R. AND WELLNER, J. A. (1986). Empirical Processes with Applications to Statistics. John

Wiley, New York.
[57] SKOROKHOD, A. V. (1965). Studies in the Theory of Random Processes. Addison-Wesley Publishing Co., Inc.,

Reading, MA.
[58] STANLEY, R. (1976). Binomial posets, Möbius inversion, and permutation enumeration. J. Combinatorial

Theory A 20, 336–356.
[59] STANLEY, R. (1999). Enumerative Combinatorics, Vol. 2 (Camb. Studies Adv. Math. 62). Cambridge

University Press.
[60] STARR, S. (2009). Thermodynamic limit for the Mallows model on Sn. J. Math. Phys. 50, 095208.

https://doi.org/10.1017/jpr.2021.14 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.14


Arcsine laws for random walks generated from random permutations 867

[61] STRASSEN, V. (1967). Almost sure behavior of sums of independent random variables and martingales. In Proc.
Fifth Berkeley Symp. Math. Statist. Prob., Vol. 2.

[62] Takács, L. (1996). On a generalization of the arc-sine law. Ann. Appl. Prob. 6, 1035–1040.
[63] TANG, W. (2019). Mallows ranking models: Maximum likelihood estimate and regeneration. Proc. Mach.

Learn. Res. 97, 6125–6134.
[64] TARRAGO, P. (2018). Zigzag diagrams and Martin boundary. Ann. Prob. 46, 2562–2620.
[65] VIENNOT, G. (1979). Permutations ayant une forme donnée. Discrete Math. 26, 279–284.
[66] WANG, R., WATERMAN, M. AND HUANG, H. (2014). Gene coexpression measures in large heterogeneous

samples using count statistics. Proc. Nat. Acad. Sci. 111, 16371–16376.
[67] WANG, R., LIU, K., THEUSCH, E., ROTTER, J., MEDINA, M., WATERMAN, M. AND HUANG, H. (2017).

Generalized correlation measure using count statistics for gene expression data with ordered samples.
Bioinformatics 34, 617–624.

[68] WATANABE, S. (1995). Generalized arc-sine laws for one-dimensional diffusion processes and random walks.
In Proc. Symp. Pure Math., Vol. 57, pp. 157–172. American Mathematical Society, Providence, RI.

[69] WILLIAMS, D. (1969). Markov properties of Brownian local time. Bull. Amer. Math. Soc. 75, 1035–1036.

https://doi.org/10.1017/jpr.2021.14 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.14

	Introduction
	Motivation from genomics
	Permutation generated random walk

	Main results
	Proof of Theorem 2.1
	Proof of Theorem 2.4
	Stein"2019`s method for the arcsine distribution
	Proof of Theorem 2.4

	Proof of Theorem 2.4
	Strong embeddings of "026E30F textitm-dependent walks
	Proof of Theorem 5.1

	Acknowledgements
	References

