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Abstract
The antenna characterization from planar near-field (NF) measurements is generally realized
by using the classical NF to far-field transform technique of plane wave expansion (PWE).This
approach imposes strong constraints onNF sampling. To overcome these limitations, an equiv-
alent model of the antenna under test (AUT) is created based on a distribution of infinitesimal
dipoles. A reduced-order model (ROM) of the problem is constructed to obtain a decompo-
sition basis defining the radiated field. The powerful ability of the ROM in determining the
number of points needed for accurate NF measurements is demonstrated. Also, efficient non-
conventional sampling strategies are applied to the case of planar NF measurements and the
influence of these distributions on the reduction of the number of samples is studied.The global
analysis of our approach on simulated and measured NF data shows that only 20% of the total
number of points are neededwith respect to the classical PWE technique to achieve an accurate
characterization.

Introduction

The characterization of the far field (FF) radiated by an antenna under test (AUT) is crucial
to verify that the radiating systems meet the expected performances. To achieve this, one way
requiresmeasuring the FF directly. Unfortunately, suchmeasurements require quasi-planewave
illumination and are either performed at very long distances or using high-cost reflector sys-
tems. To overcome these difficulties, near-field (NF) techniques have been investigated in the
second half of the last century by Hansen et al. [1] and Wang et al. [2]. The principle is based
on sampling the NF before applying a near-field to far-field transform (NFFFT). The best-
knownNFFFT for planarmeasurements is the plane wave expansion (PWE)method [3], which
depends on a modal expansion of the measured field. The use of Fourier transforms in this
NFFFT implies that the correct identification of the decomposition coefficients is related to
some sampling rules imposed by the analytical Nyquist criterion. Therefore, these rules lead to
limitations on the sampling strategies that can be employed in terms of sampling distribution
and size.

Many works investigated some techniques to release these constraints. A first approach
developed by Bucci et al. [4] hinges on the use of a plane-polar sampling combined
with new techniques to bring some a priori information on the AUT. Then, Qureshi
et al. [5] introduce an adaptive sampling strategy to measure the NF while extrapo-
lating it on low variations zones. Although these methods present some improvements,
they are still strongly dependent on regular sampling. Therefore, the number of samples
necessary to precisely characterize the AUT remains consequent, as does the measuring
time.

To bypass these limits, some recent techniques propose to create an AUT model by
using the Huygens, or equivalent surface, principle [4, 6]. A radiation matrix is defined to
link the AUT equivalent model to the NF samples. A singular value decomposition (SVD)
of this matrix leads to the construction of a reduced-order model (ROM) of the original
problem.

Initially, Fuchs et al. [7] used this ROM approach for planar NF measurements by using a
distribution of dipoles to model the AUT.The authors manage to reduce the number of samples
compared to PWE for the same precision. After that, Mézières et al. [8] adapted it to spherical
measurements for FF interpolation using the method of moments. Once again, a reduction in
the number of points has been observed thanks to the conformation of the AUT geometry by
the equivalent surface.
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In this paper, a ROM is used in the case of planar NF measure-
ments. The first objective is to demonstrate that the number of NF
samples needed for accurate planar measurements can be prede-
termined thanks to an SVD analysis. The second objective is to
show that the reduction in the number of samples can be applied
to non-conventional sampling strategies.

The organization of this paper is as follows. The construction
of an equivalent model of the AUT and a ROM of the prob-
lem are described in construction of a reduced-order model. The
determination of the number of NF samples and the considered
sampling strategies are presented in number and distribution of
samples. Validations of the characterization approach with the dif-
ferent tools offered by the ROM are discussed in applications. The
conclusion and the perspectives are provided in conclusion.

Construction of a Reduced-Order Model

Global description

As initially introduced in the context of antenna measurements by
Fuchs et al. [7], a ROM is based on the Huygens principle, where
the AUT is represented by an equivalent surface Σ [9] (Fig. 1). The
equivalent currents flowing on this surface Σ can be decomposed
in a known basis, created by a distribution of dipoles. Therefore, it
is possible to construct a radiation matrix that links the excitations
of these dipoles to the field they radiate at any observation posi-
tion outside the surface Σ. For this paper, the parameter ES denotes
the NF measured on a surface S and ES′ the FF observed on the
surface S’. Then, A is the radiation matrix constructed for samples
on the NF planar surface S, and A’ for observation points on S’, as
presented in Fig. 2.

Once the equivalent currents are computed from the measured
NF ES, the field can be derived everywhere, in particular over S’ to
obtain ES′. Therefore, the proper determination of the equivalent
currents is crucial to ensure a correct reconstruction ES′.

A first solution is to apply the classical sampling schemes to S
to obtain regular or irregular distributions on a grid. From this
NF data, the equivalent currents can be computed and used to
reconstruct ES′ by solving the associated inverse problem (IP)
directly.

Figure 1. Illustration of the Huygens principle: (left) original problem, (right)
equivalent one.

Figure 2. Matrices A and A’ linking the equivalent surface Σ to the samples on the
NF measurement plane S and to the observation positions on the FF half-sphere S’.

Figure 3. Distribution of infinitesimal dipoles on Σ.

Another solution is to perform an SVD of A constructed for a
dense and regular sampling grid on S to create a ROM.Thenumber
of points to bemeasured can be determined and chosen among this
measurement grid.Then, the equivalent currents can be computed
to find ES′ or to reconstitute ES on a regular grid in order to use
a classical PWE to finally obtain ES′. However, the ROM can also
be applied to reconstruct the regular grid for direct PWE without
equivalent current determination.

Contrarily to Fuchs et al. [7] and Mézières et al. [8], our
approach introduces this supplementary step of the equivalent
current determination in addition to the usual ROM procedure,
leading to a new ROM+IP method.

Equivalent surface discretization

Theelectric andmagnetic equivalent currents (Jeq,Meq) flowing on
the surface Σ (Fig. 1) can be decomposed into a defined basis. In
our case, the current densities Jeq and Meq are projected on a dis-
tribution of electric and magnetic infinitesimal dipoles [11]. Two
couples of crossed, tangent, dipoles (electric and magnetic) are
placed along a regular grid on the equivalent surface Σ [10], as illus-
trated in Fig. 3. In thiswork, the shape of Σ is chosen square because
it simplifies the problem and is well adapted to the aperture anten-
nas that are considered in this paper. It should be noted that amore
complex surface, like a box, could be used if necessary.

Construction of radiating matrices

The discretization of the equivalent surface leads to the construc-
tion of the radiation matrices A and A’ by calculating the field
radiated by each infinitesimal dipole on the surface Σ, at the defined
points (Fig. 2). In the case of the NF measured on S, we obtain the
following linear system:

[ESx
ESy

] = [
AJ x

𝜂AMx
AJ y

𝜂AMy
] [XJ

XM
] (1)

withESx,ESy the tangential x and y components of theNFmeasured
on S. The vectors XJ and XM contain the weighting coefficients of
the electric andmagnetic currents to be determined.Thereafter, the
system (1) is written ES = AX for more convenience. Similarly, we
can compute the matrix A’ linked to the observation positions on
the surface S’ and deduce the field using ES′ = A’X.

Inverse problem

A first method to find the equivalent currents is to solve the IP by
using the least squares method ES = AX, according to a classic
sampling scheme 𝜒 on S.The resulting coefficients are the different
weights associated to the dipoles on Σ. Finally, the radiated field of
each dipole is used to reconstruct the FF on S’ ES′ = A’X (Fig. 4).
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Figure 4. Steps of the IP: (left) the calculation of the equivalent currents, (right)
the FF reconstruction.

Reduced-order model

A second method ROM+IP is to create a ROM of the initial prob-
lem before solving the IP. The radiation matrix A according to
a dense regular grid �̃� on the NF surface S is constructed. It is
shown in [7] that thematricesA andA’ are ill-conditioned because
of the regularity of the currents and the redundancy of surface
geometry. To get rid of this problem, an SVD of the matrix A
is realized. This allows identifying a basis of the radiated field
space and a basis of the current space. The diagonal matrix of the
singular values constitutes the coupling between the two bases.
The radiation matrix A is approximated by its truncated SVD as
follows:

A = USVH ≈ AT = UTSTVH
T (2)

with U and V two orthogonal matrices representing a radiated
field basis and the associated distribution of currents on Σ, respec-
tively. The diagonal matrix ST represents the coupling of these two
bases. Selecting the T first singular values boils down to only con-
sidering the T first, associated vectors of U. The resulting matrix
UT represents a reduced decomposition basis of the radiated field.
Furthermore, we note that the number of rows of UT is directly
linked to the sampling �̃�.

The identification of a reduced basis in the radiated field
space (2) is interesting on two points:

(i) it enables to define the minimum number of measurement
points to be carried out,

(ii) it constitutes a powerful tool to interpolate the field on the
surface S.

The first point will be detailed in the next section. The second
one consists in selecting the number of samples determined by the
ROM according to the subsampling 𝜒 defined among the points
of the dense regular grid �̃� on S. From this subsampling, we can
decompose the field in the reduced basis, as represented by the
following system:

ES|𝜒 = UT |𝜒𝝁 (3)

with ES|𝜒 and UT |𝜒 the measured NF and the reduced basis
restricted to a subsampling 𝜒 of �̃� on the surface S, respectively.
𝝁 is the coefficient vector associated to the decomposition of the
field in the reduced basis. From the solution of the system (3), we
can now interpolate the field on the dense sampling �̃�: ES = UT𝝁.
The main advantage is that the field interpolated on the dense reg-
ular measurement grid is computed from a reduced number of
samples of this grid. Finally, to reconstruct the field on the sur-
face of interest S’, we solve the IP from the NF interpolated by the
model.

Number and distribution of samples

From the singular values to the number of samples

As explained by Mézières et al. [8], the analysis of the trun-
cated singular values matrix ST by a truncation index T pro-
vides an estimation of the number of samples needed to reach
an accurate characterization. This truncation index is directly
dependent on a cutoff threshold R for the singular values. This
threshold allows considering uniquely the singular values higher
than R. The following rule is defined by the authors for spherical
measurements:

NSVD = 𝛼T (4)

with NSVD the estimated number of necessary samples and 𝛼 an
oversampling factor equal to 1.25. Our goal is to realize the same
study on the singular values to determine a safe criterion 𝛼 in the
case of planar NF measurements.

Sampling strategies

The introduced model allows overcoming the sampling con-
straints imposed by the PWE method. Indeed, we can use sam-
pling distributions different from a regular grid respecting the
Nyquist criterion, that is, with a sampling step finer than 𝜆

2
. In

this paper, 𝜒PWE denotes these classical regular samplings. Then,
the considered regular and irregular sampling strategies are the
following:

(i) The regular grid with a step higher than the Nyquist criterion
of 𝜆

2
.

(ii) The igloo sampling defined on a half-sphere by Δ𝜙 = Δ𝜃
sin 𝜃

[12]. This distribution created on the half-sphere is then pro-
jected by perspective from the center of Σ onto the planar
measurement surface S, as illustrated Fig. 5.

(iii) With the same procedure as the igloo sampling, the Fibonacci
sampling [13] is constructed on a half-sphere before being
projected on S.

All these samplings can be defined as a coarse subsampling of a
regular grid. This property is interesting when the ROM is applied
to reconstruct ES on a regular grid to use PWE because the NSVD
points to measure with one of the distributions previously detailed
are included in the regular grid samples. From a cinematic point
of view, these samplings are efficient because they do not impact

Figure 5. Perspective projection of an igloo sampling into a regular sampling over
the measurement surface S.
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the path of the measurement probe relative to the classical sam-
pling 𝜒PWE. Therefore, the acquisition time is not increasing by
mechanical constraints from the measurement means. Moreover,
our objective is to show that these samplings allow the reduction
of the number of field samples while preserving the accuracy of the
reconstructed FF.

Applications

Methodology

In this section, the first objective is to demonstrate that the num-
ber of samples needed to perform accurate NF measurements
can be predetermined by an SVD analysis. The second one is
to verify that non-conventional sampling strategies applied to
planar NF measurements lead to a reduction in the number of
samples.

In this application part, we set a square surface Σ of dimensions
5𝜆 × 5𝜆, with a spacing between the dipoles of 𝜆

4
. For each AUT

presented in this section, the surface Σ is positioned at the AUT
aperture plane.

Metrics

For each application, a reference FF is used tomeasure the accuracy
of bothmethods.We denote y and yr respectively the reconstructed
and reference FF, both calculated on each i point of the N ’ points
over S’.Thus, the relative error associated to one polarization (y𝜃 or
y𝜙) of the field is defined as:

Err𝜃,𝜙
i =

∣y𝜃,𝜙
i − yr𝜃,𝜙

i ∣

max
i≤N′

√|yr𝜃|2 + |yr𝜙|2
. (5)

In the same way, the relative error on the field modulus Err𝜃,𝜙
mod

is defined. Then, the equivalent noise level (ENL) is introduced to
evaluate the characterization accuracy:

ENL =
N′

∑
i=1

√∣y𝜃
i − yr𝜃i ∣

2
+ ∣y𝜙

i − yr
𝜙
i ∣

2

N′ max
i≤N′

√|yr𝜃|2 + |yr𝜙|2
. (6)

Simulation validation – planar array at X-band

TheIP andROM+IPmethods are applied to the simulated data of a
8×8 patch array working at 9.7GHz and designed with CST MWS
software [14]. The dimensions of the printed array are 4𝜆 × 4𝜆,
height 0.15𝜆 and an array spacing of 𝜆

2
. The main beam direc-

tion is 𝜃 = 50∘ and 𝜙 = 0∘. The NF measurement surface
over which the NF data is simulated is a square surface of dimen-
sions 30𝜆 × 30𝜆 positioned at a height of 4𝜆 over the top surface
of the array. The step of the sampling �̃� is set to 𝜆

10
allowing

to implement the various sampling strategies previously detailed.
Only the x and y components of the NF are simulated and used
in the IP and ROM+IP methods. The reference FF is calculated
on a half-sphere according to an equi-angular sampling of Δ𝜙 =
Δ𝜃 = 1∘ with a limit of 𝜃 = 70∘ to avoid truncation effects
on S.

First, we compare the reconstructions obtained by solving the IP
and PWE with the CST reference for the sampling 𝜒PWE (regular,

Figure 6. Patch array simulation: Comparison of the reconstructed FF by both IP
and PWE methods with the sampling 𝜒PWE, relative to the reference simulated on
CST. The left side focuses on the analysis of the normalized 𝜃-component while the
right side the normalized 𝜙-component.

Figure 7. Patch array simulation: UV representation of the relative errors on the FF
reconstruction for the two methods of IP and PWE, with the sampling 𝜒PWE on S.

step 𝜆
2
) on S. The results are presented on two cut planes of S′ in

Fig. 6 with the associated relative errors Fig. 7.
The obtained results for the classical sampling 𝜒PWE show

a good accuracy of the IP method compared to PWE without
exploiting the ROM potential. Indeed, this is corroborated by the
calculation of the ENL metric. For the IP, the result is −46.2 dB,
while for the PWE it is −52.3 dB.

Then, the analysis of the model influence on the reconstruction
accuracy by using different sampling strategies is realized in Fig. 8.
The precision of characterization is studied regarding the number
of samplesN𝜒 relative to theN𝜒PWE

points of the classical sampling.
Moreover, the criterion NSVD defined in (4) is calculated with a
threshold of R = −50 dB. The resulting trends being stable for a
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Figure 8. Patch array simulation: Methods accuracy as a function of the number of
NF sampling points (relative to classical PWE sampling) and for different sampling
strategies.

high percentage ofN𝜒/N𝜒PWE
points, only the variations of the ENL

around the criterion of interest are shown.
Our approach allows an important reduction in the number of

measurement points to reach the same accuracy as for the PWE.
The distribution of these points on the surface S is crucial, and the
irregular samplings enable us to keep only 10% of the number of
samples, approximately. Also, the IP without the SVD step brings
satisfactory results.

Furthermore, the oversampling factor 𝛼 observed by Mézières
et al. [8] to be equal to 1.25 in the case of spherical measurements
is verified in our study for the irregular samplings. So, this cri-
terion is still valid for a planar NF problem and ensures a safe
number of points tomeasure according to an irregular distribution
on the planar surface S. Finally, this illustrates the powerful ability
of theROMtodetermine the number of samples before performing
the measurements.

Experimental validation – standard gain horn at V-band

The same approach is applied to the measured data of a pyrami-
dal horn antenna working at 50GHz [15]. The dimensions of the
AUT aperture are 4𝜆 × 4𝜆. The surface S is a square surface of
dimensions 16.7𝜆 × 16.7𝜆, at a height of 2𝜆 from the aperture and
with a sampling step of 𝜆

3
. This dense sampling corresponds to the

�̃� sampling and also to the 𝜒PWE. Only the y component, which is
the co-polarization of the NF, is measured, while the other ones are
considered to be zero. The FF is calculated on the same surface S′

as for the simulation case, except for the limit that is fixed in this
case to 𝜃 = 60∘.

Now, we compare the reconstruction obtained by solving the
IP and the PWE for the sampling 𝜒PWE (regular, step 𝜆

3
) on

S with the measured FF. The results are presented in Fig. 9
without the cross-polarization because it was not measured
in NF.

We can see that the characterization offered by each method
is accurate compared to the measured FF. Nevertheless, the
missing information on the cross-polarization from the NF
measurements forces us to set the field reconstructed by PWE
as the new FF reference to realize a study similar to the sim-
ulation case. Thus, the reconstruction of the model compared
to this new reference, for the sampling 𝜒PWE on S, is shown
in Fig. 10.

Figure 9. Pyramidal horn measurements: Comparison of the normalized
co-polarization reconstructed by the IP and PWE methods with the sampling 𝜒PWE,
relative to the measured FF data.

Figure 10. Pyramidal horn measurements: FF reconstruction of the normalized
co-polarization from NF data measured with the sampling 𝜒PWE by solving the IP
comparatively to the PWE reference.

Figure 11. Pyramidal horn measurements: Methods accuracy as a function of the
number of NF sampling points (relative to classical PWE sampling) and for different
sampling strategies.

The analysis carried out on the IP and ROM+IPmethods in the
simulation case is repeated for the measured data and the results
are shown in Fig. 11.

The observed trends for the simulation case are confirmed in
this experimental validation. Indeed, with our approach, we need
only 20% of the total number of samples compared to the PWE
classical NFFFT. Moreover, the conclusion on the influence of
the distribution of these points is the same: the irregular sam-
plings are more accurate at the same number of samples than
the regular one. Again, the oversampling factor of 1.25 is a good
indicator of the number of samples to consider. Although the
results from the ROM+IP method are slightly worse than the IP
one, it is a useful tool to predict the number ofmeasurement points.
In addition, the accuracy levels achieved in this experimental case
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are higher than those observed for the simulation validation, partly
because the reference is set to the FF reconstructed using the PWE
method, which is marred by characterization errors. Furthermore,
the measurement noises can modify the behavior of the proposed
methods as well as the reference obtained by PWE method.

Conclusion

An alternative technique to the classical PWE to characterize an
antenna from planar NF measurements with a low number of
field samples has been presented. The creation of an equivalent
model for the AUT and the construction of the associated radi-
ation matrices have been detailed. The SVD of the NF radiation
matrix associated to a dense regular grid allows the construc-
tion of a reduced decomposition basis, leading to the determi-
nation of the number of samples needed to perform a correct
characterization.Then, efficient non-conventional sampling strate-
gies enabled by the method are used to create a subsampling of
the regular grid. The ROM allows retrieving the NF on a dense
regular sampling over the measurement surface. Finally, FF can
be obtained using equivalent current determination.The influence
of the model on the characterization accuracy and the impact of
the distribution of the points on the reduction of the number of
samples regarding the regular grid imposed by PWE have been
investigated. This analysis has been performed on simulated NF
data from a planar array at X-band and also on experimental data
coming from the measurement of a horn antenna at V-band. The
obtained results demonstrate that the ROMoversampling criterion
of 1.25 defined by Mézières et al. [8] is also verified for planar NF
measurements with irregular samplings. The ROM is then a use-
ful tool to estimate the number of samples when using igloo or
Fibonacci samplings. It can also be applied to interpolate input NF
data for the classical NFFFT technique. Moreover, efficient sam-
pling strategies with an irregular distribution lead to an important
reduction in the number of points since only 20%of the samples are
necessary to ensure an accurate characterization. Finally, a global
parametric study will be part of future research works to determine
the influence of the model parameters on the accuracy of the char-
acterization procedure. More particularly, it would be interesting
to analyze the effects of the location of the NF samples on the mea-
surement surface S on the reconstruction accuracy. Moreover, the
extension of this work to larger antennas with strong beam tilts is
currently under investigation.
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