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A new definition of

discrete analytic functions

C.J. Harman

The concept of a tetradiffria function is introduced. This new

scheme for defining discrete analytic functions is shown to

retain the algebraic simplicity of monodiffvio functions, while

introducing to the theory a symmetry similar to the Schwarz

Reflection Principle.

1. Introduction and definitions

Discrete analytic functions of the first kind (or monodiffric

functions) are defined on the set of gaussian integers and satisfy the

forward-difference equation

_ f{2) m

(see for example Isaacs [7, S] and Berzsenyi [f, 2]). In [6], the

monodiffric function z (the discrete analogue of z ) was found.

This function highlighted certain shortcomings in the monodiffric scheme.

Monodiffric functions lack symmetry: for example (-z) ' * (-l)"* ,

and in the theory there is no analogue of the Schwarz Reflection Principle.

In this paper an alternative definition of discrete analytic functions

is examined. The resulting functions demonstrate a symmetry similar to

discrete functions of the second kind which were defined by Ferrand [4] and

further developed by Duff in [3] and others. Unlike second kind functions

however, it is seen that the simple algebraic form of monodiffric functions
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is retained. The function z is expressed in terms of divergent series

when a is not an integer and as a polynomial when a is a non-negative

integer. Finally an analogue of the Schwarz Reflection Principle is

obtained.

The domain of definition to be considered is the set G of gaussian

integers. Hence,

G = {z; z = (x, y) = x + iy , where x and y are integers} .

Subsets of G in the four quadrants of the complex plane are defined

ty,

G = {z; z € G, x > 0, y > 0} , G = {z; z € G, x < 0, y > 0} ,

G = {z; z € G, x < 0, y < 0} , G^ = {z; z £ G, x > 0, y < 0} ,

and on the axes,

X+ = {z; z € G, x 2 0, y = 0> , X~ = {2; 2 € G, x 5 0, y = 0} ,

Y+ = {z; z e G, x = 0, y 2 0} , y" = {3; 3 € C, a; = 0, y < 0} .

Forward and backward difference operators are defined by,

(1.1) A.j/U) = f(z) - f(z-l) ,

2. Tetradiffric functions

A new type of discrete analytic function, based on the concept of a

monodiffric function, is now defined. The definition involves a

consideration of a separate monodiffric scheme in each of the four

quadrants G , G , G and G, .

A function f is said to be tetradiffric at the point z (. G,

(k = 1, 2, 3 ,or 1* ), if
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(2.1) Afe/(s) = Afe

(For convenience of notation it has teen assumed that in the case when

k = h , the operator A means A .)

The importance of this method of definition is illustrated by the

following theorem:- a tetradiffric function can be represented in any of

the four quadrants of the complex plane by a linear combination of values

from both the X and Y axes.

THEOREM 2.1. The unique tetradiffric function f , with values

prescribed on the axes [on X u X u Y u Y ) is given by the following:-

(i) if z = {x, y) t G± ,

f(z) = (l-i)-{x+yH I \xy]{-i)i{l-i^)X-Jf{x-j, 0)
^ 3

3=-

(ii) if z = (x, y) i G ,

f(z) = (l+iT^ I \y7\iJ[l-UX df(^J, 0)

.1

(Hi) if z = (x, y) Z G 3

•3, 0 )

J=l-a

(iv) if z = (x, j/) e G. ,
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f(z) = (1H W f [^Ai^lH^fix-c, 0)

j=x+l

The binomial operators in the above are defined in the usual way; for

example

J=0

where I is the identity operator.

The proof of (i) above follows from [6 , Theorem 2.3] and (ii) , (iii),

(vv) are proved in a similar way.

Hence a tetradiffric function f(,z) can be expressed in terms of a

combination of specified values on the two half-axes which bound the

quadrant containing the point z .

For example consider two simple cases:- from the above theorem it

follows that for s = (l, l) E C ,

(2.2) /(I, 1) = {l-irhftl, 0)-if(0, 1)] ,

and fo r z = ( 2 , - l ) € C, ,

f(2, -1) = (l+i)"3[2i/(2s 0)+(i-l)f(l, 0)-(l+i)/(0, -1)] .

3. The tetradiffric function 2 ^

The monodiffric function z (a not a negative integer), given in

[6], is now extended to tetradiffric functions. The resulting function

highlights some important advantages of the tetradiffric scheme.

For points on the Af-axis, the function x is to be defined by

(3.1)
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and on the Y-axis

(3.2) (iy)M =iayM ; iy I Y+ u 1~ ,

where y is given by (3.1).

Note that x ^ satisfies i^x^ = ax^1' for x € X* , and

A .,* = ax^1' for x Z X~ . Also it can be shown that x^"' is a

very good asymptotic approximation to x on both X and X

The tetradiffric analogue z of the classical function z is

required to satisfy

(3.3) (i) Aa( a ) = z ^ ,

(ii) 0 ^ = 0 , a > 0 , and

(iii) S
( 0 ) = 1 ,

where A = Afe or Afe+l for z € G^ ; k = 1, 2, 3, U .

The case when a = n , a non-negative integer, is quite simple. It can

be shown that the function a given by,

(3.10 .<»> = I

3=0

is the tetradiffric function satisfying (3.3) and having the values x

and (iy) on the axes.
(a)

When a is a negative integer, the function x has singularities

at certain points on X u X~ . It will now be assumed that a is not an

integer, but is otherwise an arbitrary constant.

By specifying x and {iy) on the axes, Theorem 2.1 provides

the tetradiffric function z at any point in G , and as in [6, Theorem

3.1] it can easily be shown that z satisfies conditions (i) and (ii)

of (3.3). However the resulting function z has a rather complicated
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form, and an alternative expression is now derived which has a remarkable

analogy with the binomial expansion of the function z - (x+iy)

THEOREM 3.1. If z = {x, y) € G and a:(a), j / a ) are defined by

(3.1) then the tetradiffrio function z is given by

y
3=0 ^} 3=0

where the two divergent series are summable (E, q) in the Euler sense for

q > 0 .

Proof. Define a function 2 by

(3.5) "v"' '- v \^\-y^~d '--^^d' •<- V \a\j3)^-3\,(a-j)5
3=0 {3) 3=0

and let z = {x, y) € G . For convenience consider the first of the above

tw.o sums and denote it by

Slz) = I a where a = Hx^U^y^ .
a j=Q 3 3 {3)

Now it can easily be verified that for z (. G , the series 5 (2)

diverges. For 5 to be summable {E, q) it must be shown that

00

(a) £ a .p converges for small p , and
3=0 °

(b) t h e s e r i e s s {z) defined by

ao(.) =

converges (see Hardy [5]).

If these conditions hold, the series S is said to be summable

{E, q) to the sum s . That condition (a) holds in this case is readily

checked. The following lemma shows that (b) is true.

LEMMA 3.1. For z = (x, y) € G , the series defined by
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n=0 3=0

converges absolutely for q > 0 .

„(«)
Proof. For z (. G it follows from the definitions of a; and

(a)
y that

fa] (a-j) (j) _ (a-j+i)(a-,7+2)... (a-,j+x-l) (.7+1) (,7+2)... (,7+w-l)
UJ y ~ T(x)T(y)

This is a polynomial in 3 of degree (x+j/-2) , and can be writ' en as

where the coefficients b. are determined by x, y and a . Hence s (2)
K. a

becomes;

sjz)
00 x+u-2 n r 1 . . ,

3=0

Now it can readily be shown by induction on k that for fixed n ,

{q+i)n ; k = 0 ,

l2ix («-^)! ; *"x '
where S are Stirling numbers of the second kind.

n

J=0

Hence, assuming for the moment that summation can be interchanged,

<*> / , -\W x+v-2
(V) V,

k Sv 'i
2 L

n=0 n=0

n-r

and since
<?+•£

< 1 when <7 > 0 , it follows that the above series are

absolutely convergent, which justifies the interchange of summation and

proves the leima.

Returning to the proof of the theorem; it has been shown that s (2)
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converges and hence by (a) and (b) above, S (s) i s summable (E, q) for

q > 0 to the sum s
a ( 2 ) •

Similarly the second ser ies in (3-5), I [°l]x^ia~t 7i /0 '~^^ is
,7=0 V>

summable (E, q) , q > 0 .

Now by (1.1),

- 7 M*
-T=n W)j=0 w j=0

[3)^-3 (a-j) y la

J=0

and by Hardy [5, p. 180, Properties a, g] it follows that

I H t V * ^ [ f.
j=0 l ° > 3=0 >• J

Similarly A z = as ~ and so the function z is tetradiffric for

z € G It evidently satisfies 0 = 0 .

On the axes, s ( a ) = x ( a ) when y = 0 , and 3(oi) = iay((x) when

x = 0 . Hence by Theorem 2.1, z is the unique tetradiffric function

in G with prescribed values a; on X and (iy) on / .

In a similar manner it can be shown that (3.5) represents the

tetradiffric analogue of z in the other three quadrants G , G and

G. . This completes the proof of Theorem 3.1.

As an example of the method of Euler summability in the above theorem,

consider the simple case z = 1 + i . From (3-5),
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J=0

3=0 3=0

Defining 5 by

oo

S = I i J = l + i - l - i + l + i - l - i + . . . ,
3=0

then by Hardy [5, p. 180, Properties y, 6] it follows that

5 = 1 + i(l+i-l-i+l+ ...)

= 1 + iS

and so S = (l-i) . Similarly

oo

I v = -%, K\-v)
3=0

and hence (1, l ) " = r ° ^ (l-ia+1) (l-i)"1 , which checks with (2.2) on

substituting f{\, 0) = l(Ct) , f(0, 1) = iai( a ) .

4. Properties

When a is not an integer, the tetradiffric function z given by

(3.5) is evidently multi-valued. This demonstrates a good analogy with the

classical function z

Also by making use of backward differences on the positive half axes

and forward differences on the negative half axes, the function 2 can

be shown to be a very good approximation to za on X u X u Y u Y~ ,

even for small integer values of x and y .

The Schwarz Reflection Principle has an analogy for the tetradiffric

(a)function z as is indicated in the following theorem.

THEOREM 4.1. When a is real, the tetradiffric function z^ is

real for z € X and satisfies the symmetry condition z = (i) for
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2 € G u C, .

Proof . Let z = (x, j/) € G . By (3.1*),

0=0 Ka' 0=0

S i n c e iy € Y+ , -iy € Y~ i t f o l l o w s from ( 3 . 1 ) , ( 3 . 2 ) t h a t

Hence

J=0

and since x , y are real for real a and # 2 0 , y t 0 , it

follows that

(i) ( a ) = „<«> .

If 2 € G, the atove argument can be reversed, proving the theorem.

(a)
Another important property of 2 which demonstrates once again the

symmetry of tetradiffric functions is given by the following.

THEOREM 4.2. For z € G ,

The proof follows immediately from (3.1), (3.2), and (3.5).

Theorem lt.1 can be generalized to a wider class of tetradiffric

functions as follows.

THEOREM 4.3. If f is a tetradiffric function which is real on the

X-axis and such that f(z) = f(z) for z € Y+ u Y~ 3 then for all z i G ,

/ ( I ) = f(z) •

The proof follows readily from Theorem 2.1 and so is omitted.

When a = n a non-negative integer, Theorems U.I and h.2 also apply

to the function z given by (3.^) .
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For convenience it has been assumed throughout this paper that the

functions concerned are tetradiffric on all of G . This restriction can

of course be weakened to a consideration of functions tetradiffric on

smaller domains.
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