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ON A THEOREM OF HUGHES AND THOMPSON

R.A. BRYCE

We generalise the notion of proper Hughes subgroup in a group, asking that, for
some prime p, the set-complement of the union of two proper subgroups consist
solely of elements of order p . A structure theorem for non-p-groups of this type is
proved.

1. INTRODUCTION

Let G be a group and p a prime. Define the Hughes subgroup HV{G) of G as that
generated by the elements of G whose order is not p. In [3] Hughes asked if the index
of HP(G) in G is necessarily 1, \G\ or p. The question received a positive answer for
finite non-p-groups in the article [4] of Hughes and Thompson; and a negative answer
for groups in general in Wall [8]. Khukhro [6] has shown that for finite groups the
answer is yes 'almost always'. Hughes and Thompson [4] and Kegel [5] prove more:
in a finite group G, HP(G) if proper, is nilpotent; their results may be formulated as
follows.

THEOREM 1. (Hughes and Thompson [4]; Kegel [5]) Let G be a. finite group and
p a prime. Suppose that H is a proper subgroup of G whose set-complement in G
consists of elements of order p. Then H is nilpotent. If G is not a p-group then H is
normal and of index p in G.

A partial generalisation of this result is proved by Espuelas [2]. If G is a finite
soluble group, p an odd prime, and H a proper subgroup of G whose complement
consists of elements of order at most p™, then H has nilpotent length at most n.

Another direction of generalisation is taken in [1]. There it is shown that a group G
of exponent p n , soluble of derived length d and in which HP(G) is proper, is nilpotent
with class bounded by a function of p,n,d.

Yet another generalisation is proposed here. Suppose that a group G has subgroups
Ai (i 6 / ) the set-complement of whose union consists of elements of order p. What
can we say about the structure of G? What hope is there of generalising Theorem 1?

We present results on this problem for the case when |/ | = 2, and raise some
questions. We show that in this case it is possible to characterise the groups concerned,

Received 20th September, 1993

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/94 SA2.00+0.00.

41

https://doi.org/10.1017/S0004972700009540 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700009540


42 R.A. Bryce [2]

as it is in the Hughes-Thompson context, and in much the same way. The methods
presented here do not seem to generalise; in a later joint article with Professors V. Fedri
and L. Serena, completely different methods will be used to get results for finite groups
in the general case. These results are, however, less complete in general than those
presented here.

2. THE CLASSES Hn(p)

Let p be a prime and n a positive integer. Define the class Hn(p) to consist of
all finite groups G with subgroups A{ (1 ̂  i ^ n) whose set-union is not G, and the
complement of whose set-union consists of elements of order p. It will be convenient
to include the identity group in ~Hn(p). The groups with proper Hughes subgroup
for exponent p comprise the class Tli(p). It is easy to construct groups in 7in(p) in
general. For example, suppose that Gj (1 ^ i ^ n) axe groups in which Hp(Gi) ^
Gi (1 5j i ^ n). Consider the direct product G — II(Gj : 1 ^ i ^ n), and its subgroups
Ai = U(Gj : j ^ i) x Hp(Gi) (1 ^ i ^ n). Then G ^ u(At : 1 ^ i < n), and every
element of G outside this union has order p since it projects outside Hp{Gi) for every
i. In particular, for example, if 53 denotes the symmetric group on three symbols, then
53 x 53 is in H.2 (2). However, since 53 x 53 is generated by elements of order six,
53 x 53 is not in Wi(2). By definition Hm(p) Q ^n(p) f°r m ^ n and we may ask
if the inclusion Hm{p) Q Wn(p) (m < n) is always strict. This question is not further
prosecuted in this article.

Another interesting question concerns the structure of groups in Wn(p). Do they
necessarily have the structure of the example given above? This is not true in general.
For example, 53 lies in ^3(3). (Note also that 53 lies in Wi(2), so the prime p chosen
does matter.) A consequence of Theorem 1 is that the groups in 'Hi(p) are soluble.
In general groups in Wn(p) are not soluble. For example, a group in which the Sylow
p-subgroups are of order p and self-centralising is necessarily in ~Hn(p) for some n:
the subgroups .4̂  could be chosen as the cyclic subgroups whose order is not p. An
example is As, the alternating group on five symbols, and we can be more economical:
every element of A5 not of order five is contained in a copy of Ai of which there are
five in number. Hence A$ is in 7Ys(5). Nevertheless we shall prove that in the case n
= 2 the questions raised here do have positive answers.

We include in this section some elementary, useful results needed later. All groups
considered in this paper are finite.

LEMMA 1. Suppose that a group G has subgroups Ai (1 ^ i ^ n) whose union
is not G and the complement of whose union consists of elements of order p. Let D —
n(j4,- : 1 ^ i ^ n). Tien corea(D) is nilpotent.

PROOF: If N =coreQ(D), and g is in G\L)(Ai :1 ^ i ^ n), then every element of
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N(g) \ N is outside U(A{ : 1 ^ * ̂  n ) . Hence it has order p . Therefore, by Theorem
1, N is nilpotent. D

LEMMA 2 . Let G be a group and A a union of subgroups of G. Suppose that

A ^ G and that, for some prime p, every element of G\A has order p. Then Ca{x)

is a p-group for all x £ G\A.

PROOF: If y is a p'-element of CG(X) then xy is not of order p and therefore
xy £ A. Since A is a. union of groups it follows that x £ A, a contradiction. Hence
CQ{X) is a p-group. D

A corollary of this is that nilpotent groups in Hn(p) are p-groups.

In section 4 we need the idea of a Frobenius group, one admitting a fixed-point-
free automorphism of order p . Such a group is necessarily nilpotent, by a theorem of
Thompson [7]. It is, moreover, a p'-group, since otherwise the automorphism normalises
a Sylow p-subgroup of the group, therefore centralising some non-trivial element. By a
Frobenius extension we mean a group H(s) where H is a group and s a fixed-point-free
automorphism of it of prime order. The next lemma, though formulated in the language
of the present context, is well known, and is included for completeness only.

LEMMA 3 . Let H be a nilpotent p'-group admitting an automorphism s of order
p. Write G = H(s). Then G is in Hi{p) if and only if CH{s) - 1.

PROOF: That the condition CH(3) = 1 is necessary follows from Lemma 2.
Conversely suppose that CH{S) = 1. For all h £ H we show that (sh)p — 1. Now

(sh)p — h' h' ...h'h. If H is Abelian this element is fixed by s, so (sh)p = 1. If
H is not Abelian we deduce, by induction on the class of H, that the element displayed
above is in (i(H). It is centralised by sh, and therefore by s, and is therefore 1. That
is (sh)p = 1 for all h £ H. Finally note that, for i £ (1,2,... ,p - 1), CH(S ' ) =
Cff(a) = 1 so, for all h £ H, (si/i)P = 1. Therefore Hx{p) C H so G £ Hi{p). U

3. INITIAL STRUCTURE THEOREM

In this short section we give a structure theorem for ^ ( p ) groups which is used
in the next section to delineate their structure more precisely.

THEOREM 2 . Let G be a. Unite group which, for some prime p, is not a p-group.
Suppose that G has proper subgroups Ai,A2 and that the complement of their union
contains only elements of order p. Then one of the following holds.

(3.1) One of G\A\, G \ A? consists of elements of order p.

(3.2) 0pl{G) QA1r\A2 and G/Op,{G) is a p-group.

PROOF: Choose a pair A,B of subgroups of G with the properties that A C
Ai, B C A2; that G\(A U B) consists of elements of order p; and that, subject to these
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constraints, ( A, B) is minimal in the component-wise ordering of pairs of subgroups of
G. With this choice

(3.3) A, B normalise each other.

For, if b is in B then the complement of Ab U B = (A U B) consists of elements
of order p. Moreover (Ab SI A) l> B = (Ab U B) C\(AUB), so every element in the
complement of the left-side has order p since it fails to lie in a term of the right-side.
By minimality A = Ah C\A whence A C Ab and therefore A = Ab. Since this holds for
all b in B, B normalises A. Similarly A normalises B.

Suppose that (3.1) does not hold. That is, neither G \ A\ nor G \ A% consists
of elements of order p . The same is therefore true of G \ A and G\B. Hence, in
particular, A, B are incomparable. Write D = AC\B. Then, by (3.3), D is normal in
AB. Moreover if x is not in AB then xv = 1. Hence, by Theorem 1, AB is normal in
G. Let a, b be elements of A \ D and B\D respectively. Then ab lies outside A U B
and therefore has order p. Hence 1 = (ab)p = apbp(modD) and so a~p — ^(mod D),
which means that

(3.4) A/D, B/D have exponent p.

That is, D is subnormal of p-power index in G. Hence all p'-elements of G must

lie in D. Also every element of D (ab) \ D has order p, so D is nilpotent, by Theorem

1. It follows that Opi(G) = Opi(D) and G/Opi{G) is a p-group. This completes the

proof of Theorem 2. D

The properties of a minimal pair (A,B) of subgroups introduced in this proof will
be used again in the next section.

4. FINER STRUCTURE OF W2(P)-GROUPS

Theorem 1 reduces the classification of groups in Tii (p) to the following two prob-
lems: firstly, classify p-groups in Wi(p); secondly, classify Frobenius extensions. An
Hi(p)-group is a special type of subdirect product of a p-group in Hi(p) and a Frobe-
nius extension.

THEOREM 3 . A Unite non-p-group is in 7i\ (p) if and only if G = PN where P is
a p-group, N a. p' -group normal in G, and where:

(4.1) CN(P) = 1;

(4.2) Hp(P) C CP(N);

(4.3) \P : CP(N)\ = p.
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In particular a group in Wi(p) is a subdirect product of a p-group in Hi(p) and a

.Frobenius extension.

PROOF: That non-p-groups in Wi(p) have this structure is a consequence of The-
orem 1. For, let P be a Sylow p-group of a group G in Hi(p), and let N — Opi(G).

Then G = PN. Now let y 6 P \ HP(G). Firstly, all such y have order p and
hence Hp(P) C P n HP(G) ^ P so that P £ Wi(p). Secondly, y has no non-trivial
fixed points in N by Lemma 2, so Cpj(P) — 1. Also, using Theorem 1 and Lemma 2,
PnHp(G) C CP(JV) C PnHp(G) so CP(AT) = PnHp(G), and hence |P : CP(iV)| = p .
We see also that G is a subdirect product of P, a p-group in Wi(p), and G/Pr\Hp(G),

a Frobenius extension.

Conversely, if G has the structure described, let x € G\ Cp(N)N. Then x = yn

where y £ P\ Cp(N) and n £ N. By hypothesis yp = 1 and 1/ has no fixed points in
N. Hence (yn)p = 1 by Lemma 3. Therefore G 6 Wi(p).

This completes the proof of Theorem 3. u

We use Theorem 2 in a similar way to describe the groups in H.2 (p) •

THEOREM 4 . A finite non-p-group G is in Ha(p) if and only Hit has a. p-subgioup
P and a nilpotent normal p'-subgroup N, with G = PN satisfying the following condi-
tions:

(4.4) CN(P) = 1;

(4.5) P has proper subgroups Pi, P2 the complement of whose union

consists of elements of order p;

and either

(4.6) Cp(N) = Pj and \P : P<| = p, where i is one of I or 2;

or

(4.7) N = N1xN2, P{ = Cp(Ni) and \P : P,| = p(i = 1, 2).

PROOF: Note first of all that a group in Hi(p) comes under the alternative (4.6).
This follows from Theorem 3, with the choice of Pi, say, as 1.

Hence suppose that G is in 7^2(p) but not in Hi(p). There are in G subgroups
Ax, Ai whose union is not G, and the complement of whose union consists of elements
of order p. If A, B are chosen minimal^ as in the proof of Theorem 2, then AB = G
(or else G would be in Hi(p)), A,B are normal in G, and they are incomparable.
Write D = A(1B.

Write N = Opi(G). Let P be a Sylow p-subgroup of G. Then, by Theorem 2,

G = PN. Since P is not contained in ALlB it follows from Lemma 2 that CN(P) = 1
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confirming (4.4). Write Pj = P D Ai and P2 = P n A2; both are proper and the
complement in P of their union consists of elements of order p. This confirms (4.5).

Let H/K be a chief factor of G contained in N, and write C = CG(H/K). It
must be that D C C by Lemma 1, since D < G. Moreover C C A U B by Lemma
2. Since C is not a union of two proper subgroups we have either C C A or C C B.
It cannot be that C is contained in £), as otherwise C — D, and G/C is a faithfully
represented p-group with non-cyclic centre. So suppose that D C C C B. Now G acts
on H/K with kernel C, that is as A/D x B/C. However a faithfully and irreducibly
represented nilpotent group has cyclic centre, so it follows that B/C is trivial, since
A/D is not. That is, C = B.

We have proved that the centraliser of a chief factor of G contained in N is either
A or B. If Co = Cp(N) then NC0 centralisers every chief factor of G in N. If NC0

is not contained in D therefore, NCo is in i orin B, say in B. However if C is the
centraliser of some chief factor of G in N, then we have D C NCQ C C C B. It follows
that C — B, and this for every p'-chief factor centraliser. Now

B = n(CG(H/K) : H/K a p'-chief factor)

= n(NCP(H/K) : H/K a p'-chief factor)

= N[n{CP(H/K) : H/K a p'-chief factor)]

= NC0.

We deduce also that A/D acts fixed-point-freely on each chief factor in N since, for
every a G A\D, and for 6 £ B\D, ab (£ A\JB so it must act fixed-point-freely on N,
and therefore fixed-point-freely on every chief factor in N. Therefore, since A/D has
exponent p by (3.4), A/D is of order p. One consequence of this is that B has index p
in G, and hence B = A2 . Also NCo = A2. Hence P2 = A2C\P - NC0 D P = CP(N).
This takes care of (4.6).

There remains the possibility that Co C D. Then NCo = -D • Moreover the kernel
of the action of G on a chief factor H/K in N is either A oi B, and A/Z? or B/D
acts faithfully and fixed-point-freely on H/K, as the case may be. Furthermore there
is at least one such chief factor not centralised by A, and at least one not centralised
by B. Therefore A/D, B/D are both of order p. Hence both A, B axe of index p in
G, in fact A = Ai, B = A2 ; so both Pi,P2 are normal and have index p in P. Note
that CP(N) = Pt D Pi, and P = P1P2 •

Let JVi = CW(Pi), N2 = CN{P2). Then JV = Nt x N2. This is be-
cause, firstly, N = Ni x [JV,Pi], since Pi acts on N as a group of co-prime or-
der; secondly [N,P\,P2] = [iV,P2,Pi], since P\,P2 commute in their action on
N; thirdly [N,Pi,P2,... ,Pi,P2] = 1 for sufficiently many entries Pi,P2 since one
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of P i , P2 centralises each chief factor of G in N; and fourthly, therefore, 1 =

[N,PU...,PUP2,...,P2} = [N,PUP2]. Hence [JV.Pj] C CN{P2) = N2, so N =

NiN2 =N!xN2 since JVX nJV2 C CN{P) = 1. Finally note that CP(iVi) = P; (i = 1,2)

since PiQCP{Ni)^P.

Conversely suppose that a group G satisfies the conditions of Theorem 4. Let

A{ = PiN (i = 1,2). Both are proper subgroups of G, so their union is not G.

Consider first the case (4.6). Let x G P \ ( P i U P 2 ) . Then x has no non-trival

fixed points in N, because of (4.4). Hence, by Lemma 3, every element of the form

xn {x G P\ (Pi U P2), n G N) has order p . However all elements of G not in A\ U A2

are of this form. Therefore G £ ^ ( p ) -

Finally suppose that G satisfies (4.7). If Pi = P2 then the conditions of Theorem

3 are satisfied with P1./V = HP{G), and so G G Hi{p). So suppose that Pi ^ P2.

Every element of G not in Ai UA2 has the form y = zia^ra where xi,x2 are in P \ P i

and P \P2 respectively, and n is in N. However x\x2 $ Pi U P2 and so has no fixed

points in N by (4.4). By Lemma 3 therefore, y has order p . This means that G is in

W2(p).

The proof of Theorem 4 is complete. U

COROLLARY. A group in 'H2(j>) is a sub-direct product of a. p-group in "H2(p)

and either one or two Frobenius extensions.

PROOF: This follows at once from Theorem 4. The case (4.6) involves one Frobe-

nius extension, the case (4.7), two.

It will be observed that the examples discussed in section 2 are, in the case n = 2,

special cases of the structure described by Theorem 4. U
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