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CONSTRUCTING NONSTANDARD HULLS AND LOEB
MEASURES IN INTERNAL SET THEORIES

KAREL HRBACEK AND MIKHAIL G. KATZ

Abstract. Currently the two popular ways to practice Robinson’s nonstandard analysis are
the model-theoretic approach and the axiomatic/syntactic approach. It is sometimes claimed
that the internal axiomatic approach is unable to handle constructions relying on external sets.
We show that internal frameworks provide successful accounts of nonstandard hulls and Loeb
measures. The basic fact this work relies on is that the ultrapower of the standard universe by
a standard ultrafilter is naturally isomorphic to a subuniverse of the internal universe.

§1. Introduction. Robinson named his theory “Non-standard Analysis
since it involves and was, in part, inspired by the so-called Non-standard
models of Arithmetic whose existence was first pointed out by T. Skolem”
[27, p. vii]. Currently there are two popular ways to practice Robinson’s
nonstandard analysis.

The model-theoretic approach encompasses Robinson’s enlargements,
obtained from the Compactness Theorem [27], ultrapowers [21], and
nonstandard universes based on superstructures [4, 28].

The axiomatic/syntactic approach originated in [9, 24]. Nelson’s IST
is particularly well known (see, for example, [5, 26]). The monograph
of Kanovei and Reeken [14] is a comprehensive reference for axiomatic
nonstandard analysis.

In the model-theoretic approach one works with various nonstandard uni-
verses in ZFC; see [4, Section 4.4] for definitions and terminology associated
with this framework. Let N = (V (X ), V (∗X ), ∗) be a nonstandard universe.
The collection ∗V (X ) of internal sets in N is isomorphic to some bounded
ultrapower1 of the superstructureV (X ). It is expanded to the superstructure
V (∗X ) that contains also external sets.
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98 KAREL HRBACEK AND MIKHAIL G. KATZ

Axiomatic systems for the internal part of nonstandard set theory, formu-
lated in the st-∈-language, are well suited for the development of infinitesimal
analysis and much beyond. It is generally acknowledged that internal
theories are easier to learn and to work with than the model-theoretic
approaches. However, it is sometimes claimed as a shortcoming of the
internal approach that external sets are essential for some of the most
important new contributions of Robinsonian nonstandard analysis to
mathematics, such as the constructions of nonstandard hulls [22] and Loeb
measures [17]; see for example [19, p. xiv], [20, p. vii], and [18, 34]. Such
claims are not meant to be taken literally. As IST includes ZFC among
its axioms, nonstandard universes and the external constructions in them
make sense in IST. However, nonstandard universes have their own notions
of standard and internal that are not immediately related to the analogous
notions provided by IST. Such a duplication of concepts could be confusing
and complicates attempts to work directly in superstructure frameworks
inside IST. In any case, the issue in question is whether these constructions
can be carried out in internal set theories using the notions that these theories
axiomatize.

In this paper we describe an approach to external constructions that is
better suited to the conceptual framework provided by internal set theories.
The techniques we employ have been known for a long time, but their use
for the purpose of implementing external methods in internal set theories
does not seem to explicitly appear in the literature. We show that practically
all objects whose construction in a superstructure involves external sets can
be obtained in the internal axiomatic setting by these techniques.

We work in Bounded Set Theory BST (see [14, Chapter 3]). The axioms of
BST are a slight modification of the more familiar axioms of IST. We state
them in Section 2 and follow with a discussion of how definable external sets
can be handled in BST as abbreviations.

The not-so-well-known fact about BST is that its universe contains subuni-
verses isomorphic to any standard ultrapower (or even limit ultrapower) of
the standard universe. For every internal set w there is a subuniverse Sw and
a simply defined isomorphism of Sw with the ultrapower of the standard
universe by a standard ultrafilter generated by w. Thus BST naturally
provides an analog of the internal universe ∗V (X ) of any superstructure.
The subuniverses Sw satisfy some of the axioms of BST, as described in
Section 3.1; hence one can work with these subuniverses axiomatically,
without any reference to their relationship to ultrafilters or ultrapowers.

External subsets of Sw and higher-order external sets built from them are
not objects of BST, but the above-mentioned isomorphism, in combination
with the powerful principle of Standardization, provides a natural way to
code these “non-existent” external sets by standard sets and to imitate the
superstructure V (∗X ) of external sets. This idea is developed in Section 3.2.
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The heart of the paper is Section 4, where we show how to construct
nonstandard hulls of standard metric and uniform spaces and Loeb
measures. We also consider analogous constructions on internal normed
spaces, and outline how one can treat neutrices and external numbers. From
the practical point of view, the best way to use these techniques may be to
work out the external constructions informally, and then code them up by
standard sets. In principle, any construction involving external sets can be
carried out in the framework of BST by these methods.

Section 5 develops the relationship between the subuniverses Sw and
ultrapowers, and supplies proofs of the properties of Sw stated in Section 3.1.

In Section 6 we review some ways that have been proposed for doing
external constructions in IST previously and discuss their shortcomings.
The principal difficulty is that they tend to produce objects that are “too
large” to be suitable for further work (larger than the class of standard
elements of any standard set).

§2. The internal set theory BST. We work in the framework of BST.2 The
theory BST is formulated in the st-∈-language. It is a conservative extension
of ZFC.

Quantifiers with the superscript st range over standard sets. Quantifiers
with the superscript stfin range over standard finite sets. The axioms of
BST are, in addition to ZFC (the ZFC axiom schemata of Separation and
Replacement apply to ∈-formulas only):

• B (Boundedness) ∀x ∃sty (x ∈ y).
• T (Transfer) Let φ(v) be an ∈-formula with standard parameters. Then

∀stx φ(x) → ∀x φ(x).

• S (Standardization) Let φ(v) be an st-∈-formula with arbitrary
parameters. Then

∀A∃stS ∀stx (x ∈ S ←→ x ∈ A ∧ φ(x)).

• BI (Bounded Idealization) Let φ(u, v) be an ∈-formula with arbitrary
parameters. For every standard set A

∀stfina ⊆ A ∃y ∀x ∈ a φ(x, y) ←→ ∃y ∀stx ∈ A φ(x, y).

See the references [7, 14] for motivation and more detail.
An equivalent existential version of Transfer is

∃x φ(x) → ∃stx φ(x),

2The bounded sets of IST (those sets that are elements of standard sets) satisfy all of the
axioms of BST. Hence all arguments in this paper can be carried out in IST, albeit less
directly.
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100 KAREL HRBACEK AND MIKHAIL G. KATZ

for ∈-formulas φ with standard parameters. Yet another equivalent version,
easily obtained by induction on the logical complexity of the ∈-formula
φ(v1, ... , vk) (with standard parameters), is

∀stx1, ... , xk [φ(x1, ... , xk) ←→ φst(x1, ... , xk)],

where φst is the formula obtained from φ by relativizing all quantifiers to st
(that is, by replacing each occurrence of ∃ by ∃st and each occurrence of ∀
by ∀st).

As usual in mathematics, symbols N and R denote respectively the set of
all natural numbers and the set of all reals. In internal set theories there are
two ways of thinking about them. In the “internal picture” R is viewed as
the usual set of reals in which the predicate st singles out some elements as
“standard”; similarly for any infinite standard set. This is the view familiar
from [24]. In the “standard picture” the usual set R is viewed as containing,
in addition to its standard elements, also fictitious, ideal elements. See [7]
for further discussion.

Mathematics in BST can be developed in the same way as in IST. In
particular, real numbers r, s are infinitely close (notation: r 
 s) if |r – s | <
1/n holds for all standard n ∈ N \ {0}. A real number r is an infinitesimal if
r 
 0, r �= 0. It is limited if |r| < n for some standard n ∈ N. We recall that
for every limited x ∈ R there is a unique standard r ∈ R such that r 
 x;
it is called the shadow (or standard part) of x and denoted sh(x); we also
define sh(x) = +∞ when x is unlimited, x > 0, and sh(x) =– ∞ when x is
unlimited, x < 0.

All objects whose existence is postulated by BST are sets, sometimes
called internal sets for emphasis. The Separation axiom holds for∈-formulas
only. But it is common practice in the literature based on the internal
axiomatic approach to introduce definable external sets as convenient
abbreviations (see, e.g., [5, 31]). One can enrich the language of the theory by
names for extensions of arbitrary st-∈-formulas and in this way talk about
st-∈-definable subclasses of the universe of all (internal) sets. We note that
(a) this does not amount to a formalization of a new type of entity called
“external set,” which is a more complicated task; and (b) this does not
amount to informal use of the term “external set,” either (in the sense of
relying on a background formalization). It is similar to the way set theorists
routinely employ classes in ZFC (the class of all sets, the class of all ordinals).
Such classes serve as convenient shortcuts in mathematical discourse because
one can work with them “as if” they were objects, but they can in principle
be replaced by their defining formulas. Example 2.1 illustrates this familiar
procedure.

Letφ(v) be an st-∈-formula with arbitrary parameters. We employ dashed
curly braces to denote the class x | φ(x) . We emphasize that this is merely
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a matter of convenience; the expression z ∈ x | φ(x) is just another
notation for φ(z). Usually we denote classes by boldface characters. Those
classes that are included in some set are external sets. If there is a set A such
that ∀x (x ∈ A←→ φ(x)), then the class x | φ(x) can be identified with

the set A.3 Monads and galaxies are some familiar examples of external
sets that are usually not sets. Let (M,d ) be a metric space: the monad
of a ∈M is M(a) = x ∈M | d (x, a) 
 0 , and the galaxy of a ∈M
is G(a) = x ∈M | d (x, a) is limited . Some useful proper classes (i.e.,

classes that are not external sets) are V = x | x = x (the universe of all

(internal) sets),4 and S = x | st(x) (the universe of all standard sets).

Example 2.1. Let M, f :M →M and a ∈M be standard. A convenient
way of defining continuity is as follows: The function f is continuous at a if
f[M(a)] ⊆ M(f(a)). But the use of external sets in this definition can be
eliminated by rephrasing it as: The function f is continuous at a if for all x,
d (x, a) 
 0 implies d (f(x), f(a)) 
 0.

Definable external collections of internal sets are adequately handled in
BST in this manner; we refer to [31] for a thorough discussion. Difficulties
arise only when higher-level constructs on external sets are needed, such as
quotient spaces and power sets. We show how to handle such difficulties in
Sections 3.2, 4.1, 4.4, and 4.5.

§3. Subuniverses of the universe of BST.

3.1. w-standard sets. Let us fix a set w and a standard set I such that
w ∈ I .5

Definition 3.1. A set x is called w-standard (notation: stw(x)) if x =
f(w) for some standard function f with domain I. We let Sw = x | stw(x)
be the universe of all w-standard sets. The notion of w-standardness depends
only on w, not on the choice of the standard set I.

Proposition 3.2. (a) ∀x (st(x) → stw(x)).
(b) ∀x (stw(x) → st(x)) holds if and only if w is standard.
(c) stw(f) ∧ stw(x) ∧ x ∈ domf → stw(f(x)).

3In the model-theoretic approach external sets are by definition the sets that are not
internal. In the axiomatic approach it is customary to view internal sets as a special case of
external sets.

4The symbol I is often used for this purpose in the literature, but in the context of st-∈-
theories, where all sets are internal, the notation V seems more appropriate.

5The Boundedness axiom guarantees that some such I exists. This is one of the reasons
we prefer to work with BST rather than IST.
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102 KAREL HRBACEK AND MIKHAIL G. KATZ

Proof. (a) Let x be standard; we have x = cx(w) where cx is the
constant function with value x.

(b) If w is standard, then every f(w) for standard f is standard. If
w is nonstandard, let f(i) = i be the identity function on I. Then
f(w) = w is w-standard but not standard.

(c) Assume stw(f), stw(x), and x ∈ domf. Then there are standard
functions F, G on I such that f = F (w) and x = G(w). Define a
function H on I by

H (i) = F (i)(G(i)) when the right side is defined; H (i) = ∅ otherwise.

Then H is a standard function on I and H (w) = f(x). �

Definition 3.3. A set w is good if there is � ∈ N such that � is w-standard
but not standard.

In particular, if � ∈ N is nonstandard, then w = � is good and, more
generally, w = 〈�, z〉 is good for any set z.

The following facts are immediate consequences of known results (see
[14, Sections 3.3, 6.1, and 6.2, esp. Theorem 6.2.6]). For easy reference we
give the proofs in Section 5. Quantifiers with the superscript stw range over
w-standard sets.

Proposition 3.4. (1) (Transfer from w-standard sets) Let φ be an
∈-formula with w-standard parameters. Then

∀stwx φ(x) → ∀x φ(x).

(2) (Countable Idealization into w-standard sets)
Let φ be an ∈-formula with w-standard parameters. If w is good, then

∀stn ∈ N ∃x ∀m ∈ N (m ≤ n → φ(m,x)) ←→ ∃stwx ∀stn ∈ N φ(n, x).

In other words, (Sw,S,∈) satisfies Countable Idealization.
(3) (Representability)

Let φ(v) be an ∈-formula with standard parameters. If I is standard,
w ∈ I , x is w-standard, and φ(x) holds, then there is a standard function
f with domf = I such that x = f(w) and φ(f(i)) holds for all i ∈ I .

An equivalent formulation of (1) is Transfer into w-standard sets:

∃x φ(x) → ∃stwx φ(x).

Another equivalent formulation for φ(v1, ... , vr) with w-standard param-
eters is

∀stwx1, ... , xr [φ(x1, ... , xr) ←→ φstw (x1, ... , xr)],

where φstw is the formula obtained from φ by relativizing all quantifiers
to stw . In yet other words, (V,Sw,∈) satisfies Transfer. It also satisfies
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Boundedness and, for good w, Bounded Idealization (see [14, Theorem
6.1.16(i)]), but not Standardization (ibid, Theorem 6.1.15). Although we
do not need these results in this paper, together they show that (V,Sw,∈)
satisfies all the axioms of BST except Standardization. Note that here Sw
plays the role of a new “thick standard universe.” On the other hand,
(Sw,S,∈) satisfies Transfer, Boundedness, Standardization, and Countable
Idealization; here Sw plays the role of a new “thin internal universe.”

Idealization can be strengthened from N to sets of cardinality κ if w
is chosen carefully. We leave the technical definition of κ+-good sets to
Section 5.2 (see Definition 5.7). For our applications we need only to know
that for every standard uncountable cardinal κ and every z there exist κ+-
good w so that z is w-standard, a result which is also proved there.

Proposition 3.5 (Idealization into w-standard sets over sets of cardinal-
ity ≤ κ). Let φ be an ∈-formula with w-standard parameters. If w is κ+-good,
then for every standard set A of cardinality ≤ κ,

∀stfina ⊆ A ∃y ∀x ∈ a φ(x, y) ←→ ∃stwy ∀stx ∈ A φ(x, y).

Propositions 3.4 and 3.5 do not exhaust the properties of the universes Sw ;
for a list of further useful principles see [14, Theorem 3.3.7].

3.2. Coding external sets. Definition 3.1 provides a natural way to
represent w-standard sets by standard functions: A w-standard � ∈ Sw is
represented by any standard f ∈ VI such that f(w) = �. Note that every �
has a proper class of representations. This causes some technical difficulties
(see Section 5), which for our purposes are best resolved by fixing a universal
standard set V so that all objects of interest are subsets of V or relations
on V ; usually one requiresR ⊆ V . By Representability, for every � ∈ V ∩ Sw
there exists a standard f ∈ V I such that f(w) = �. Moreover, if � is an
∈-formula with standard parameters and�(�) holds, then f can be chosen so
that�(f(i)) holds for all i ∈ I . The representation makes possible a coding
of the external subsets of V ∩ Sw by standard sets, and the coding process
can be continued to the putative higher levels of the external cumulative
hierarchy. This process is enabled by the principle of Standardization.

Definition 3.6. Letφ(v) be a formula in the st-∈-language, with arbitrary
parameters. We let

st{x ∈ A | φ(x)}
denote the standard set S such that ∀stx (x ∈ S ←→ x ∈ A ∧ φ(x)).

The principle of Standardization postulates the existence of this set and
Transfer guarantees its uniqueness. Also by Transfer, if � is any ∈-formula
with standard parameters and ∀stx ∈ A (φ(x) → �(x)), then ∀x ∈ S �(x).

In particular, if φ(u.v) is a formula in the st-∈-language with arbitrary
parameters, A, B are standard, and for every standard x ∈ A there is a
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104 KAREL HRBACEK AND MIKHAIL G. KATZ

unique standard y ∈ B such that φ(x, y), then there is a unique standard
function F : A→ B such that ∀stx ∈ A φ(x, F (x)) holds. It suffices to let
F = st{〈x, y〉 ∈ A× B | φ(x, y)}.

Definition 3.7. The w,V -code of an external set X ⊆ V ∩ Sw is the
standard set

Ψw,V (X) = X = st{f ∈ V I | f(w) ∈ X}.

In words, Ψw,V (X) is the standard set whose standard elements are
precisely the standard f ∈ V I with f(w) ∈ X.

We omit the subscripts w and/or V when they are understood from the
context.

The coding is trivially seen to preserve elementary set-theoretic operations.

Proposition 3.8. For any external sets X1,X2 ⊆ V ∩ Sw :

(1) Ψ(∅) = ∅, X1 ⊆ X2 ←→ Ψ(X1) ⊆ Ψ(X2);
(2) Ψ(X1 ∪ X2) = Ψ(X1) ∪ Ψ(X2), Ψ(X1 ∩ X2) = Ψ(X1) ∩ Ψ(X2);
(3) Ψ(X1 \ X2) = Ψ(X1) \ Ψ(X2).

The coding preserves infinite unions and intersections as well. An
externally countable sequence of external subsets of V can be viewed in BST
as an external subset X of N× V , with Xn = x | 〈n, x〉 ∈ X for standard
n ∈ N. Let 〈Xn | n ∈ N〉 be the standard sequence such that Xn = Ψ(Xn)
holds for all standard n (its existence follows from Standardization). Then

Ψ(
⋃
n∈N∩S

Xn) =
⋃
n∈N
Xn

because if f ∈
⋃
n∈NXn is standard, then the least n ∈ N such that f ∈ Xn

is standard. Similarly,

Ψ(
⋂
n∈N∩S

Xn) =
⋂
n∈N
Xn

because if a standard f ∈ Ψ(
⋂
n∈N∩S Xn), then f ∈ Xn for all standard

n ∈ N, and hence f ∈
⋂
n∈NXn by Transfer.

It is convenient to relax the definition of coding so that every standard
S ⊆ V I is a code of some external X ⊆ V ∩ Sw .

Definition 3.9. A standard set S codes X ⊆ V ∩ Sw if f(w) ∈ X for each
standard f ∈ S and for each � ∈ X there is some standard f ∈ S such that
f(w) = �.

If S codes X, then Ψ(X) = st{f ∈ V I | f(w) = g(w) for some standard
g ∈ S}.A code of X has to contain a representation for each � ∈ X, but not
necessarily all such representations.
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We note that coding is independent of the choice of the universal standard
set in the following sense: If X ⊆ V1 ∩ Sw and V1 ⊆ V2, then S codes X
viewed as a subset of V1 ∩ Sw iff S codes X viewed as a subset of V2 ∩ Sw .
Hence the exact choice of V is usually of little importance.

For any set x, let cx be the constant function with value x. The informal
identification of x with cx enables the identification of a standard set A with
a code st{cx | x ∈ A} = {cx | x ∈ A} for A ∩ S. On the other hand, the
standard set AI is a code for A ∩ Sw .

Every standard S ⊆ V I is a code of the unique external set

XS = � ∈ V ∩ Sw | � = f(w) for some standard fw ∈ S .

Such S codes a subset of an external set X iff ∀stf (f ∈ S → f(w) ∈ X)
iff S ⊆ Ψ(X). Consequently, it would make sense to interpret the power set
of X̃ = Ψ(X) as a code for the “non-existent” external power set Pext(X)
of X, and the standard subsets of P(X̃ ) as codes for the “external subsets
of Pext(X).” Since BST does not allow collections of external sets, this last
remark cannot be made rigorous in it, but one can proceed “as if” such
higher-order external sets existed.

Intuitively, there is a hierarchy of external sets built up over V ∩ Sw :

H1 = Pext(V ∩ Sw) and Hn+1 = Pext(Hn) for standard n ∈ N

(we stop here to avoid further complications). This hierarchy cannot be
formalized in BST. But the corresponding hierarchy overV I is well-defined:

H1 = P(V I ) andHn+1 = P(Hn) for standard n ∈ N.

In BST one can work legitimately in the latter hierarchy while keeping in
mind that the coding establishes a (many-one) correspondence between Hn
and Hn ∩ S. Both hierarchies and their relationship could be formalized in
HST, a conservative extension of BST to a theory that encompasses also
external sets [9, 14].

Note that the coding process treats elements � of V ∩ Sw as individuals;
they are not coded by Ψ. Thus � is represented by any f with f(w) = �,
but Ψ(�) is undefined. The set {�} ⊆ V ∩ Sw is coded by {f}, even when
{�} ∈ V ∩ Sw . In particular, if R is a binary relation on V ∩ Sw , then the
code for R is the standard binary relation

Ψ(R) = R = st{〈f, g〉 | f, g ∈ V I ∧ 〈f(w), g(w)〉 ∈ X}.

Similarly for functions and relations of higher arity.
Another variant of coding represents each � ∈ X by a single object.

Definition 3.10. Let f ∈ V I be standard. We let

fw,V = fw = st{g ∈ V I | g(w) = f(w)}.
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We define standard sets V I /w = st{fw | f ∈ V I } and, for X ⊆ V ∩ Sw,

Ψ̃w(X) = st{fw ∈ V I /w | f(w) ∈ X}
= st{F ∈ V I /w | ∃stf ∈ V I (F = fw ∧ f(w) ∈ X)}.

The coding Ψ̃w is one–one. For standard X ⊆ V I /w we let

Φ̃–1
w (X ) = X = � ∈ V ∩ Sw | ∃stf ∈ V I (fw ∈ X ∧ f(w) = �) .

One can obtain Ψ̃w(X) from Ψw(X) and vice versa:

Ψ̃w(X) = st{fw | f ∈ Ψw(X)} and Ψw(X) = st{f ∈ V I | fw ∈ Ψ̃w(X)}.

Proposition 3.8 and the subsequent paragraph hold with Ψ replaced by Ψ̃.
We define the hierarchy H̃1 = P(V I /w) and H̃n+1 = P(H̃n) for standard
n ∈ N. The coding Ψ̃w maps H1 onto H̃1 ∩ S. It extends informally to
higher levels by Ψ̃w(X) = st{Ψ̃w(Y) | Y ∈ X} and provides a one–one
correspondence between Hn and H̃n ∩ S.

§4. Nonstandard hulls and Loeb measures in BST.

4.1. Nonstandard hulls of standard metric spaces. Let R be the field of real
numbers and let (M,d ) be a standard metric space, so that M is a standard
set and the distance function is a standard mapping d :M ×M → R. A
point x ∈M is finite if d (x, p) is limited for some (equivalently, for all)
standard p ∈M .

Fix an unlimited integer w ∈ N. We define the standard set Bw by

Bw = st{f ∈MN | f(w) is a finite point ofM}.
The standard relation Ew on Bw is defined by

Ew = st{〈f, g〉 ∈ Bw × Bw | d (f(w), g(w)) 
 0}.
ClearlyEw is reflexive, symmetric, and transitive on standard elements ofBw ;
it follows by Transfer that Ew is an equivalence relation on Bw . We denote
the equivalence class of f modulo Ew by fEw .

By Standardization, there is a standard function Dw : Bw × Bw → R

determined by the requirement that Dw(f, g) = sh(d (f(w), g(w))) for all
standard f, g ∈ Bw .

For standard f, g ∈ Bw the distance

d (f(w), g(w))) ≤ d (f(w), f(0)) + d (f(0), g(0)) + d (g(0), g(w))

is limited, so sh(d (f(w), g(w))) ∈ R.
For standard f, g, h ∈ Bw clearly Dw(f, g) = Dw(g, f),

Dw(f, h) ≤ Dw(f, g) +Dw(g, h), and Dw(f, g) = 0 iff 〈f, g〉 ∈ Ew.
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Also, for standard f, g, f′, g ′ ∈ Bw we have
(
〈f,f′〉 ∈ Ew ∧ 〈g, g ′〉 ∈ Ew

)
→ Dw(f, g) = Dw(f′, g ′).

By Transfer these properties hold for all f, g, h, f′, g ′ ∈ Bw .
We observe that, for the natural choice V =M ∪ R, Bw is a code for the

external set

Bw = x ∈M ∩ Sw | x is finite ,

Ew is nothing but a code for the external equivalence relation

Ew = 〈x, y〉 ∈ Bw × Bw | d (x, y) 
 0 ,

and Dw is a code for the external function Dw : Bw × Bw → R ∩ S defined
by Dw = 〈x, y, r〉 | r = sh(d (x, y)) .

The construction of the nonstandard hull of (M,d ) by the usual external
method would form the quotient space Bw/Ew of Bw modulo Ew . This
step cannot be carried out in BST. For x ∈ Bw , the equivalence class of
x modulo Ew is Mw(x) = z ∈M ∩ Sw | d (x, z) 
 0 , but the collection
of the classes Mw(x) for all x ∈ Bw is not supported by BST. However, for
standardf ∈ Bw , the setfEw is a code of Mw(x) whenf(w) = x. Therefore
Bw/Ew can be replaced by Bw/Ew , which is a standard set in BST. The
standard elements of Bw/Ew are precisely the codes of the monads Mw(x)
for x ∈ Bw . Hence Bw/Ew is a code (as discussed in Section 3.2) of the
“non-existent” (in BST) quotient space Bw/Ew .

We stress that while external sets serve as a motivation for our
constructions, they are not actually used in them; the constructions deal
only with sets of BST. The same applies to the rest of this section.

We let M̂w = Bw/Ew be the standard quotient space of Bw modulo Ew .
From now on we often omit the subscript w when it is understood from the
context.

The function D factors by E to a (standard) function D̂ = D/E on M̂ ,
defined by D̂(fE, gE) = D(f, g) (as shown above, the value of D̂ is
independent of the choice of representatives f, g). It is clear that D̂ is a
metric on M̂ .

The embedding c of M into M̂ is via constant functions: for x ∈M ,
c(x) = (cx)E where cx is the constant function on N with value x. Trivially,
the embedding c preserves the metrics. We identify M with its image in M̂
under this embedding.

We emphasize that the structure (M̂ , D̂ ) depends on the choice of the
parameter w, an unlimited integer. A metric space has a unique completion
up to isometry, but it may have many non-isometric nonstandard hulls.
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Example 4.1. Let M = Q be the set of rationals and d (x, y) = |x – y|
be the usual metric on Q. We fix an unlimited w ∈ N. We note that, for
standard f,

f ∈ Bw ←→ f ∈ QN ∧ f(w) is limited,

and for standard f, g ∈ Bw
〈f, g〉 ∈ Ew ←→ f(w) 
 g(w) ←→ f(w),

g(w) ∈ M(a) for a = sh(f(w)) = sh(g(w)).

By Standardization, there is a standard function Γ : Bw/Ew → R such that,
for standard f, Γ(f/E) = sh(f(w)). It is easy to verify that Γ � (Bw/Ew) ∩ S
is a one–one mapping of M̂w ∩ S onto R ∩ S that preserves the metrics:

D̂(f/E, g/E) = D(f, g) = sh(|f(w) – g(w)|)
= | sh(f(w)) – sh(g(w))| = |Γ(f) – Γ(g)|.

Moreover, Γ((cx)E) = x for any standard x ∈ Q. By Transfer, Γ is an
isometric isomorphism of M̂w andRwhich is the identity onQ. In particular,
the nonstandard hull is independent of the choice of w.

Example 4.2. Let M = N and let d be the discrete metric on M; i.e.,
d (x, z) = 1 for all x, z ∈M , x �= z. As all points of M are finite with respect
to this metric, we have Bw = NN. Also

Ew = st{〈f, g〉 ∈ NN × NN | f(w) = g(w)}

and, for standard f ∈ NN, f/E = st{g ∈ NN | g(w) = f(w)} = fw . The
space M is identified with a subset of M̂w via Γ : (cx)w �→ x.

In Remark 5.5 we establish that M̂w = Bw/Ew = NN/w is exactly the
ultrapower of M byUw , an ultrafilter over N generated by w; in particular, it

has the cardinality of the continuum. Also, D̂ is the discrete metric on M̂w .
By replacing N with I as in Remark 4.6 one can obtain nonstandard hulls
of arbitrarily large cardinality.

Example 4.3. Approachable points play an important role in the study of
nonstandard hulls. We define the concept as follows.

Let (M,d ) be a standard metric space. A point x ∈M is approachable if
for every standard � > 0 there is a standard a ∈M such that d (x, a) ≤ �.

The approachable points inM ∩ Sw become exactly the standard points
of the closure of M in its nonstandard hull M̂w . Indeed, for standardf ∈ Bw
with f(w) = x ∈M we have

x is approachable ←→ ∀st� > 0 ∃sta ∈M (d (x, a) ≤ �) ←→

∀st� > 0 ∃sta ∈M (D̂(f/E, a) ≤ �) ←→ ∀� > 0 ∃a ∈M (D̂(f/E, a) ≤ �),
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where the last step is by Transfer. Thus in Example 4.1 all finite x ∈ Q are
approachable and consequently all standard points in R are in the closure
of M = Q. By Transfer, this is true for all points in R. In Example 4.2
all nonstandard points of N are inapproachable and therefore M is closed
in M̂w .

Remark 4.4. In this and other constructions in this section we use the
coding based on Ψ. The advantage of this choice is that it produces spaces
of functions (see in particular Section 4.4). One can use Ψ̃ instead, and
define, e.g., B̃w = st{fw | f(w) is a finite point ofM}.The advantage here
is that one gets an isomorphism of the external structure (Bw, Ew, Dw)
with (Bw ∩ S, Ew ∩ S, Dw ∩ S). It is thus immediately apparent that
((B̃w/Ẽw) ∩ S, (D̃w/Ẽw) ∩ S) would be isomorphic to (Bw/Ew, Dw/Ew)
if the latter quotient could be formed in BST. (It can be formed in HST
and this claim is a theorem there.) For the final result the choice of coding
method does not matter.

Proposition 4.5. The structures (B̃w/Ẽw, D̃w/Ẽw) and (Bw/Ew, Dw/Ew)
are isomorphic.

Proof. For standard f, g ∈MN, f ∈ Bw iff fw ∈ B̃w , 〈f, g〉 ∈ Ew iff
〈fw, gw〉 ∈ Ẽw and Dw(f, g) = D̃w(fw, gw). �

Remark 4.6. In the construction of (M̂ , D̂ ) one can replace N by any
infinite set I, as long as w ∈ I is good. If Sw1 ⊆ Sw2 , fix a standard
function h ∈ I I21 such that h(w2) = w1 and define the standard mappingH :
MI1 →MI2 byH (f) = f ◦ h. Then H is an embedding of (Bw1 , Ew1 , Dw1)
into (Bw2 , Ew2 , Dw2) in an obvious sense, and it factors to an isometric
embedding of (Bw1/Ew1 , Dw1/Ew1) into (Bw2/Ew2 , Dw2/Ew2). Given any
good w1 and w2, let w = 〈w1, w2〉; then both (M̂w1 , D̂w1) and (M̂w2 , D̂w2)
embed into (M̂w, D̂w).

4.2. Completeness of the nonstandard hull. This subsection illustrates how
one can work with the nonstandard hull as constructed in Section 4.1.

Theorem 4.7. (M̂w, D̂w ) is a complete metric space.

Proof. Let 〈Fn | n ∈ N〉 be a standard Cauchy sequence in (M̂ , D̂ ); we
prove that it converges to some F ∈ M̂ .

Using the Axiom of Countable Choice we obtain a standard sequence
〈fn | n ∈ N〉 such that Fn = (fn)E for all n ∈ N.

For k ∈ N let nk be the least element of N greater than or equal to k such
that

∀m, n
(
nk ≤ n ≤ m → D̂(Fn, Fm) < 1

k+1

)
;
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note that the sequence 〈nk | k ∈ N〉 is standard. From the definition of D̂
we obtain, for standard k,

∀stm, n
(
nk ≤ n ≤ m → d (fn(w), fm(w)) < 1

k+1

)
.

Hence ∀stk ∃stm ∀� ≤ k[
n� ≤ m ∧ ∀n

(
n� ≤ n ≤ m → d (fn(w), fm(w)) < 1

�+1

)]
.

By Countable Idealization into w-standard sets we get

∃stwm ∀stk
[
nk ≤ m ∧ ∀n

(
nk ≤ n ≤ m → d (fn(w), fm(w)) < 1

k+1

)]
.

Fix such an m; clearly it is unlimited. Consider the standard point p =
fn0(0). We have d (p,fm(w)) ≤ d (fn0(0), fn0(w)) + d (fn0(w), fm(w)).
The first term on the right side of the inequality is limited because fn0

is standard and fn0 ∈ B , and the second term is < 1 (take k = 0). Hence
fm(w) is a finite element of M.

We note that fm(w) is w-standard; hence there is a standard function
f∈MN such thatf(w) =fm(w). It follows thatf∈B . We let F =fE ∈M̂ .

We have that, for all standard k,

∀stn
(
nk ≤ n → d (fn(w), f(w)) < 1

k+1

)
,

and hence

∀stn
(
nk ≤ n → D̂(Fn, F ) ≤ 1

k+1

)
.

This shows that the sequence 〈Fn | n ∈ N〉 converges to F. �

The proof of Theorem 4.2 goes through for any infinite set I in place of N,
as long as w ∈ I is good.

4.3. Nonstandard hulls of standard uniform spaces. We generalize the
construction of nonstandard hulls in BST to uniform spaces.

Let (M,Δ) be a standard uniform space. That is, M is a standard set and
Δ is a standard family of pseudo-metrics on M which endows M with a
Hausdorff uniform structure. In a uniform space, x ∈M is finite if for all
standard d ∈ Δ, d (x, p) is limited for some (equivalently: for all) standard
p ∈M . Points x and y are infinitely close if d (x, y) 
 0 for all standard
d ∈ Δ.

We fix a standard infinite set I and a w ∈ I so that Idealization
into w-standard sets over standard sets of cardinality ≤ κ holds for
κ = max{|Δ|,ℵ0} (see Proposition 3.5). A construction of the nonstandard
hull of (M,Δ) can now proceed much as in Section 4.1. We omit the
subscripts indicating its dependence on w.

We let B = st{f ∈MI | f(w) is a finite point ofM} and

E = st{〈f, g〉 ∈ B × B | d (f(w), g(w)) 
 0 for all standard d ∈ Δ}.

https://doi.org/10.1017/bsl.2022.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2022.43


NONSTANDARD HULLS AND LOEB MEASURES 111

For each standard d ∈ Δ the standard function D on B × B , as well as
M̂ , D̂ and c, are defined as in Section 4.1. Each D̂ is a pseudo-metric on M̂ .
We let Δ̂ = st{D̂ | d ∈ Δ ∩ S}.

Theorem 4.8. The structure (M̂ , Δ̂) is a complete Hausdorff uniform space
and c embeds (M,Δ) into (M̂ , Δ̂).

Proof. The proof follows the lines of the proof of Theorem 4.7; the main
difference is that Cauchy sequences have to be replaced by Cauchy nets.

Let 〈Λ,≤〉 be a standard directed set and 〈F	 | 	 ∈ Λ〉 a standard Cauchy
net indexed by Λ. Using the Axiom of Choice one obtains a standard net
〈f	 | 	 ∈ Λ〉 such that f	 ∈ F	 holds for all 	; then 〈f	(w) | 	 ∈ Λ〉 is a
w-standard net.

The Cauchy property implies that for every standard d ∈ Δ there is a
standard sequence 〈	dk | k ∈ N〉 of elements of Λ such that 	dk ≤ 	dk+1 holds
for all k and

∀k ∀	, 
 ∈ Λ
(
	dk ≤ 	 ≤ 
→ d̂ (F	, F
) < 1

k+1

)
.

Hence

∀stk ∀st	, 
 ∈ Λ
(
	dk ≤ 	 ≤ 
→ d (f	(w), f
(w)) < 1

k+1

)
.

We conclude that for every standard k ∈ N, every standard finite Δ0 ⊆ Δ
and every standard finite Λ0 ⊆ Λ there is a standard 
 ∈ Λ such that for all
� ≤ k, all d ∈ Δ0 and all 	 ∈ Λ0

	d� ≤ 
 ∧
(
	d� ≤ 	→ d (f	(w), f
(w)) < 1

�+1

)
.

By Idealization into w-standard sets over sets of cardinality ≤ κ =
max{|Δ|,ℵ0} we get a w-standard 
 ∈ Λ such that for all standard k, all
standard d ∈ Δ and all standard 	 ∈ Λ

	dk ≤ 
 ∧
(
	dk ≤ 	→ d (f	(w), f
(w)) < 1

k+1

)
.

Fix such a 
; as in Section 4.7 we have that d (p,f
(w)) is limited for
every standard d ∈ Δ, i.e., f
(w) is a finite point of M.

By Representability there is a standard functionf ∈MI such thatf(w) =
f
(w). It follows that f ∈ B . Let F = f/E ∈ M̂ .

We have that, for all standard d ∈ Δ and k ∈ N,

∀st	 ∈ Λ
(
	dk ≤ 	→ d (f	(w), f(w)) < 1

k+1

)
,

and hence

∀st	 ∈ Λ
(
	dk ≤ 	→ D̂(F	, F ) ≤ 1

k+1

)
.

This shows that the net 〈F	 | 	 ∈ Λ〉 converges to F. �
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4.4. Internal normed vector spaces. Under many circumstances the type
of construction carried out in Sections 4.1 and 4.3 generalizes to internal
structures. We illustrate it in the case of normed vector spaces.

Let M be an internal normed vector space over R. This means that M, the
operations of addition + onM ×M and scalar multiplication · on R×M ,
and the R-valued norm ‖.‖ on M, are (internal) sets and satisfy the usual
properties. In order to be able to apply our coding technique we fix a standard
set I and a goodw ∈ I so that the set M, the above operations, and the norm
belong to Sw . Other parameters relevant to a particular investigation can
also be made to belong to Sw . By Transfer in (V,Sw,∈), the properties of
these objects that are expressible by ∈-formulas continue to hold in Sw , so
we can carry out the desired construction “over Sw” rather than “over V.”

We first describe the external construction. Let

Bw = x ∈M ∩ Sw | ‖x‖ is limited and Ew = x ∈M ∩ Sw | ‖x‖ � 0 .

It is clear that Bw is an external vector space over the external field R ∩ S
and Ew is its subspace. Define an external equivalence relation ≈ on Bw by
x ≈ y ←→ x – y ∈ Ew ←→ ‖x – y‖ 
 0. Obviously, for x1, x2, y1, y2 ∈ Bw
and c ∈ R ∩ S we have x1 ≈ y1 ∧ x2 ≈ y2 → x1 + x2 ≈ y1 + y2, c · x1 ≈
c · y1 and ‖x1‖ 
 ‖y1‖. If external collections of external sets were available
in BST, one could now form the quotient space Bw/Ew with the norm
‖xEw‖ = sh(‖x‖), which would then be an external normed vector space
over the external field R ∩ S. This construction is of course not possible in
BST directly, but the coding introduced in Section 3.2 enables us to carry it
out and produce a standard normed metric space which, when viewed from
the standard point of view, is (externally) isomorphic to Bw/Ew .

It follows from Representability that there is a standard function
〈(Mi, +i , ·i) | i ∈ I 〉 such that (Mw, +w, ·w) = (M, +, ·) and, for all i ∈ I ,
(Mi, +i , ·i) is a vector space over R. Let

Bw = st{f ∈ Πi∈IMi | ‖f(w)‖ is limited};

Ew = st{f ∈ Πi∈IMi | ‖f(w)‖ 
 0}.

Addition and scalar multiplication on Bw are defined pointwise:

(f + g)(i) = f(i) +i g(i) and (c · f)(i) = c ·i f(i)

for f, g ∈ Bw , c ∈ R, and all i ∈ I . By Standardization, there is a standard
function ‖.‖ such that for all standard f ∈ Bw we have ‖f‖ = sh(‖f(w)‖).

It is routine to verify that Bw is a standard vector space over R, ‖.‖ is a
pseudo-norm onBw , andf ∈ Ew ←→ ‖f‖ = 0. The quotient Êw = Bw/Ew
is thus a well-defined standard normed vector space. The proof given in
Section 4.2 shows that Êw = Bw/Ew is complete.
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4.5. Loeb measures. Let (Ω,A, 
) be an internal finitely additive measure
space, with Ω ⊆ O for a standard set O. As discussed in Section 6.3, attempts
to construct its Loeb extension “over V” are only partially successful in BST.
We fix a standard set I and a good w ∈ I so that Ω,A, 
 are w-standard. By
Transfer, (Ω,A, 
) is an internal finitely additive measure space in the sense
of Sw , and we construct the Loeb extension “over Sw .” We usually do not
indicate the dependence on the choice of w. In this example it is convenient
to employ the variant of coding from Definition 3.10.

For every X ∈ A ∩ Sw let

[X ] = st{fw | f ∈ OI ∧ f(w) ∈ X ∩ Sw}. (1)

If X,X1, X2 ∈ A ∩ Sw , then the equivalences fw ∈ [X1 ∩ X2] iff fw ∈
[X1] ∧ fw ∈ [X2] and fw ∈ [Ω \ X ] iff fw ∈ [Ω] ∧ fw /∈ [X ] hold for
all standard f ∈ OI . By Transfer, [X1 ∩ X2] = [X1] ∩ [X2] and [Ω \ X ] =
[Ω] \ [X ]. Let

B = st{A ∈ P(OI ) | A = [X ] for some X ∈ A ∩ Sw}.

Using Transfer again, it follows that B is a standard algebra of subsets
of [Ω]. We note that X1, X2 ∈ A ∩ Sw , X1 �= X2, implies [X1] �= [X2], so for
standard A ∈ B there is a unique X ∈ A ∩ Sw with A = [X ].

A standard finitely additive measure m on the algebra B with values in
the interval [0,+∞] is determined by the requirement that for standard
A = [X ] ∈ B

m(A) = sh(
(X )).

The measure space ([Ω],B, m) satisfies Carathéodory’s condition.

Lemma 4.9. If 〈Ak | k ∈ N〉 is a sequence of mutually disjoint sets in B,
A ∈ B, and A =

⋃
k∈N Ak , then m(A) = Σk∈N m(Ak).

Proof. In view of Transfer, it suffices to prove this claim under the
assumption that 〈Ak | k ∈ N〉 and A are standard.

Suppose A = [X ] where X ∈ A ∩ Sw and for each standard k, Ak = [Xk]
where Xk ∈ A ∩ Sw . Clearly Xk are mutually disjoint and Xk ⊆ X for all
standard k.

Assume that for every standard n there is a w-standard x ∈ X such
that x /∈ Xk holds for all k ≤ n. By Countable Idealization into Sw there
is a w-standard x ∈ X such that x /∈ Xk holds for all standard k. By
Representability, x = g(w) for some standard g ∈ OI . Then gw ∈ A but
∀stk (gw /∈ Ak) and, by Transfer, ∀k (gw /∈ Ak). This is a contradiction.

Therefore there is a standard n such that∀stwx ∈ X ∃k ≤ n (x ∈ Xk). It fol-
lows that ∀stF ∈ A∃k ≤ n (F ∈ Ak). By Transfer,

⋃
k∈N Ak =

⋃
k≤n Ak

and, by finite additivity of m, m(A) = Σk≤n m(Ak) = Σk∈N m(Ak). �
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We conclude that m can be extended to a �-additive measure m with
values in [0,+∞] on the �-algebra B generated by B. The measure-theoretic
completion of ([Ω],B, m) is the desired Loeb measure space; we denote it
([Ω], B̂, m̂) (of course, it depends on the choice of w). Instead of an appeal
to the Carathéodory’s theorem, a direct proof along the lines of [10] can be
given; see also [1, Remark 3.1.5] and the references therein.

Remark 4.10. In order to explicate the relationship of ([Ω], B̂, m̂) to the
usual external Loeb measure space, we first recall that Sw satisfies the
statement that (Ω,A, 
) is a finitely additive measure space. The Loeb
construction carried out over Sw would start with the external finitely
additive measure space (Ω,A,m), where Ω = Ω ∩ Sw ,A = X ∩ Sw | X ∈
A ∩ Sw , and m(X ∩ Sw) = sh(
(X )) for X ∈ A. This space would be
extended to an external �-additive measure space using the Carathéodory’s
theorem, and then completed. We now take V = Ω ∪ R, say, and note that
for X ∈ A ∩ Sw , [X ] is a w-code of X ∩ Sw , and hence B is a w-code
for A. It follows that ([Ω],B, m) is a w-code for (Ω,A,m). The above
construction cannot be carried out in BST directly for the external measure
space (Ω,A,m), but presents no difficulties for its w-code ([Ω],B, m), a
standard finitely additive measure space.

Remark 4.11. We compare Loeb measure spaces obtained from the same
(Ω,A, 
) for different choices of the parameter w. We use subscripts to
indicate dependence on this parameter and fix goodw ∈ I , z ∈ J where I, J
are standard and Sw ⊆ Sz .

Proposition 4.12. There is a standard embedding Ĥ = Ĥw,z of B̂w into
B̂z that preserves complements and countable unions and restricts to an
isomorphism of Bw and Bz . If mw is �-finite, then also m̂w(B) = m̂z(Ĥ (B))
for all B ∈ B̂w .

Proof. By Standardization, there is a standard function Ĥ : B̂w → B̂z
such that Ĥ (B) = Ψ̃z(Φ̃–1

w (B)) for standard B ∈ B̂w . For A ∈ Bw ∩ S, if
A = [X ]w forX ∈ A ∩ Sw then Ĥ (A) = [X ]z ∈ Bz ∩ S, and vice versa. This
shows that Ĥ maps Bw ∩ S onto Bz ∩ S, and hence, by Transfer, Bw onto Bz .

In Section 3.2 we point out that the coding Ψ̃ preserves comple-
ments and countable unions, so the same holds for Ĥ . We give some
details for the countable unions. Let B =

⋃
n∈N Bn, where 〈Bn | n ∈ N〉

is standard and B,Bn ∈ B̂w for all n ∈ N. Define the external set X =
〈n, x〉 | x ∈ Φ̃–1

w (Bn) ⊆ (N ∩ S) ×O, so thatBn = Ψ̃w(Xn). We then have

B = Ψ̃w(
⋃
n∈N∩S Xn), so Φ̃–1

w (B) =
⋃
n∈N∩S Xn and Ĥ (B) = Ψ̃z(Φ̃–1

w (B)) =
Ψ̃z(

⋃
n∈N∩S Xn) =

⋃
n∈N Ψ̃z(Φ̃–1

w (Bn)) =
⋃
n∈N Ĥ (Bn).

It is clear from the definition of m(A) that mw(A) = mz(Ĥ (A)) holds for
standard A ∈ Bw , and hence by Transfer, for all A ∈ Bw . If mw is �-finite,
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then the completed Carathéodory’s measure m̂w is uniquely determined. If
m̂w(B) �= m̂z(Ĥ (B)) for some B ∈ B̂w , then m̂w and m̂z ◦ Ĥ would be two
distinct extensions of mw from Bw to B̂w , a contradiction. �

4.6. Lebesgue measure from Loeb measure. As is well known, the
Lebesgue measure can be obtained from a suitable Loeb measure.6 We give
the gist of the argument in our framework, for the interval [0, 1]. More
details can be found in [1] (using a model-theoretic approach).

For n ∈ N let Tn = {i/n | 0 ≤ i ≤ n}. Fix a nonstandard integer
w ∈ N, and let T = Tw (in model-theoretic frameworks the equivalent
of T is called “hyperfinite time line”). Let O = [0, 1], Ω = T , A = P(T )
and 
 the counting measure on T , i.e., 
(X ) = |X |/|T | for all sets X ⊆ T .
The construction in the preceding subsection, with I = N, yields the Loeb
measure ([Ω], B̂, m̂).

For every standard A ⊆ [0, 1] define
•A = st{fw ∈ [Ω] | f(w) 
 c for some standard c ∈ A}.

This just means that •A is a w-code for sh–1(A) ∩ T ∩ Sw . Standard elements
of the set •A are those fw ∈ [Ω] whose value “at infinity” (i.e., at w) is
infinitely close to a standard real in A.

Let L = st{A ⊆ [0, 1] | •A ∈ B̂ } and let � be the standard function on L
determined by the requirement that �(A) = m̂(•A) for all standard A ∈ L.

Theorem 4.13. The triple ([0, 1],L, �) is the Lebesgue measure space on
[0, 1].

Proof. We prove that L is a �-algebra containing all standard open
intervals (a, b) ⊆ [0, 1] and all singletons {c} for standard c ∈ [a, b]. We also
prove that � is �-additive and �((a, b)) = b – a, �({c}) = 0 for all standard
open intervals and singletons, respectively. This implies that L contains all
Lebesgue measurable subsets of [0, 1] and that � is the Lebesgue measure
for such subsets. For a proof (in the model-theoretic framework) that all
sets in L are Lebesgue measurable see [1, Proposition 3.2.5]; it can be easily
adapted to our framework.

Let 〈Ak | k ∈ N〉 be a standard sequence of elements of L and let
A =

⋃
k∈NAk . Then •Ak ∈ B̂ holds for all standard k ∈ N, and we obtain

that •A =
⋃
k∈N

•Ak , because if f(w) 
 a for some standard a ∈ A, then
a ∈ Ak for some standard k ∈ N by Transfer. As B̂ is a �-algebra, •A ∈ B̂

6A nonstandard construction of the Lebesgue measure can also be carried out without
using a Loeb measure as an intermediate step. In the axiomatic approach, one method for
doing so is developed by Lyantse and Kudryk [23, Appendix A] in the framework of IST.
Another way is implicit in [10] and explicitly presented in [11] in the framework of SCOT,
a subtheory of IST and BST that conservatively extends ZF + Dependent Choice. For a
“radically elementary” approach see [2, 3].
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and we conclude thatA ∈ L. Furthermore, �(A) = m̂(•A) = Σk∈N m̂(•Ak) =
Σk∈N �(Ak), establishing �-additivity of �.

Given a standard open interval (a, b) ⊆ [0, 1], we let Xa,b = T ∩ (a, b).
We have [Xa,b] ∈ B and m([Xa,b]) = sh(
(Xa,b)) = b – a.

LetA = (a, b); it remains to observe that, for standardfw ∈ [Ω],fw ∈ •A
iff fw ∈ [Xa+1/m, b–1/m] for some standard m ∈ N \ {0}. Standardization
gives the function 〈Am | m ∈ N \ {0}〉 where Am = [Xa+1/m, b–1/m] for
standard m, and Transfer implies •A =

⋃
m∈N\{0}Am. It follows that •A ∈ B

because the latter is a �-algebra, and that m(A) = b – a because m is a
�-additive extension of m. Hence A ∈ L and �(A) = b – a.

The argument forA = {c} is similar, using the fact that •A =
⋂
m∈N\{0}Am

with Am = [Xc–1/m, c+1/m] for standard m. �

4.7. Neutrices and external numbers. This is another application of
nonstandard analysis that extensively uses external sets; see [6].

A neutrix is a convex additive subgroup of R. With the exception of {0}
and R, neutrices are externals sets; the monad M(0) and the galaxy G(0)
are nontrivial examples. An external number is an algebraic sum of a real
number and a neutrix. Addition and multiplication of external numbers are
defined by the Minkowski operations. Let N denote the collection of all
neutrices and E denote the collection of all external numbers. Even in HST,
N and E are (definable) proper classes of external sets; they are “too large”
to be external sets (see [13]).

This difficulty can be remedied by relativizing these concepts to Sw (for
good w). In fact, Nw = X ∩ Sw | X ∈ N and Ew = a + X ∩ Sw | a ∈
R ∩ Sw ∧ X ∈ N . The collections Nw and Ew are external sets (of external
sets) in HST.

As the natural embedding of R ∩ Sw into Ew given by r �→ r + {0} is
crucial for applications of these concepts, it may be best for most purposes
to avoid coding as much as possible. For example, the study of algebraic
properties of operations + and × on Ew can be carried out in BST while
viewing external numbers as external subsets of R ∩ Sw . However, work
with external numbers often focuses on the structure (Ew,+,×), its subsets,
functions with values in it, and so on. Then one can use the techniques of
Section 3.2; see in particular Definition 3.10 with V = R, to code Nw and
Ew by standard structures.

First, the external set R ∩ Sw is coded by the standard set RI /w. As
shown in Remark 5.5, RI /w = RI /Uw = ∗R, the hyperreals constructed as
the standard ultrapower of R by the standard ultrafilter Uw generated by w.
Let ∗<, ∗+, and ∗× be the ordering, addition, and multiplication on the
hyperreals. The coding provides an external isomorphism between (∗R ∩
S, ∗<, ∗+, ∗×) and (R ∩ Sw,<,+,×), so we can informally identify ∗R ∩
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S and R ∩ Sw . Neutrices and external numbers in the hyperreals (∗R, ∗<,
∗+, ∗×) can be defined the same way as in R. External numbers in R ∩ Sw are
coded by the standard external numbers in the hyperreals ∗R. The coding
preserves algebraic operations on external numbers. The collections Nw and
Ew are coded respectively by the standard sets N and E of all neutrices and
external numbers in ∗R.

This approach is admittedly rather awkward. In HST the universes Sw
can be extended to “external universes” WF(Sw) (see [14, Sections 6.3 and
6.4] for details). Perhaps the most practical way to handle external numbers
would be to work with Nw and Ew in these universes and in the end code the
final results in BST, if desired.

§5. Subuniverses and ultrapowers.

5.1. Subuniverses Sw and ultrapowers. The universe Sw is closely con-
nected to the ultrapower of the standard universe by a standard ultrafilter.

The principle of Standardization implies that there is a standard set Uw
such that

∀stX (X ∈ Uw ←→ X ∈ P(I ) ∧ w ∈ X ). (2)

Clearly

(i) ∅ /∈ Uw , and for standard X,Y ∈ P(I )
(ii) X ∈ Uw ∧ X ⊆ Y → Y ∈ Uw ;
(iii) X,Y ∈ Uw → X ∩ Y ∈ Uw ;
(iv) X ∈ Uw ∨ (I \ X ) ∈ Uw .

By Transfer, (ii)–(iv) hold for allX,Y ∈ P(I ), soUw is an ultrafilter over I.
One sees easily that Uw is nonprincipal if and only if w is nonstandard.
Conversely, Bounded Idealization of BST implies that for every standard
ultrafilter U over I there are (many) w ∈ I such that U = Uw .

The ultrapower of the universe of all sets V by a standard ultrafilter U is
defined in the usual way. One defines an equivalence relation =U on VI by

f =U g ←→ {i ∈ I | f(i) = g(i)} ∈ U, (3)

and a membership relation

f ∈U g ←→ {i ∈ I | f(i) ∈ g(i)} ∈ U. (4)

The usual procedure at this point is to form equivalence classes fU
of functions f ∈ VI modulo =U , using “Scott’s trick” of taking only
the functions of the minimal von Neumann rank to guarantee that the
equivalence classes are sets: Let

fU = {g ∈ VI | g =U f and ∀h ∈ VI (h =U f → rank h ≥ rank g)};
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see [12, (9.3) and (28.15)]. One lets VI/U be the class of all fU for f ∈ VI

and defines

fU ∈U gU ←→ f ∈U g. (5)

The ultrapower of V by U is the structure (VI/U, ∈U ). The universe V is
embedded into VI/U via x �→ (cx)U where cx is the constant function on I
with value x.

We note that fU is standard iff fU = gU for some standard g ∈ VI . We
assume from now on that whenever the equivalence class fU is standard, the
representative function f is taken to be standard.

The key insight is that the standard elements of the ultrapower of V
by Uw are in equality-and-membership-preserving correspondence with
w-standard elements of V. It is expressed by the following proposition, which
is an immediate consequence of definitions (3)–(5).

Proposition 5.1. For any standard functions f, g ∈ VI :

f =Uw g ←→ fUw = gUw ←→ f(w) = g(w) and

f ∈Uw g ←→ fUw ∈Uw gUw ←→ f(w) ∈ g(w).

The correspondence Υw is defined on Sw × (VI/Uw ∩ S) by

Υw(�, fUw ) ←→ f(w) = �.

In this notation, Proposition 5.1 asserts the following.

Corollary 5.2. The class Υw is an isomorphism between the structures
(Sw, ∈) and (VI/Uw ∩ S, ∈Uw ).

We note that (VI/Uw ∩ S, ∈Uw ) is the ultrapower of the universe in
the sense of the standard universe S. If φ(v) is an ∈-formula such that
VI/Uw = F | φ(F ) , then VI/Uw ∩ S = F ∈ S | φst(F ) . If �(u, v)
is an ∈-formula such that F ∈Uw G ←→ �(F,G), then the equivalence
F ∈Uw G ←→ �st(F,G) holds for F,G ∈ S.

If Υw(�, fUw ) holds, we write Υw(�) = fUw . We note that for x ∈ S,
Υw(x) = (cx)Uw where cx is the constant function on I with value x. As
is customary, we identify (cx)Uw with x. This gives a stronger version of
Corollary 5.2.

Corollary 5.3. The class Υw is an isomorphism between the structures
(Sw, S, ∈, ) and (VI/Uw ∩ S, S, ∈Uw ).

We also note that Υw(w) = IdUw where Id (i) = i for all i ∈ I .
Recall that quantifiers with superscript stw range over w-standard sets. If
φ is an ∈-formula, φstw is the formula obtained from φ by relativizing all
quantifiers to stw . Łoś’s Theorem for ∈-formulas takes the following form:
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Lemma 5.4. For standard f1, ... , fr ,

φstw (f1(w), ... , fr(w)) ←→ {i ∈ I | φ(f1(i), ... , fr(i))} ∈ Uw.

The structures (VI/Uw, ∈Uw ) and (VI/Uw ∩ S, ∈Uw ) are not models in
the sense of model theory because their components are proper classes;
hence the satisfaction relation � is not available. Given an ∈-formula φ with
parameters from VI/Uw , we write “φ holds in (VI/Uw, ∈Uw )” to stand for
the formula obtained from φ by replacing all occurrences of u ∈ v with
u ∈Uw v and relativizing all quantifiers to VI/Uw ; similarly for “φ holds in
(VI/Uw ∩ S, ∈Uw ).”

Proof of Lemma 5.4. We have

φstw (f1(w), ... , fr(w)) ←→

φ((f1)Uw , ... , (fr)Uw ) holds in (VI/Uw ∩ S, ∈Uw ) [by Corollary 5.2]

←→ φ((f1)Uw , ... , (fr)Uw ) holds in (VI/Uw, ∈Uw ) [by Transfer]

←→ {i ∈ I | φ(f1(i), ... , fr(i))} ∈ Uw [by the usual Łoś’s Theorem].�

Remark 5.5. In Section 3.2 we fix a universal standard set V and for
standard f ∈ V I define fw,V (see Definition 3.10). Clearly

fw,V = st{g ∈ V I | g(w) = f(w)}
= st{g ∈ V I | g =Uw f} = {g ∈ V I | g =Uw f},

where the last step is by Transfer. Thus, again by Transfer, V I /w is nothing
but the ultrapower V I /Uw .

5.2. Proofs of claims in Section 3.1.

Proposition 5.6. A set w is good iff Uw is countably incomplete.

Of course, ultrapowers by countably incomplete ultrafilters are the ones
of interest in nonstandard analysis.

Proof. Immediate from the isomorphism Υ between the universe of
w-internal sets (Sw,∈) and the ultrapower ((VI /Uw) ∩ S, ∈Uw ) (see [4,
Section 4.3]). �

Proof of Proposition 3.4.

Proof of (1). Assume ∃x φ(x, p0) where p0 is (wlog. the only) parameter
and stw(p0). Fix a standard set P such that p0 ∈ P (Boundedness). Use
AC to obtain a standard function F on P such that ∀p ∈ P (∃x φ(x, p) →
φ(F (p), p)). Hence φ(F (p0), p0) holds. As F (p0) is w-standard by
Proposition 3.2 (c), we conclude that ∃stwx φ(x, p0). � �
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Proof of (2). It is well-known that every ultrapower by a countably
incomplete ultrafilter U is �1-saturated (see [4, Theorem 6.1.1]). Hence
Countable Idealization in the form

∀stn ∈ N ∃x ∀m ∈ N (m ≤ n → φ(m,x)) ←→ ∃x ∀stn ∈ N φ(n, x) (6)

holds in (VI/Uw, V, ∈Uw ). By BST Transfer, (6) holds in (VI/Uw ∩
S, S, ∈Uw ), and, by Corollary 5.3, it holds in (Sw,S,∈). This translates to

∀stn ∈ N ∃stwx ∀stwm ∈ N (m ≤ n → φstw (m, x)) ←→ ∃stwx ∀stn ∈ N φstw (n, x).

Using w-Transfer we get the desired form

∀stn ∈ N ∃x ∀m ∈ N (m ≤ n → φ(m,x)) ←→ ∃stwx ∀stn ∈ N φ(n, x). �

Proof of (3). Recall that stw(x) means that x = g(w) for some standard
g defined on I. Let φ(v) be an ∈-formula with standard parameters.
Assume φ(g(w)); by w-Transfer then φstw (g(w)). From the isomorphism
between (Sw,∈) and (VI /Uw) ∩ S, ∈Uw ) and Łoś’s Theorem it follows that
X = {i ∈ I | φ(g(i))} ∈ Uw . Pick i0 ∈ X and let f be the standard function
defined by

f(i) = g(i) for i ∈ X ; f(i) = f(i0) otherwise.

Then f(w) = x and φ(f(i)) holds for all i ∈ I . �

Definition 5.7. Let κ be a standard infinite cardinal. The set w is κ+-good
if Uw is a countably incomplete κ+-good ultrafilter (In particular, w is good
iff it is �1-good; see Proposition 5.6.)

We prove Proposition 3.5 in the following form.

Proposition 5.8 (Idealization into w-standard sets over sets of cardinality
≤ κ). Let φ be an ∈-formula with w-standard parameters. If w is κ+-good,
then for every standard set A of cardinality ≤ κ,

∀stfina ⊆ A ∃y ∀x ∈ a φ(x, y) ←→ ∃stwy ∀stx ∈ A φ(x, y).

For every standard uncountable cardinal κ and every z there exist κ+-good w
so that z is w-standard.

Proof of Proposition 5.8. It is well known [4, Theorem 6.1.8] that
any ultrapower by a countably incomplete κ+-good ultrafilter U is κ+-
saturated. As in the proof of (2), it follows that Bounded Idealization over
sets of cardinality ≤ κ holds in (Sw,S,∈) for κ+-good w.

To also obtain z ∈ Sw we use the following fact proved in [15]:
If U is a countably incomplete κ+-good ultrafilter over I and V is an

ultrafilter over J, then the ultrafilter U ⊗ V over I × J defined by

X ∈ U ⊗ V ←→ {i ∈ I | {j ∈ J | 〈i, j〉 ∈ X} ∈ V } ∈ U
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is countably incomplete and κ+-good.
The definition of ⊗ implies that for every standard X ∈ U ⊗Uz there is

a standard i ∈ I such that {j ∈ J | 〈i, j〉 ∈ X} ∈ Uz , and hence 〈i, z〉 ∈ X .
From Bounded Idealization one obtains w ∈ I such that 〈w, z〉 ∈ X holds
for all standard X ∈ U ⊗Uz ; in other words, U〈w,z〉 = U ⊗Uz . Then z ∈
S〈w,z〉 and 〈w, z〉 is κ+-good, so S〈w,z〉 satisfies Bounded Idealization over
sets of cardinality ≤ κ. �

Remark 5.9 (More general universes). The definition of w-standard sets
in Section 3.1 can be generalized. Let w : S → I where S, I are standard
sets. We let

Sw = f(w(s1), ... , w(sk)) | k,f ∈ S, domf = I k and s1, ... , sk ∈ S ∩ S .

It turns out that these universes correspond precisely to the standard limit
ultrapowers of the standard universe. The proof is similar to the model-
theoretic proof that every internal universe ∗V (X ) is a bounded limit
ultrapower of the superstructureV (X ); see [4, Theorems 4.4.19 and 6.4.10].
With suitable modifications, all results described in this paper remain valid
for this more general notion of w-standard sets.

§6. Some earlier constructions. There are several earlier publications
where constructions of nonstandard hulls and Loeb measures in the internal
framework are discussed. Below we summarize this work and provide some
critical assessment.

6.1. The “full” nonstandard hull. Let (M,d ) be a standard metric space.
A straightforward attempt to carry out the construction of the nonstandard
hull of (M,d ) in BST can start as follows. Let

Bmax = x ∈M | d (x, a) is limited for some standard a ∈M .

Let Emax be the equivalence relation on Bmax defined by

Emax = 〈x, y〉 ∈ Bmax × Bmax | d (x, y) 
 0 .

Finally, let the function Dmax with standard real values be defined by

Dmax = 〈x, y, r〉 ∈ Bmax × Bmax × R | r = sh(d (x, y)) .

The classes Bmax,Emax, and Dmax are (definable) external sets. For every
x ∈ Bmax, the equivalence class M(x) = z ∈ Bmax | d (x, z) 
 0 is an
external set. However, the final step in the construction of the non-
standard hull of (M,d ), to wit, the formation of the quotient space
(Bmax/Emax,Dmax/Emax), cannot be carried out in BST (it would require
a “class of classes” M(x) | x ∈ Bmax ).
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There are some ways around this difficulty. Perhaps the most straight-
forward is to forgo the formation of the quotient space and work with the
representatives of the equivalence classes (i.e., the elements of Bmax), and
with the congruence Emax in place of the actual equality. This would be
similar to working with fractions rather than the rational numbers. But this
way does not produce the nonstandard hull as an actual object of BST.

The quotient space (Bmax/Emax,Dmax/Emax) can be formed in HST (using
its axiom of Replacement for st-∈-formulas). An interpretation of HST can
be coded in BST (see [14, Definition 5.1.2, Theorem 5.1.4, and Corollary
5.1.5]), so in this indirect way the “full” nonstandard hull can be coded in
BST. Unfortunately, the coding involved is far from being a “morphism” in
any sense, so the resulting opaque code is unsuitable for transferring non-
standard intuitions about the hull to its coded version. One point of working
with subuniverses is that they have a natural coding (by standard sets).

Perhaps the most serious objection to this way of constructing nonstan-
dard hulls is that (Bmax/Emax,Dmax/Emax) is just “too large.” Trivially, every
nonstandard hull (Bw/Ew,Dw/Ew) of (M,d ) considered in Section 4.1
embeds isometrically into (Bmax/Emax,Dmax/Emax) (note that Bw = Bmax ∩
Sw , Ew = Emax ∩ Sw , and Dw = Dmax ∩ Sw). In many interesting cases, the
metric space (M,d ) has nonstandard hulls of arbitrarily large cardinality,
so Bmax/Emax is not of standard size. It would be difficult to do further work
with nonstandard hulls using this method, such as compare them with other
standard metric spaces, take their products, or form the space of continuous
functions on them. They are analogous to the “universal group” that can
be constructed as a direct sum (or product) of all groups. This “object”
is a proper class in ZFC, hardly if ever used for more than bookkeeping
purposes. Another important point about working with subuniverses is that
the objects produced are standard sets (or external sets of standard size).

6.2. Vakil’s construction. In [30], Vakil presents a construction of non-
standard hulls of uniform spaces in IST. His method does not require fixing
a particular subuniverse, and Standardization is used in a way similar to
this paper. But Vakil’s method applies only to a certain class of uniform
spaces, the so-called Henson–Moore spaces. Revealingly, these are precisely
the spaces whose nonstandard hull is independent of the choice of the
nonstandard universe, i.e., it is unique up to isomorphism and of standard
size; see [8, 32].

6.3. Loeb measures in IST. Diener and Stroyan [5, p. 274] outline a
possible construction of Loeb measures in IST, referencing [29, Section
2.2] for further details. Here we briefly consider this approach.

Let (Ω,A, 
) be an internal finitely additive measure space, with Ω ⊆ O
for a standard set O. We take A = P(Ω) for simplicity, and analyze Loeb’s
construction from the point of view of BST. The first step is to extend the

https://doi.org/10.1017/bsl.2022.43 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2022.43


NONSTANDARD HULLS AND LOEB MEASURES 123

algebra A to an external �-algebra. Bounded Idealization in BST implies
that an externally countable union of (internal) sets is either equal to a
finite union or is not internal. So the construction has to deal with external
sets from the very beginning. The only way to treat external sets as objects
in BST is via some kind of coding by sets. For example, every external
sequence Xn | n ∈ N ∩ S of (internal) sets has an extension 〈Xn | n ∈ N〉
to an (internal) sequence,7 which can be regarded as its code (of course an
external sequence has many codes). This coding could be extended to higher
levels of the Borel hierarchy over the algebra of (internal) subsets of Ω. A
simpler solution, proposed in [5, 29], is to code Loeb measurable sets with
the help of Souslin schemata. One can define a Souslin schema in BST as a
function S : N<� → P(Ω). Let F = N�. The kernel of S is the external set

kerS =
⋃
f∈F∩S

⋂
n∈N∩S

Sf�n.

The external sets obtainable as kernels of Souslin schemata are Henson
sets and Henson sets whose complement in Ω is also Henson are the
Loeb sets. Loeb sets form the smallest external �-algebra �(A) containing
P(Ω); see [29, Theorem 2.2.3] (Luzin Separation Theorem). Let L be the
external set of all pairs 〈S1, S2〉 such that kerS1 ∩ kerS2 = ∅ and kerS1 ∪
kerS2 = Ω. Then L can be viewed as a set of codes for Loeb sets. The
algebraic operations (union, complement, and externally countable union)
can be coded by external relations on L, and the Loeb measure itself can be
coded by an external relation on L × (R ∩ S).

The objections raised in Section 6.1 against “full” nonstandard hulls apply
also to the above approach to Loeb measures. In particular, one cannot form
the quotient space of L modulo the relation in which two codes are equivalent
when they code the same external set, and the coding of the set-theoretic
operations is not a “morphism” (e.g., the code of the union of two sets is
in no sense the union of their codes). It would be awkward to work with
random variables on L via codes, and collections of random variables are
even more challenging. In addition, it is customary in the literature (see
[1, 14]) to regard not �(A) but its completion L(A) as the Loeb �-algebra. It
is not usually possible to extend L to an external set of codes for L(A) (not
even in HST, because the Power Set axiom for external sets does not hold
there). On these grounds, it is arguable whether the claim that this method
represents the Loeb measure space is justified.

6.4. Bounded internal set theory. Following upon ideas of Lindstrøm [16],
Diener and Stroyan [5] aim for “a description of the common ground
between the two approaches to Robinson’s theory.” This takes the form

7This follows from the Extension principle of BST; see [14, Section 3.2e].
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of working in a polysaturated8 nonstandard universe N = (V (S), V (∗S), ∗)
axiomatically. They formulate Bounded Internal Set Theory (bIST) and
show that its axioms hold in such universes. This theory should not be
confused with BST. The main differences are:

• The language of bIST is closely tied to the structure N. It contains a
constant symbol for every internal set inV (∗S) and more; in particular,
it is uncountable.

• The axiom schemata T, I, and S are modified so as to apply only to
those formulas in which all quantifiers are bounded.

• The axioms of ZFC are not postulated (in fact, Replacement fails in
V (S)).

bIST proves many results familiar from IST or BST, but, just like in
these theories, its variables range over internal sets. It does not provide
access to higher-order external sets without some coding. Of course, the
nonstandard universe N does provide external sets that can be used to
construct nonstandard hulls and Loeb measures in the usual way, but then
one is using the model-theoretic rather than the axiomatic approach. Overall,
bIST is more a useful tool for work with superstructures than a self-standing
axiomatics for nonstandard analysis.

6.5. Measure and integration over finite sets. Nelson’s Radically Elemen-
tary Probability Theory [25] works with (hyper)finite probability spaces only.
It requires only very elementary axioms (see [25, Chapter 4]) that are easy
consequences of the axioms of IST, or even of the weaker and more effective
theory SCOT (see footnote 6). Further development of this approach can
be found, e.g., in [2, 3], who study both Nelson’s S-integral on finite measure
spaces (which they call Loeb–Nelson integral) and its refinement, which
they call Lebesgue integral. The “radically elementary” approach is simple
and elegant, and many interesting results have been obtained in this way.

It is beyond the scope of this paper to try to compare the “radically
elementary” approach to the nonstandard measure theory based on the
work of Loeb. Nelson shows [25, Appendix 1] that for every stochastic
process there is a nearby elementary process, and that theorems of the
conventional theory of stochastic processes can be derived from their
elementary analogues. The works [2, 3, 25] do not address the question
whether (up to isomorphism) Loeb measure spaces can be obtained from
their constructions.

§7. Conclusion. This paper is based on the fact that an internal set theory
such as BST provides a supply of structures that are analogous to the internal

8
N is polysaturated if it is κ-saturated for κ = |V (∗S)|.
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part of model-theoretic nonstandard universes. Utilizing a natural coding
and the principle of Standardization, we can mimic external sets by standard
ones. Nonstandard hulls and Loeb measures can be obtained “up to an
isomorphism” with their external counterparts. In BST they are standard
objects in a common framework, which makes it easy in principle to compare
them. In the end, they are the same structures that could be obtained by the
superstructure methods carried out in BST, but our technique for obtaining
them is more suitable for the internal axiomatic framework.

The theory BST is the internal part of HST, a theory which axiomatizes
external sets, in addition to standard and internal ones. In this theory one
can carry out external constructions in the same way as in nonstandard
universes; no coding is needed. The coding can be introduced afterwards
in order to convert the external structures so obtained to standard
structures.

We conclude that the internal axiomatic approach based on BST
can implement virtually all techniques employed by the model-theoretic
approach, with some advantages: It could make nonstandard hulls and
Loeb measures more easily accessible to working mathematicians who have
learned the nonstandard methods in IST or another axiomatic framework,
because it does not require a priori knowledge of ultrafilters and ultrapowers
or model theory. It establishes a single unified framework in which both the
standard “world” and the nonstandard “world” are adequately axiomatized.
It allows a seamless extension to a theory that encompasses also external
sets. Finally, it enables reverse-mathematical analysis of the strength of the
Axiom of Choice (see, e.g., [11]) and other axioms used in the practice of
nonstandard analysis.
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