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Abstract. Solving radiative transfer problems with ray casting methods is compared with the
commonly used ‘Flux Limited Diffusion’ approximation. Whereas ray casting produces solutions
that converge to the exact one as the number of rays is increased, flux-limited-diffusion is
fundamentally a ‘look-alike’ method, which produces solutions that are reminiscent of the correct
solution but which cannot be made to converge to it.

1. Introduction
Solving the ‘radiative transfer problem’ in general means computing specific radiation

intensities Iν (r,Ω) at relevant frequencies ν in a given physical situation. With a suf-
ficient set of frequencies and space angle directions Ω, and given also the absorption
and scattering cross sections κν and σν , one can then compute the exchange of energy
and momentum between the radiation field and the medium the radiation is propagating
through.

A number of sub-classes of the ‘radiative transfer (RT) problem’ are of relevance in
different astrophysical situations: In some cases the time-of-flight of the radiation is
important, in others not. In some cases the momentum and energy transfer are both
important, while in other cases only the energy transfer is of significance. In some cases
the populations of atomic states, which again determine the absorption cross sections,
are strongly influenced by the radiation field, and computing the population numbers
becomes in practice an integral part of the ‘radiative transfer problem’. Scattering leads
to a similar situation, where the ‘source function’ in the RT problem contains a term
directly proportional to the radiation intensity, averaged over space angle with some
(isotropic or non-isotropic) angular re-distribution function.

Common to all these cases is the fact that the specific intensity Iν (r,Ω) depends on
both frequency ν, direction Ω, and position r; i.e., the radiation field has six degrees
of freedom. This is often, but as we shall see incorrectly, considered an insurmountable
problem with respect to obtaining direct numerical solutions of the ‘radiative transfer
problem’. It is argued that it would be too expensive to obtain sufficiently accurate
solutions in a 6-dimensional space, and that therefore one needs to use approximate
methods that reduce the dimensionality.

Flux limited diffusion (FLD; Minerbo 1978; Levermore & Pomraning 1981) has been,
and still is, a popular method for obtaining approximate solutions of radiative transfer
problems (Turner & Stone 2001; Krumholtz et al. 2007). The flux limited diffusion ap-
proximation reduces the dimensionality from six to four, by assuming that the radiation
field can be reasonably represented by the mean radiation intensity,

Jν (r) =
1
4π

∫
Ω

Iν (r,Ω)dΩ. (1.1)
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Approximate expressions, which fulfill certain physically motivated asymptotic condi-
tions, are then used to compute estimates of the radiative energy flux,

Fν (r) =
1
4π

∫
Ω

Iν (r,Ω)Ω dΩ, (1.2)

based upon the mean intensity (as well as gradients thereof) and the local opacity. Note
that the flux-limited diffusion approximation is only concerned with approximating the
space angle dependence of the radiation field; the frequency dependence of the radiation
field is a different affair.

A reduction of the dimensionality from six to four would appear to be a significant
advantage and could be seen as such a dramatic gain that it would motivate the use of
an approximation, if the results obtained were still reasonable. However, a proper cost
comparison must also factor in the relative complexity of the different methods; i.e., what
is, in the end, the cost per (r, ν,Ω)-point for a direct solution, relative to the cost per
(r, ν)-point for the approximate solution?

Because the FLD leads to an elliptic equation for the mean intensity, while the direct
solution only involves a small number of floating point operations per degree of freedom,
the cost balance actually comes out in favor of the direct method, even for rather large
numbers of rays. To put this differently: The key circumstance that renders direct solu-
tions of the 6-dimensional RT problem not only tractable but even advantageous is that,
even though the computation effort scales with six degrees of freedom,

tupdate = cupdateNrNν NΩ , (1.3)

the scaling constant cupdate is very small, of the order of just a few nanoseconds per
update per point with current CPU-cores. Since the time required to update the physical
state of an MHD-model is typically several microseconds per point on the same CPU-
cores, one can afford of the order of a thousand frequency points times space-angle
directions, without increasing the computing time per time step with more than a factor
of two.

Therefore, in many common astrophysical situations it is indeed possible, and actually
advantageous, to solve radiative transfer directly, using ray tracing.

The main advantage with ray-tracing methods is that solutions converge to the correct
ones as the number of rays are increased, and that they therefore lend themselves to
traditional types of convergence studies and validation. However, as discussed below,
ray tracing methods in general also have several other advantages relative to flux-limit-
diffusion: They are simpler to implement, often use less computing time, and they can
be made to have near-perfect parallelization properties.

2. Radiative Transfer: Formal Solutions
The central task that needs to be performed in all ray-tracing based methods is comput-

ing the radiation intensity Iν (r,Ω), given a source function Sν (r,Ω), from the radiative
transfer equation

dIν (r,Ω)
dτ

= Sν (r,Ω) − Iν (r,Ω), (2.1)

where dτ is the optical depth increment in the direction Ω, defined as

dτ = (κν + σν )ds. (2.2)

This is often referred to as the ‘formal problem’, and the task is thus to compute the
solution to the formal problem as rapidly and accurately as possible.
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Note that solving the ’formal problem’ is part of (while still totally independent of)
any requirement of consistency between Iν (r,Ω) and Sν (r,Ω), e.g. due to scattering or
atomic level population balance. A number of well-known and thoroughly tested iterative
techniques exist for solving for source-intensity consistency (e.g. Hubeny 2003), but these
need not be discussed here, since they all have similar requirements with respect to
solving the formal problem—several solutions of the formal problem are typically needed
to evaluate residual imbalance between the radiation field and the source function. Thus,
for the purpose of this discussion we can focus on considering the cost of obtaining the
radiation field from a given source function.

As a test case where the results of using direct ray casting on the one hand and the flux-
limited-diffusion approximation on the hand can be easily compared, I consider below
the computation of the rate of energy transfer between the radiation and the gas, in a
case where velocities are small with respect to the speed of light, so the radiation field
can be considered to be determined instantaneously from the source function.

2.1. Ray Tracing / Ray Casting
Direct solutions of the radiative transfer problem generally rely on solving the radiative
transfer equation (2.1) along a number of rays through the volume under consideration. In
general one distinguishes between short characteristics methods and long characteristics
methods.

Short characteristics solutions are obtained incrementally, going typically from one
grid point to the next cell boundary, where the solution then needs to be interpolated to
the nearest grid point in order to continue.

Long characteristics methods rely on solutions obtained along rays traversing the entire
volume. For each direction Ω parallel inclined rays are passed through all grid points in a
central plane. One thus obtains solutions near all grid point in one sweep. Rays generally
then do not pass through grid points, but with a density of rays similar to the density of
grid points across rays, values at grid points can be found by interpolation between rays.
With this method all information that is obtained along each single ray is being utilized,
and the total cost thus scales as Nupdate ∼ NrNΩNν .

The denomination ‘long characteristics’ is sometimes used to refer to a theoretical
case where each point in three dimensions is connected by a specific ray to every other
point. Such a method can of course never be used in practice, since it would scale as the
square of the number of points; Nupdate ∼ N 2

r Nν . The method corresponds to setting
NΩ = Nr , and would thus correspond to a huge over-resolution in space angle. Not
even discrete sources needs to be handled in this way; these can instead be handled by
adaptive schemes (Wang et al. 2004; Razoumov & Cardall 2005).

A common misconception is that direct, ray tracing solutions are only suitable for
discrete sources. In fact, it is easy to use a combination of a set of rays emanating
from point sources with sets of parallel rays that take care of diffuse sources. For diffuse
sources, the number of space-angles needed is generally quite small, as illustrated by
the test below. However, since the requirements depend on the detailed properties (e.g.
smoothness) of the source field, no general rule can be given.

In analogy with the concept of ‘multi-casting’ on the internet (where many clients can
receive information transmitted by a single source), one could argue for referring to the
efficient long characteristics method as ‘ray multi-casting’, or just ‘ray casting’.

2.2. Flux Limited Diffusion
In the flux-limited-diffusion approximation one finds the mean radiation intensity as
follows: One assumes that the radiative flux can be estimated by an expression of the
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Figure 1. Horizontally averaged optical depth in the test case.

form

Frad,ν
= − λ

κν
∇J, (2.3)

where λ = λ(|∇J |, J, κν ) is a ‘flux limiter’ function (e.g. Levermore & Pomraning 1981).
One then requires that the divergence of the radiative flux equals the rate of energy
transfer between the radiation field and the gas, so

∇ · Frad,ν = ρκν (S − J), (2.4)

where S and J are, respectively, the source function and the mean radiation intensity
(Turner & Stone 2001).

The result of combining Eqs. 2.3 and 2.4 is a non-linear elliptic equation in J . In the
test cases reported on below this problem was solved using successive over-relaxation,
starting from the ‘exact’ solution for J provided by the ray casting method. To monitor
convergence the residual between the left and right hand sides of Eq. 2.4 was used.

Tests with three different flux limiters showed that the Levermore & Pomraning (1981)
limiter produced slightly better results than the Minerbo (1978) and Krumholtz et al.
(2007) limiters in the current case.

It should be noted that, even though the radiative flux is fully specified by Eq. 2.4,
the actual boundary value of the mean intensity needs to be determined independently.
To ensure that this choice did not disfavor the FLD solution the mean intensity of the
most accurate (reference) ray casting case was adopted as a boundary condition on J .

3. Results
The test case represents a ‘fragmented disk’ — a proxy of a turbulent, low temperature

stellar accretion disk. The opacity is assumed to be due to pure absorption, with a
constant absorption κν per unit mass. The opacity ρκν thus varies in proportion to the
mass density. The source function is chosen to vary in unison with the density, mimicking
temperature fluctuations at near-constant entropy. The horizontal variation of the mass
density is chosen to be a pattern generated by smoothing an image of white noise with a
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Figure 2. Average heating / cooling rate per unit volume for the reference solution, as a
function of the vertical coordinate.

Gaussian filter, leaving approximately 16 degrees of freedom in each horizontal direction
(cf. Fig 5a).

The opacity scaling has been chosen so the maximum optical depth across the disk
(from bottom to top) is about 5, while in the least dense spots on the disk the total
optical depth is about 0.5. Above and below the mid plane the mass density (and hence
the optical depth) decreases exponentially. The optical depth is of the order of 10−4 at
the upper / lower boundaries of the domain. Figure 1 shows the horizontally averaged
optical depth in the disk, as a function of the vertical position. The horizontal variation
is illustrated in Fig. 5a.

Figure 2 shows the average heating / cooling rate for the reference solution as a function
of the vertical coordinate. Generally, there is cooling (energy loss) in a region near the
disk mid plane, because the finite optical depth allows energy to leak out. However, side-
ways heating can occur in spots, as radiation ‘leaks’ from hotter regions into cooler ones.
There is a general re-heating above the optical surface, as the mean intensity is larger
than the local source function. Because of the exponential drop in density away from the
mid plane the heating / cooling rate drops to very small values there.

Figure 3 shows the horizontal root-mean-square variation of the heating / cooling rate
as a function of the vertical coordinate. The root mean square variation is largest in the
mid plane, then drops, but is again fairly large in the re-heating layer just outside of
optical depth unity.

The FLD solutions are initialized with the ‘exact’ mean intensity from the reference
solution, and the elliptic problem is then iterated to near consistency (note that, since
the iterations drive the solution away from the correct solution any residual iteration
error generally tends to reduce the difference with respect to the ray tracing reference
solution).

Figure 4 shows minimum and maximum errors of the FLD heating / cooling rate,
relative to the global root-mean-square variation of the reference heating / cooling rate.
Note that the largest error of the FLD solution is more than twice as large as the overall
root-mean-square variation of the heating / cooling rate.

The horizontal variation of the error is illustrated in Fig. 5, where the right hand side
panel shows an image of the variation of the error in the horizontal plane.
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Figure 3. Horizontal root-mean-square variation of the heating / cooling rate, as a function of
vertical position

Figure 4. Minimum and maximum errors of the FLD heating / cooling rate, relative to the
global root-mean-square variation of the reference heating / cooling rate

Ray tracing solutions were obtained by using Radau integration over inclination angle
(Radau integration differs from Gaussian integration in that the vertical direction is
always included). For inclined rays integration in the azimuth direction is performed
with evenly distributed ray directions.

Figure 6 shows a comparison of the horizontal root-mean-square errors of the heating
/ cooling rates for the FLD solution and ray tracing solutions with varying number of
ray directions (note that there are two rays for each ray direction). As a reference case
we use a ray-casting solution with 96 ray directions; this is sufficient for a very accurate
solution, given the source function and opacity profiles of this test case. As illustrated
by Fig. 6, even the ray tracing solution with only four ray direction is superior to the
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Figure 5. Images of the horizontal variation of the optical depth in the mid plane (left) and of
the error in the heating / cooling rate (right). Positive and negative values are shown in distinct
colors / shades of gray.

Figure 6. Horizontal root-mean-square errors of the heating / cooling rate, relative to the
global root-mean-square variation of the reference solution. The full drawn curve is for the FLD
solution. The other curves are for ray tracing with 4 (dotted), 7 (dashed), 16 (dashed-dotted),
and 26 (dash-dot-dot-dot) ray directions.

FLD solution at the levels where the heat exchange is strongest, and a solution with 7
ray directions is good to within 1% of the reference solution.

4. Conclusions and concluding remarks
Ray-tracing radiative transfer methods have a challenging (’6-dimensional’) scaling of

the required work. However, because the scaling constant is very small (about 1-5 nano-
seconds per mesh point) a fair number of angle-frequency pairs is still affordable. In
practice, the solution of the radiative transfer equation is so fast that similar amounts of
time is needed for table lookup of opacities and source functions, and for interpolations
of variables to and from the inclined rays.
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Ray-tracing (or ’ray-casting’) solutions have the big advantage over approximate meth-
ods such as FLD that they actually converge towards the exact solution. FLD methods,
on the other hand, are ‘look-alike methods’; the solutions behave more or less as the
correct solutions, but there is no way to force the solution to converge to the correct
one—there is no ‘cost parameter’ with which one can buy higher accuracy at the ex-
pense of longer computing time. FLD solutions converge to the diffusion approximation
at large optical depth, and behave more or less reasonably at small optical depths, but
as illustrated by the test here the errors made can be quite large in a neighborhood of
optical depth unity. These layers are typically of central importance when calculating
the thermal structure of stars and accretion disks.

Whether one uses ray-tracing or flux-limited-diffusion it is often important to include
several frequency points (or frequency bins)—representing for example heating in one
frequency domain and cooling in another (Nordlund 1982). With ray-tracing, there is
enough capacity to employ several frequencies (or frequency bins), while still being able
to afford a reasonable space-angle resolution.

An important requirement for ray tracing to be affordable is that the solution along
all rays should be fully utilized; the solution along each ray should contribute to the
knowledge of the radiation field in all cells that it passes through. This is trivial in
Cartesian geometries, where rays can be chosen to be parallel. However, in more com-
plicated geometries, such as for example disks with near-cylindrical symmetry and huge
ratios of outer to inner radius (Pascucci et al. 2004), choosing an optimal set of rays and
organizing interpolations of results back and forth can be non-trivial.

Ray tracing methods with long characteristics have the great advantage to be easy
to parallelize. One can parallelize over ray positions, ray directions, frequencies and fre-
quency bins, but also along each ray (Heinemann et al. 2006). The latter is particularly
useful when using MPI-domain decomposition, since it minimizes the amount of informa-
tion that must be passed from cell to cell, and parallelizes without problems to thousands
of cores. In this method local solutions of the radiative transfer equation, which can be
obtained in ‘embarrassingly parallel mode’, can be patched together by sending boundary
data up-stream and down-stream in the ray direction (Heinemann et al. 2006).
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