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Abstract

We consider an optimization problem in which the function being minimized is the sum
of the integral functional and the full variation of control. For this problem, we prove the
existence theorem, a necessary condition in an integral form and a local necessary
condition in the case of monotonic controls.

Introduction

In the paper we deal with the problem of determining a minimum of the
functional /J f°(t, x(t), u(t)) dt + VQM(O under the constraints x(t) =
f(t,x(t),u(t)), x(0) = xo,u G U, where x is an absolutely continuous function
on the segment [0,1], x(t) e R", x0 is a fixed point in R". U stands for the set of
all measurable vector-valued functions «(/), t e [0,1] with values in some com-
pact set M c R". For the vector function u, we define the full variation V\u(t) as
the sum of variations of its components.

The above extremal problem was formulated by E. S. Noussair in [8], Remark
3.3.

What distinguishes this problem from classical optimization problems is the
form of the cost functional. Besides the differentiable part it also has a nondif-
ferentiable term, namely the full variation of control on the interval [0,1]. This
term can be interpreted as the cost of change of values of control function.

Section 1 of the paper contains a precise formulation of the problem and the
proof of a theorem on the existence of an optimal solution. It is shown that the
optimization problem considered is closely connected with the properties of
controls with bounded variation. Optimization problems with such controls were
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[2] On an extremum problem 377

investigated by B. E. Chuprun [2], N. N. Krasovskiy [6], S. Walczak [11], J.
Sztajnic [10].

In Section 2 an integral necessary condition for the case of controls with
bounded variation is proved. The proof is based on the Joffe-Tikhomirov ex-
tremum principle [4]. This principle was often applied to examining extremal
problems in the spaces of real and complex functions (cf. [4], [7], [11]).

Section 3 of the paper deals with a local necessary condition for the existence of
a solution in the case of monotonic controls. The form of this condition resembles
the Euler-Lagrange equation; its proof is based on the results of [11]. To obtain
the local necessary condition, we applied the local variational formula for
monotonic functions with bounded variation. In particular, we used the well-
known variational formula of Golusin. Due to this formula, many functional
defined on special families of complex functions were estimated (see [3], [9]). In
this paper the Golusin variational formula is used to investigate the optimization
problems in the space of real functions.

1. Formulation of the problem and an existence theorem

Consider the following:

PROBLEM 1. Determine the minimal value of the functional

I(x, u) = f f°(t, x(t), u(t)) dt + >/«(/), (1.1)
Jo o

under the conditions

*(0=/(/,*(0,«(0), t1-2)
*(0) = *o. (1-3)

ue{/, (1.4)
where x is an absolutely continuous function on the interval [0,1], x{t) e R", x0

is a fixed point in R", U is a set of measurable vector functions u = (w1, . . . ,ur)
with values belonging to some compact set M c Rr for / e [0,1]. The set U will
be called a set of admissible controls, and u e {/-admissible controls.

The full variation of the vector function u will be defined as

V«(0 = £ V«'(0. (i.5)
0 1 = 1 0

Assume that the functions / ° and / satisfy the following conditions:
1° /°( '» •, •) is lower semicontinuous on R" X Rr with fixed (x, u) £ R" X Rr,
2° there exists a summable function /x(-) such that n(t) < f°(t, x(t), u(t)) for

any process satisfying conditions (1.2)-(1.4) and for almost all t e [0,1],
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3° / is continuous with respect to (x, u) and measurable with respect to /.
4° there exists a summable function m() such that \f(t,x(t),u(t))\ < m(t)

for each process satisfying conditions (1.2)-(1.4) and for almost all / e [0,1].
Let MO(-) be an arbitrary admissible control, J C O ( ) its corresponding trajectory

of system (1.2) with initial condition (1.3). Let us introduce the notation

'(^."o) = #0
and

UK={ueU\I(x,u)<K).

K is some constant greater than or equal to Ko, and x(-) a trajectory of system
(1.2) with initial condition (1.3), corresponding to the control w() .

The set UK is non-empty because, in particular, uQ e UK. Let QK denote a set
of solutions to equation (1.2) with initial condition (1.3) which correspond to the
controls u e UK.

From the definition of the set UK it follows that

inf I(x,u) = inf I(x,u). (1.6)

Under assumptions (l°-4°) one can easily show that UK is a set of vector
functions whose values and variations are commonly bounded. So, while consider-
ing Problem 1, it is enough to restrict ourselves to the class of controls with
variation bounded by a constant K > Ko.

Let {«„(•)}» n = 1.2,..., be a sequence of elements of the set UK. By *„(•) we
denote the trajectories of system (1.2) with initial condition (1.3), that correspond
to the controls "„(•). If the sequence {«„(•)} is pointwise convergent to some
«(•) e UK, then the sequence {*„(•)} converges to jc(-) uniformly on [0,T],
where x(-) is the solution of (1.2) with initial condition (1.3), corresponding to
ti( •) (see [1], Chap. 18). Making use of this fact, we prove

LEMMA 1.1. The functional

J(x,u) = jlf\t,x{t),u{t))dt (1.7)
Jo

is sequentially lower semicontinuous on the set QK X UK with respect to pointwise
convergence of (x( •),«(•)).

PROOF. Define / ° = max(/°,0). Then it follows from Assumption 2° that

f°(t,x(t),u(t))-fi(t)>0 (1.8)

for any process (x, u) that fulfills (1.2)-(1.4) and for almost all t e [0,1].
Let {«„(•)}, « „ ( • ) £ UK be a sequence pointwise convergent to M ( - ) G UK.

Now, let vn = (xn,un) where, as usual, *„(•) corresponds to «„(•). Then, the
sequence {t>n()} is pointwise convergent to v = (Jc, it) e QK X UK. By the Fatou
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lemma [1], we have

f liminf [/<>(/, ^ ( O ) " ^ ) ] ^
0 " ^ . (1.9)

< liminf/ [f°{t,un(t))-p{t)]dt
n-»oo •'0

and hence,

f1 Urn ini f°(t,vn(t))dt< liminf f1 f°(t,vn(t)) dt. (1.10)
•'O n —* oo n —* oo •'O

Since un e L^, it follows that I(xn, un) < K, i.e.

t*K<«>. (1.11)
•'o

Let us recall that the functions u & UK are commonly bounded with commonly
bounded variations. The assertion now follows from the sufficient condition for
semicontinuity given in [5].

LEMMA 1.2. The functional T(u) = VQM(O is sequentially lower semicontinuous
with respect to pointwise convergence ofu(-).

PROOF. Let «(•) = umn-.Ooun(') o n t n e interval [0,1]. It is enough to show
that

l l

V « ' ( 0 < lim infV"l,(O for i = 1,2,...,/-. (1.12)
o "-0 0 o

The index " / " denotes the i-th component. If the right-hand side of (1.12) is
equal to infinity, nothing is to be proved. So, suppose that it is finite and put

l

lim inf V"!,(0 = c-
n-oo 0

We take any e > 0 and let 0 = t0 < tx < • • • < tm = 1 be an arbitrary division
of the interval [0,1]. Since

l

lim inf V«!,(0 < c + e,
n-oo 0

there is a subsequence {«„(•)}, n e W c {1,2,... } such that

This implies the inequality
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Pass ing to the limit as n -* 00, we get

| c + e. (1.14)

Taking the supremum of the left-hand sides of (1.14) over all possible divisions of
[0,1] we have

1

V"' (0 <C + E.
0

Since e was arbitrary, we obtain

VS'(O <£ c. (1.15)
0

But this means that inequality (1.12) is also true in the case when its right-hand
side is finite. From definition (1.5) it follows that

1 1

V«(0< ]im »nfV«B(0. (116)
0 " ^ ° ° 0

which shows that the functional T(u) is sequentially lower semicontinuous.

LEMMA 1.3. The set Uk is sequentially compact with respect to pointwise conver-
gence.

PROOF. Consider a sequence {«„(•)} where «„(•) e UK, n = 1,2, Then,
I(xn, un) < K where *„(•) is the solution of (1.2) with initial condition (1.3),
corresponding to the control «„(•). We now note that the functions «„(•) and
their variations are commonly bounded. Using Helly's choice principle (see [1],
Chap. 15), we obtain the existence of a subsequence {«„(•)}, n e We {1,2,... },
which is pointwise convergent on the interval [0,1] to a function u of bounded
variation. To the sequence {«„(•)}> n ^ Wc. {1,2,...}, there corresponds a
sequence {*„(•)}> « e W c {1,2,... }, of solutions of (1.2), (1.3). This sequence
converges to a function jc(-) uniformly on [0,1], where x(-) is the solution of
(1.2), (1.3), corresponding to the control «(•). Therefore, to prove the assertion,
we are to show that «(•) e UK, i.e. that J(jc, u) < K.

Since {«„(•)} c UK, it is clear that

f /» ( / , *,(*), uH(t)) dt + Vum(t) < K. (1.17)
yo 0

Thus, we also have

lim inf I / 1 /»(/, xn(0, «.(/)) A + V«n(0) < ^ (MS)
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From the sequentially lower semicontinuity of the integral functional
/o /° ( '»*(0> " ( 0 ) dt with respect to (x, u) and the sequentially lower semicon-
tinuity of the variation of M( •) we get

/(*,«) = flf\t,x{t),u{t))dt + V«(0 < K. (1.19)
Jo o

Hence u() e l/^ and the proof is complete.

LEMMA 1.4. The set QK is sequentially compact with respect to pointwise
convergence.

PROOF. Consider a mapping

« ( • ) - * ( • )

defined for u(-) e t/^, where x(-) denotes the corresponding trajectory of system
(1.2) with condition (1.3). This mapping is sequentially continuous with respect to
pointwise convergence. The image of the class UK of admissible controls, under
this mapping, is the set QK. Now, the assertion follows from Lemma 1.3.

THEOREM 1.1. If the functions f° and f fulfill assumptions l°-4°, then Problem 1
has a solution.

PROOF. We show that the functional / ( - , •) attains its infimum on the set
QK X UK- Consider a sequence {(*„(• ),"„(•))} c QK X UK, n = 1,2, (here
*„(•) is, as usual, the trajectory that corresponds to the control «„(•) and is
subject to (1.2), (1.3)) such that

7(xn,Mn)-> inf I(x,u) = m.

Since the set QK X UK is sequentially compact we have that the sequence in
question contains a subsequence {(*„(•)» «„(•))}, n e We {1 ,2 , . . .} convergent
to some (Jc(-), &(•)) G QK X UK- Making use of sequentially lower semicontinuity
of I(x,u) we obtain

m = lim I(xn,un)> lim inf l(xn,un) > I(x, M).
n-»oo n-»oo

On the other hand, I(x, u)^m for (jc, u) e QK X UK. Hence /(Jc, it) = m.
Together with condition (1.6) this proves the theorem.

2. The integral extremum principle

On the grounds of the above considerations, it can be seen that we lose no
generality by viewing Problem 1 in the class of controls with variation bounded
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382 Joanna Matula [7)

by a constant Ko = K — f$ fi(t)dt, that is, by considering the following

PROBLEM 1'. Determine the minimal value of the functional

l(x,u)=ff%t,x(t),u(t))dt + \/u(t), (2.1)
Jo 0

under the conditions

*(*) =/(',*(*), «(0), (2-2)
x(0) = x0, (2.3)

• u^UKo (2.4)
where UKo = {« e W|Viu(O < * 0 } .

In the sequel, we shall denote by W"tl(0,1) a space of functions x(t) e #"
absolutely continuous on the interval [0,1], with norm ||x|| = |*(0)| + JQ \x(t)\ dt.
Denote by (JC,, um) the solution to Problem 1'. To continue, let the following
assumptions be satisfied:

5° The functions / ° and / do not depend explicitly on t, they are jointly
continuous with respect to x, u, continuously differentiable with respect to x,
differentiable with respect to u, and /u°, /„ satisfy the Lipschitz condition with
respect to (x, u), that is,

|/«°(*1, «l) -/w°(*2, «2) I < 1.(1*1 - *l\ + I"! - "2!)
for some L > 0 and, analogously, for/u,

6° There exists a neighborhood K c W^^O, 1) of the point x,, such that, for
any x e V and for each t e [0,1], the functions f° and / satisfy the following
convexity conditions: for any ux e UKo, u2 ^ UKg and for any X e [0,1], there
exists some u ^ UK such that

THEOREM 2.1. Let (x+, «*) fe the solution to Problem V. If assumptions 5° and
6° are satisfied, then there exists an absolutely continuous function <& and a constant
Xo ^ 0, no/ identically zero, such that

™ ° = 0,

and

f1 -
0

= min f1 -H(\Q,Q,x.,u)dt + \0\/
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where the function H is defined by the formula

PROOF. Denote X = ^ ( O . l ) , Y = L?(0,l) x R". Let F: X x UKQ -> Y be
an operator defined by the equality

[F(x(-),u())](t) = (*(0 -f(x(t),u(t)),x(0)-xo).
Then Problem 1' can be formulated in the form:

PROBLEM 1". Determine the minimal value of the functional

I(x, u) = f f°(x(t), u(t)) dt + Vu(/), (2.5)
•'o o

under the conditions
F(x,u) = 0, (2.6)

u e UKo (2.7)

It is easy to verify that, for Problem 1", the assumptions of the extremum
principle for smooth-convex problems, given in [4] (§1.1.3), are satisfied. So, it
may be applied to this problem. Consequently, a necessary condition for the point
(xm, um) to be the solution to Problem 1" is the existence of Lagrange multipliers
Xo > 0, X1; $ not vanishing simultaneously and such that

f
(2-8)

= 0
0

for any 3c(-) e WfA(0,1), and

= min { T [X0/°(x*(/),u(r)) (2.9)

By introducing the notation

H(\Q,<S>,x,u) = (^(t),f(x,u))-\of°(x,u), (2.10)

condition (2.8) can be written down in the form

P (*(t),x-(t))dt+ f1 (Hx(\o,*,x.,u.),x(t))dt+(\ux(0)) = 0.Jo Jo
(2.11)

https://doi.org/10.1017/S0334270000005464 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005464


384 Joanna Matula [9|

This, in turn, implies that

f (*(t)-f HxdT,i{t)} dt + ( - j f 1 Hxdr + Alf 3e(0)) = 0. (2.12)

This last equahty holds for any Jc(-) e W"^,!). So, in particular, it holds for
x(•) such that 3c(0) = 0. Then (2.12) will take the form

SI (*( / ) ~ S] H*d7>*^)dt = °- (2-13)
Equality (2.13) holds for each 3c(-) e W"x(0,1) satisfying the condition x(0) = 0.
Consequently, in particular, for x( •) such that x(l) = 0. On the ground of the
Du-Bois-Raymond lemma, (see [1], Chap. 2) we obtain that

O(0 - T Hxdr = const. (2.14)
Jt

And so, <fr(t) is an absolutely continuous function which satisfies the differential
equation

^ X0A°U,W,) (2.15)

where / / stands for the transpose of the matrix fx. Let us again consider equality
(2.13). Integrating the left-hand side of this equality by parts and making use of
(2.15), we get

$(l)Jc(l) = O. (2.16)
Since (2.16) holds for any x(-) e 0^(0,1) satisfying the condition x(0) = 0,
therefore

$(1) = 0. (2.17)
Writing condition (2.9) with the use of notation (2.10), we obtain the second
condition of the proposition to the theorem. Theorem 2.1 has thus been proved.

3. The local necessary condition in the class of monotone controls

Let us now consider Problem V in the class of controls which are monotone
functions.

PROBLEM 2. Determine the minimum of the functional

I(x, u) = f f°(x(t), u(t)) dt + V«(0, (3.1)
•'o o

under conditions

i(/)=/(*(0,«(0), (3-2)
x(0) = x0, (3.3)

« G UKn, (3.4)
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where, as previously, x is an absolutely continuous function on the interval [0,1],
x(t) G R",x0 is a fixed point in R". UK is a set of monotonic vector functions
(i.e., each component is a monotonic function) with values belonging to some
compact set M for t e [0,1] and with variation bounded by a constant KQ.

Assume that conditions l°-4° given in Section 1 as well as conditions 5°-6°
given in Section 2 are satisfied. All the above considerations are also true for the
controls u e UKQ. SO, analogously to before, for Problem 2 one can prove the
existence theorem and the integral necessary condition in the form of theorem 2.1,
where the set UKo appears instead of UKQ.

We shall now proceed to the proof of local necessary conditions for Problem 2.
Apart from assumptions l°-2° given in Section 1, assume additionally that
7° M is a perpendicular parallelepiped in Rr of the form

M= { t i e / l > ' e [a, ,ft] , i = 1,2,...,/•},

where a,, ft are some constants.
Denote V^u^t) = K* and UK. = {u e t/^jVj, M(0 = * • } . For we # , . ,

the second part of the proposition to theorem 2.1 will take the form

f1 -H(\0,4>,x,,u,)dt= min f1 -H(\0,*,x,,u)dt. (3.5)
•'0 u(=UK. •'O

In the sequel, we need the following lemmas:

LEMMA 3.1. If an integral functional

f(u) = f1a(t)u(t)dt=ij1a>(t)u<(t)dt (3.6)
•'o i=l

Jo
is a functional supporting the set UK at the point «0, then each of the functional

r{u)=jla,{t)ui{t)dt (3.7)
•'o

is a functional supporting the set

= I«' e L^ | a,. < «' < ft W V"' < ^ J (3.8)

' = W\ u'at the point u'o, where K'Q = W\ u'0(t).

LEMMA 3.2. If a function a: [0,1] -> R has a bounded variation, then the interval
[0,1] can be represented in the form

[0,1]=ATU£0U \jGn, (3.9)
n - l

where N is a countable set, Eo = {f G [0,1] | a(t) = 0}, Gn, n = 1,2,.. . , are open
intervals and a(-) iy of constant sign on each of these intervals.
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The two lemmas were proved in paper [11].
Let g0 be any monotone scalar function defined on the interval [0,1], such that

goO) e [a,0] c R and V^go = K. Let (tltt2) c [0,1]. Denote by \i one of the
two numbers: m, M, where m and M stand for, respectively, the lower bound
and the upper bound of the function g0 on the interval (tx, t2) c [0,1].

LEMMA 3.3. A function gx defined by the formula

g*(' )=\(l-A)g0(,) + A
for X e [0,1] satisfies the following conditions:

*x(')e [«,/»],

and is a monotone function, too.

PROOF. If t £ (tlt t2), then gx(f) = go(t) and gx(/) e [a, /8].
If t e (rx, ; 2 ) , then gx(t) = (1 - X)go(O + X/x and thus

(1 - X)go(O + Xjn > (1 - \ ) w + \m = m > a , (3.11)

(1 " M g o ( 0 + X/» < (1 - X)M + KM = M < p. (3.12)

And so, gx(O G [a, 8̂] for ( e [0,1]. Since g0 is a monotone function, therefore
gx is monotone on the intervals [0, fj and [f2>l]- It follows from inequalities
(3.11) and (3.12) that it has this property on the entire interval [0,1]. Hence

V*o(O =Uo(O) -gx(l) | = Uo(O) -go(l) l = Wo(O = K,
0 0

and this concludes the proof of the lemma.

THEOREM 3.1. / / (x+, um) is the solution to Problem 2 and assumptions 5°-7° are
satisfied, then there exist {not identically zero): an absolutely continuous function $
satisfying differential equation (2.15) with terminal condition (2.17), a constant
Xo > 0 and a function c = (cx,c2,... ,cr) such that

a) c' is a constant function on each interval G'n,
b) (/u

r(*«, u.)*(O - X o / J W "*))'(cV) ~ «'«(0) = 0 for each t e [0,1],
J/ie exception of at most a countable number of points.

PROOF. Let (r1; 12) c [0,1], and let
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where /n = (/i1,..., / / ) , n' is one of the two numbers m', M'. m' and M' denote,
respectively, the lower bound and the upper bound of the function w'*(0 on the
interval (fx, t2), i = 1,2,..., r. It follows from Lemma 3.3 that ux(t) e UK.. On
the ground of equality (3.5), we have

C -H(\0,*,x,,u,)dt< f1 -H(\o,9,x;ux)dt. (3.14)
•'0 •'0

Hence

f1 [H(X0, *, x t , «x) - H(X0,*>, *., «.)] <fc < 0. (3.15)
•'o

By the definition (3.13) for t <= [0, fj U [t2,1], the integrand is equal to zero.
Consequently,

f'2 [H(\0,Q,xm,u, + X(M - ii*)) - ff(X0>*,x*,u.)] A < 0.

By the mean value theorem,

f2 X^u(X0,*,^,tt ,)(ju - u*(t))dt + o(X) < 0.

Dividing both sides by X and passing with X to zero, we have

f'2 HU(XO, O, x.,«.)(/» - « , (0) A < 0. (3.16)

By the definition of (2.10),

In view of the other part of assumption 5°, the function Hu defined by formula
(3.17) has a finite variation for $ absolutely continuous. Consequently, the set of
its points of discontinuity is countable.

According to Lemma 3.2, for each i = 1,2,..., r, the interval [0,1] can be
represented in the form

[0,l] = tf'U£JU \JG' (3.18)
n = l

where W is a countable set, E'o = {/ e [ 0 , 1 ] | ^ = 0}, G ,̂ « = 1,2,..., are
open intervals and H'u is of constant sign on each of these intervals.

Let us now consider inequality (3.16) once again. It follows from Lemma 3.1
that

r2ff , ; (X0,*,x*,i i , )( / i ' - i i i , (0)<ft<0, i = l,2,...,r. (3.19)

Suppose that, for te(tvt2), H'u > 0. Let us then put /t' = supw',(0 = c'o,
t G (tlt t2). If «'* # ĉ  on the set of positive measure, then

f'2 H>(\0,$, x,, «*)(ci - «',) A > 0,

which contradicts inequality (3.19).
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If H'u < 0 on the interval (tv t2), we would have to put p' = inf «i(0> t e
ih,t2).

The theorem has thus been proved.

EXAMPLE. Let UKo be a set of monotone vector functions u = (w1, u2) with
values belonging to a rectangle

for t G [0,1], and with variation bounded by a constant Ko.
Consider the following problem:
Find the minimum of the functional

x l

I(x,u) = f (Cx(t)+Du(t))dt + \/u(t) (3.20)
0 o

where the state of the controlled object is described by a differential equation of
the form

* ; ! ' ) : - ^ w < o . (3-2i)
under the initial condition

x(0) = x0

with

Let C = (1,2), D = (1,1), *0 = (1,0)r. System (3.21) can be written down in the
form

x = Ax(t) + Bu(t),

where

I OJ' [1 0.
Conjugate equation (2.15) will then take the form

with the terminal condition

0(1) = 0. (3.23)

That is

= 2X0.
(3.24)
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The solution to this system is of the form

fc1 = Xot
2 + Cxt + Xo/ + C2,

O2 = 2Xof + Cx.

Making use of terminal condition (3.23), we determine constants Cx and C2:

C, = - 2 \ 0 ,
C2 = 0.

Thus, the solution to this equation are functions,

&(t) = \ot
2-\ot,

Q>2{t) = 2Xot - 2X0.

It follows from these equalities that Xo =£ 0. Indeed, if Xo = 0, then O1 = 0 and
$ 2 = 0, which contradicts the extremum principle. Without loss of generality one
may assume that Xo = 1.

Condition b) of theorem 3.1 will take the form

(BT9(t) - X 0 O ' ( c ' ( ' ) - "'*(')) = 0, i = 1,2.

The functions (5 r $ ( / ) — X0D
T)', i = 1,2, which will be called switching func-

tions, are defined by the equalities

{BT$(t) - X0D
Tf = It - 3,

(BT$(t) - X0D
T)2 = t1 - t - 1.

The first component possesses in the interval [0,1] at most one zero, the
second—at most two. Consequently, the optimal control does exist and each of
its components is piecewise constant. The first possesses at most one jump point,
the other—at most two.

So, the component MX(-) may be written in the form

where ax < ux < v2 < fiy, 0 < T: < 1, vv v2, TX are constants, or in the form

t e [ f l ]y 2 > ' ^ l T l > X J >

where at < v2 < vl < Ply 0 < ^ < 1, u1; o2, fx are constants.
On the other hand, u2( •) may be of the form

1. t<E[0,tl)

u2{t)={w2, ( e [ ( l , / 2 ) (3.27)

3> te[t2,\],
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where a2 =£ wx < w2 < w3 < /?2, 0 < tr < /2 < 1, w1,w2,wJ, tlt t2 are constants,

or , analogously

« 2 ( 0 = ( M ;
2 , / e i ^ f j ) (3.28)

where a2 < vv3 <; w2 < wx < ^2 , 0 < ^ < f2 ^ >̂ ' • ' l ) ^ , w3, ix, i2 are constants.

Hence, we finally conclude that four cases of forms of ux{-) and M 2 ( ) are

possible.

Let us consider the case when wx(-) is of form (3.25) and u 2 ( ) of form (3.27).

W e take the case when TX < tv

For t e [0, Tj), system (3.21) has the form

1*2(0= - * i ( 0 + »l
with the initial condition x(0) = (1,0)r.

Solving this system, we get
_ W2j _|_ j

i \ - ^ 2*2 , ^ , fn x ( 3"2 9>

For ; e [T1; ^ ) , system (3.21) becomes

with the initial condition

and it has the following solution:

. X 1 2 ^ / ,X , X , f X ( 3 - 3 ° )
I ^ 2 ( 0 = "" T ^ l ' + ( y 2 ~ 1 ) ' + ( u l ~ U2)T1> ' O r ' S LT1> ' l ) -

If / e [rx, f2) system (3.21) has the form

1*2(0 = -* l (0 + «2.
with the initial condition
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Having solved the above system, we get, for t e [tlt t2),

391

\

Similarly, for t e [t2,1], (3.21) becomes

with

v2)t- \ - U a ) T l .

(3.31)

V2]t2

and its solution is determined by the formulae

t (0 = wit +(w2
2 - wi)t2+(wf -

(332)

Now, by putting in (3.20) C = (l,2), D = ( l , l ) and using (3.25), (3.27),
functional (3.20) may be written down in the form

, u) 2x2(t) +(vx + Wl)] dt

fh

r
r 2*2(0+(«2

(3.33)

Making use of (3.29)-(3.32) while computing the above integrals, we get

I(x, u) = g(r1,tl,t2,vuv2,wl,w2,w3),

where g is a function of the third degree with respect to rx, tu t2 and of the
second degree with respect to vv v2, wv w2, w3.
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In this way our problem, in the case considered, is reduced to the following
mathematical programming problem:

"Determine the constants rv tv t2, olf i>2>wn W2,H>3 that give the minimum of
the function

g(T1,t1,t2,v1,v2,\vl,w2,w3) (3.34)

subject to the linear constraints

«1 < V1 < V2 < /?!, 0 < Tt < 1, 3 5

a2 < w1 < w2 < w3 < /32, 0 < tx < t2 < 1." ' ^

Considering the remaining three cases in a similar way, we can finally conclude
that the problem considered in the Example is reduced to some mathematical
programming problem under linear constraints.
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