
LMS J. Comput. Math. 14 (2011) 99–107 Ce2011 Author
doi:10.1112/S1461157010000136

Muller condition and fairness on multitransition systems

Douadi Mihoubi

Abstract

This paper presents an extension of a result by Guessarian and Niar to the framework of
multitransition systems. In the case of a single process, Guessarian and Niar had shown that the
set of fair computations of regular SCCS processes coincides with the class of ε-free ω-regular
languages. Here, in the case of multitransition systems, we show essentially that the sets of fair
computations on multitransition systems are strictly included in the class of ε-free ω-regular
N -languages. The inclusions of these fair sets into the class of ε-free ω-regular N -languages are
obtained by showing that the strict (respectively weak, strong) fair condition can be simulated
by the Muller acceptance condition on multitransition systems. The strictness of the inclusions
is obtained by exhibiting two counter-examples showing that the reverse is false, that is, not
every ω-regular N -language is the set of fair computations of some multitransition system.

1. Introduction

This paper is an extension of a result in Guessarian and Niar [4], proving that the set of
fair computations of regular SCCS processes coincides with ε-free ω-regular languages. These
results are obtained using so-called Muller T -automata, with infinitary transitions instead of
infinitary states, which still recognize the class of ω-regular languages. This paper is focused to
extend these results to the framework of multitransition systems defined by Arnold and Nivat.
We show essentially the following results.

(1) The sets of fair computations of multitransition systems are included in the class of
ε-free ω-regular N -languages, which extends the result for the case of a single process.

(2) Contrary to the case of a single process, fair computations do not capture all ε-free
ω-regular N -languages. This result is obtained by exhibiting two counter-examples proving the
strictness of the inclusions.
The paper is organized as follows. Basic notions and preliminaries on infinitary languages are
presented in Section 2. After that, Section 3 is devoted to the definitions of fair conditions and
the main result obtained by Guessarian and Niar on regular SCCS processes. The main results
of this paper are given in Section 4. Finally, Section 5 is reserved for a concluding remark and an
open question about the properties that a language from the class ε-free ω-regular N -languages
must satisfy in order to be the set of fair computations of some multitransition system.

2. Preliminaries

Let Σ be a finite set of symbols which we call actions. A finite word over Σ is a finite sequence
w = (a1, a2, . . . , an) of elements of Σ denoted by the concatenation w = a1a2 . . . an. The integer
n= |w| is the length of the word w. The empty sequence () of length 0 is called the empty
word and is denoted by ε. The set Σ∗ of all words over Σ equipped with the operation of
concatenation defined by

a1a2 . . . an ◦ b1b2 . . . bm = a1a2 . . . anb1b2 . . . bm

Received 15 April 2010; revised 4 November 2010.

2000 Mathematics Subject Classification 68Q10, 68Q85 (primary).

This work was supported by the LMPA, University of M’sila, Algeria.

https://doi.org/10.1112/S1461157010000136 Published online by Cambridge University Press

http://www.lms.ac.uk/jcm
http://www.ams.org/mathscinet/msc/msc.html
https://doi.org/10.1112/S1461157010000136

100 D. MIHOUBI

has the structure of a monoid with the empty word ε as a neutral element, called the free
monoid on Σ. A language over Σ is any subset of Σ∗, which permits us naturally to use the
Boolean operations over the set of languages ℘(Σ∗). The concatenation product of Σ∗ may be
extended to ℘(Σ∗) by defining AB = {ab/a ∈A, b ∈B} for A, B in ℘(Σ∗).

We write N+ = {1, 2, . . .}. An infinite word over Σ is an infinite sequence u : N+ −→ Σ. We
denote by u[n] the finite word u(1)u(2) . . . u(n) representing the initial segment of u of length n.
We denote by Σω the set of infinite words over the alphabet Σ. We let Σ∞ = Σ∗ ∪ Σω be the
set of finite or infinite words on Σ.

The concatenation product of Σ∗ is extended to Σ∞ by the following two rules.
(1) If f ∈ Σ∗ and u ∈ Σω, the product fu ∈ Σω is defined by

fu(n) =

{
f(n) for all 16 n6 |f |,
u(n− |f |) for all n > |f |.

(2) If u ∈ Σω and α ∈ Σ∞, then uα= u.
With this product, the set Σ∞ has a structure of a monoid with the empty word ε as a neutral
element. We call any subset L of Σ∗ a language, any subset L of Σω an ω-language and any
subset of Σ∞ an infinitary language.

A word β ∈ Σ∞ is a left factor of a word α ∈ Σ∞, denoted by β 6 α, if there exists γ ∈ Σ∞

such that α= βγ. The relation 6 is a partial order on Σ∞ called the prefix ordering. We denote
by LF(α) the set of finite left factors of α ∈ Σ∞.

Hence,

LF(α) = {g/g 6 α} if α ∈ Σ∗

and

LF(α) = {α[n]/n ∈ N∗} if α ∈ Σω.

For any L⊂ Σ∞, we let LF(L) = {LF(α)/α ∈ L} denote the set of left factors of words in L.
The adherence of L⊂ Σ∞ is defined by

Adh(L) = {α ∈ Σω/LF(α)⊆ LF(L)}

and L is said to be closed if Adh(L)⊆ L.
Given an increasing prefix ordering sequence u0 6 u1 6 . . .6 un 6 . . . of elements ui ∈ Σ∞,

there exists a unique element α= limn−→∞ un such that k = |un| and α[k] = un. Then α=
un ∈ Σ∗ if, for all i> n, we have ui+1 = ui or α ∈ Σω. For any language A⊂ Σ∗, we denote the
infinite iteration of A by

Aω =
{
u ∈ Σω/u=

∏
i>1

ui, with ui ∈A− {ε}, for all i ∈ N+

}
.

If A= {ε}, then Aω = {ε}.
We define the closure

−→
A of A by

−→
A = limA= {u ∈ Σω/for infinitely many n, we have u[n] ∈A}.

In other words, x ∈
−→
A if there is an increasing prefix ordering sequence (an)n∈N of words in A

such that x= limn−→∞ an.
A set A⊂ Σ∗ is called prefix if, for all words x, y in A, if x6 y, then x= y. In other words,

the set A satisfies A(Σ∗ − {ε}) ∩A= ∅.

Example 1. For the set X = ba∗ over Σ = {a, b}, we have Xω = (ba∗)ω and
−→
X = baω. The

set Y = a∗b is prefix. On the contrary, the set X = ba∗ is not.

https://doi.org/10.1112/S1461157010000136 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157010000136

MULLER CONDITION AND FAIRNESS ON MULTITRANSITION SYSTEMS 101

3. SCCS processes and fairness

A process is any entity capable of performing computations. For more notions on models of
computation, see [3]. When dealing with interacting systems (concurrent or distributed), the
notion of fairness is an important concept which allows for example each process, waiting for
a shared resource with other processes, to make progress in its computation. Three kinds of
fairness have been studied in [4] by Guessarian and Niar on Milner’s SCCS processes. We recall
shortly Milner’s calculus SCCS and main results obtained by these authors, showing that any
ε-free ω-regular language is the language of (weakly, strongly or strictly) fair computation of
some strict SCCS process, and vice versa.

Definition 1. An SCCS expression E is defined by the normal form scheme

E ::= x/Nil/a : E/E �B/E + F/E × F/rec −→x ·
−→
F ,

where Act = (A, ·,−, 1) is a non-trivial commutative group of actions with 1 the unit action of
the group representing an internal action (the unit action 1 results from a synchronization aā
or a delay of one time unit with a ∈A), A is a finite set of actions and co-actions (actions
and co-actions represent two complementary interactions between two processes), B is a
subset of A, E, F are SCCS expressions and Nil is the inaction process. The operators +,×
represent respectively the non-deterministic choice and synchronous product of two processes
that perform an action simultaneously. The notation E �B is the restriction of process E to
the actions of B and a : E is the prefixing of E by the action a. Finally, x is a member of the set
Var of variables and rec −→x ·

−→
F denotes the solution of the equations xi = Fi for i= 1, . . . , n

(the recursion operator is for us to be able to define processes with possibly infinite runs).

The algebra of SCCS processes is also equipped with the delay operator δ defined by
δE = rec x · (1 : x+ E), which is the process that can either delay or behaves as E. Any process
in SCCS is defined by only one equation. A component of the process E is any factor of a
synchronous product × (for instance, the components of E = p1 × (p2 + p3) are exactly p1 and
(p1 + p2)). A process is said to be active if and only if it performs an action different from the
delay 1. A process E is said to be strict if all its subprocesses of the form rec x · F contain
neither occurrences of the synchronous product × nor unguarded variables within F . Recall
that a synchronous product p× q cannot perform an action unless both p and q perform an
action simultaneously.

Example 2. Let Act = ({a, ā, b, b̄, }, ·,−, 1); then q = rec x · δ(a : x+ b : x) is an SCCS
process with behaviour c(q) = (a+ b)ω ∪ {ε}.

Definition 2. A computation of a process E is strictly fair (respectively strongly fair or
weakly fair) if and only if every component of E (respectively any component which is infinitely
often or continuously enabled from some point on) shall eventually be active.

Theorem 1 (Guessarian and Niar [4]). Any ε-free infinitary language L is the language of
(weakly, strongly or strictly) fair computations of some strict SCCS process, and vice versa.

4. Fairness and systems of N -processes

In this section, we will formulate the definitions of fair computations described above in terms
of a system of N -processes in order to study their behaviours according to these concepts as
conditions of acceptance. The modelling of concurrent processes used here was introduced in [1]
by Arnold and Nivat, which is based on regular infinitary languages. Each process is defined

https://doi.org/10.1112/S1461157010000136 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157010000136

102 D. MIHOUBI

by its set of finite and infinite behaviours, and is modelled using an extended finite automaton
to finite and infinite words. The parallelization of a collection of N -processes (Pi)i=1,...,N is
modelled by a concurrent automaton: the cartesian product of the automaton associated to
each process Pi, called a multitransition system.

Definition 3. A system of N -processes is a fourtuple

S = (Q, Σ, vec q0 , T),

where:
(1) Q=Q1 ×Q2 × . . .×Qi × . . .×QN is a finite set of states, with Qi the set of states of

the ith process;
(2) vec q0 = (q01 , q02 , . . . , q0i , . . . , q0N

) is the start vector state of S with q0i the start state
of the ith process;

(3) Σ = (Σ1 ∪ {ε})× (Σ2 ∪ {ε})× . . .× (Σi ∪ {ε})× . . .× (ΣN ∪ {ε}) is a finite set of
actions of S, with Σi the set of actions of the ith process;

(4) T ⊆Q× Σ×Q is a finite set of transitions of S.

For each i ∈ {1, . . . , N}, the set of states Qi of the ith process is finite.
A transition of the system S is an element of Q× Σ×Q. The action performed during one

transition will be an element −→a of
−→
Σ with

−→
Σ = (Σ1 ∪ {ε})× (Σ2 ∪ {ε})× . . .× (Σi ∪ {ε})× . . .× (ΣN ∪ {ε})− (ε)N ,

such that, for all i= 1, . . . , N ,

Πi(−→a) =
{
ε if the process pi is inactive during this interval time,
the action of Σi executed by pi otherwise

where Πi denotes the projection on the ith component of the vector −→a ∈
−→
Σ . The system

S considered here is proper, that is, (Q×−→ε ×Q) ∩ T = ∅, where −→ε = (ε, ε, . . . , ε) is the
N -empty word which represents the inaction of all N -processes in the same time.

Notation. To simplify, we denote by vec qj the vector state (qj1, qj2, . . . , qjN) and by −→aj

the vector action (aj1, aj2, . . . , ajN).

Let

p= vec q0
−→a1−−−→ vec q1

−→a2−−−→ vec q2 . . .
−→ai−−→ vec qi . . .

be an infinite path in the system S; then
∏n

i=1
−→ai is a finite behaviour of p and

∏
i>1
−→ai is the

infinite behaviour of p. Let t= (ti)i>0 be the sequence of consecutive transitions in the path
p with ti = (vec qi,−→ai , vec qi+1) and r = (vec qi)i>0 its corresponding run; we denote by inft(p)
the set of all transitions executed infinitely often in p and by infs(r) the set of all states entered
infinitely many times in the run r.

Definition 4. A Muller multitransition system is a 6-tuple

S = (Q, Σ, vec q0, T, Qfin, Qinf),

where:
(1) S1 = (Q, Σ, q0, T) is a system of N -processes;
(2) Qfin ⊆Q are the subsets of final states;
(3) Qinf ⊆ 2Q are the subsets of infinite states (designated subsets).

Multitransition systems were introduced to recognize languages and to realize processes [1].
The behaviour L of S will be a vector (L1, L2 . . . , LN) of N regular infinitary languages,

https://doi.org/10.1112/S1461157010000136 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157010000136

MULLER CONDITION AND FAIRNESS ON MULTITRANSITION SYSTEMS 103

t2 = (c,)

t3 = (b,)

(s1, s2) (s3, s4)

t1 = (, a)

ε

ε ε

Figure 1.

where Li is the behaviour of the ith process. The behaviour Li of each process i will be a
union Lfin

i ∪ Linf
i of two regular languages, where Lfin

i is its regular finitary part and Linf
i is its

regular purely infinitary part.
We recall from [2] this useful theorem.

Theorem 2. Let A be a finite alphabet. The language L⊆A∞ is regular if and only if its
finitary part Lfin is a regular language and its purely infinitary part Linf is a finite union of
the form

Linf =
n⋃

i=1

KiR
ω
i ,

where, for all i= 1, . . . , n, Ki, Ri are regular languages of finite words.

In [4], the equivalence between classical Muller automata and Muller T -automata is proved.
Note that in Muller T -automata, the designated subsets are subsets of transitions instead
of states. This result is also true for multitransition systems; henceforth we will consider
multitransition systems with subsets of transitions as distinguished subsets.

4.1. Strictly fair computations

Let p be a path in a system of N -processes S = (Q, Σ, vec q0, T); then p is called strictly fair
if and only if:

– either p is a maximal finite path;
– or p is an infinite path which satisfies:

∀i ∈ {1, . . . , N}, if there exists t= (vec q,−→a , vec q′) ∈ inf
t

(p), then Πi(−→a) 6= ε,

where inft(p) denotes the set of transitions entered infinitely many times in the path p.
We denote by

C1(S) = {w ∈ (
−→
Σ)∞/∃ a path p ∈ pth(vec q0, w) such that p is strictly fair}

the set of strictly fair computations of S, with

pth(vec q0, w) =
{
ti1ti2 . . . tin . . . ∈ T∞/∀ij ∈ N, tij = (vec qij ,

−→aj , vec qij+1) ∈ T,
where vec qi1 = vec q0

}
the set of paths starting in vec q0 and having the behaviour

w =−→a1
−→a2 . . .

−→an . . . ∈ (
−→
Σ)∞.

Example 3. Consider the above system of 2-processes P1 × P2, where {s1, s3} designate
the state set of P1 and {s2, s4} that of P2 (Figure 1).

https://doi.org/10.1112/S1461157010000136 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157010000136

104 D. MIHOUBI

It is obvious that the path c1 = (t1t2)ω is strictly fair while c2 = t1t
ω
3 is not: the process

P2 is delayed infinitely in c2; however, in c1 both processes Pi, i= 1, 2, perform alternately a
different action from the delay ε.

Proposition 1. For every system of N -processes S, there exists a Muller multitransition
system S0 such that the infinitary N -language recognized by S0 is equal to the set of strictly
fair computations in S; in others, words L∞(S0) = C1(S).

Proof. Let S = (Q, Σ, vec q0, T) be a system of N -processes. A Muller multitransition
system S0 is constructed as follows:

S0 = (Q, Σ, vec q0, T, Qfin, Tinf),

with:

(1) Qfin = {vec q ∈Q/out(vec q) = ∅ in S} is the set of final states with out(vec q) = {−→a ∈−→
Σ/∃ vec q′ ∈Q : (vec q,−→a , vec q′) ∈ T};

(2) Tinf =

T ′ ⊆ T/T ′ = {ti = (vec qi,−→ai , vec q′i)/i ∈ {1, . . . , l}} ∈ cycle(S) with

Πj

(⋃
i∈l

−→ai

)
6= ε, ∀j ∈ {1, . . . , N}

are the subsets of infinite transitions, where:

(a) cycle(S) is the set of cycles on the system of N -processes S;
(b) N is the number of processes;
(c) l is the number of transitions in the cycle T ′.

In others words, the cycle T ′ is chosen to belongs to Tinf if at least one action different from
the delay ε is executed by each process j ∈ {1, . . . , N} in the cycle T ′.

We must show: u is a successful path in S0 if and only if u is a strictly fair path in S.
We first show the direct case (⇒):

(a) if u is a successful finite path in S0, this implies that u is of the form

u : q0
−→a1−−−→ q1

−→a2−−−→ q2 . . .
−→an−−−→ qn

such that qn ∈Qfin. Then out(qn) = ∅ (by construction) and therefore u is a finite
maximal path on S and hence u is strictly fair;

(b) if u is a successful infinite path in S0, then there exists T ∈ Tinf such that T = Inft(u)
with T = {ti = (vec qi,−→ai , vec q′i)/i ∈ {1, . . . , l}} ∈ cycle(S).

The set T forms a cycle of length l and we have Πj(
⋃

i∈l
−→ai) 6= ε (by construction). This shows

that any process j ∈ {1, . . . , N} performs on T at least one action different from the delay ε;
consequently, the path u is strictly fair.

For the converse (⇐):
if u is a strictly fair path on S, then two cases arise:

(1) the path u is finite and maximal on S and therefore u is successful in S0 (by
construction);

(2) u is a strictly fair infinite path on S, and hence the cycle T of transitions met infinitely
often, in the path u, is a distinguished set, that is, T ∈ Tinf and therefore u is successful
in S0.

https://doi.org/10.1112/S1461157010000136 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157010000136

MULLER CONDITION AND FAIRNESS ON MULTITRANSITION SYSTEMS 105

A direct consequence of this result is the following corollary.

Corollary 1. The strictly fair language of a system of N -processes S = (Q, Σ, vec q0, T)
is an infinitary regular N -language.

Proof. The previous proposition shows that for any system of N -processes S, one can
construct an equivalent Muller multitransition systems S0. According to the known results on
extended Muller automata and Muller T -automata, we have C1(S) = L(S0) = L0 ∪ L1 with L0

a regular N -language and L1 an ω-regular N -language.

4.2. Weakly fair computations

Let p be a path in a N -process S = (Q, Σ, vec q0, T); then p is called weakly fair if and only if:
– either p is a maximal finite path;
– or p is an infinite path which satisfies:

for all i ∈ {1, . . . , N} if, for all vec q ∈ Inf(c), we have Πi(out(vec q)) 6= ε, then there exists
ts = (vec qs,−→a , vec q′s) ∈ Inft(u) such that Πi(−→a) 6= ε.

In other words, if the process Pi is continuously enabled from some point on the path,
p shall eventually be active. We denote by C2(S) the set of weakly fair computations on S.

Example 4. In the system of 2-processes cited in Example 3 (Figure 1), the paths
c1 = (t1t2)ω and c2 = t1t

ω
3 are both weakly fair. In c1 the processes (P1, P2) are continuously

enabled and active, while in c2 the only process which is continuously enabled is the process P1.

Proposition 2. For every system of N -processes S, there exists a Muller multitransition
system S0 such that the infinitary N -language recognized by S0 is equal to the set of weakly
fair computations of S; in other words, L∞(S0) = C2(S).

Proof. We use the same proof as in the case of strict fairness, Proposition 1, where Tinf is
defined now by

Tinf =

T ′ ⊆ T/T ′ = {ti = (vec qi,−→ai , vec q′i)/i ∈ {1, . . . , l}} ∈ cycle(S)

s.t. ∀j ∈ {1, . . . , N}, if
⋂

i∈{1,...,l}

Πj(out(vec qi) 6= ε)⇒Πj

(⋃
i∈l

−→ai

)
6= ε

.

From this result, we can also deduce the following corollary.

Corollary 2. The weakly fair language of a system of N -processes S = (Q, Σ, vec q0, T)
is an infinitary regular N -language.

4.3. Strongly fair computations

Let p be a path in the N -process S = (Q, Σ, vec q0, T); then p is called strongly fair if and only
if:

– either p is a maximal finite path;
– or p is an infinite path which satisfies:

for all i ∈ {1, . . . , N}, if there exists vec q ∈ Inf(c) with Πi(out(vec q)) 6= ε, then there exists
ts = (vec qs,−→a , vec q′s) ∈ Inft(u) such that Πi(−→a) 6= ε.

In other words, if the process Pi is infinitely enabled from some point on the path, p shall
eventually be active. We denote by C3(S) the set of strongly fair computations of S.

https://doi.org/10.1112/S1461157010000136 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157010000136

106 D. MIHOUBI

(a,)

(c, d)

(a, b)

1
2

ε

Figure 2.

Proposition 3. For every system of N -processes S, there exist a Muller multitransition
system S0 such that the infinitary N -language recognized by S0 is equal to the set of strongly
fair computations of S; in other words, L∞(S0) = C3(S).

Proof. We use the same construction as in the previous cases (the strict and weak fairness),
but in this case the set Tinf is defined by

Tinf =

T ′ ⊆ T/T ′ = {ti = (vec qi,−→ai , vec q′i)/i ∈ l} ∈ cycle(S)

s.t., ∀j ∈ {1, . . . , N}
(⋃

i∈{1,...,l}

Πj(out(vec qi) 6= ε)⇒Πj

(⋃
i∈{1,...,l}

−→ai

)
6= ε

) .

From this result, we can also deduce directly the following corollary.

Corollary 3. The strongly fair language of a system of N -processes S = (Q, Σ, vec q0, T)
is an infinitary regular N -language.

Remark 1. Note that if a path in a system of N -processes S is strictly fair then it is also
strongly and weakly fair.

4.4. Muller acceptance condition and fairness

In this section, we give two counter-examples showing that the converse of Proposition 10
(respectively Propositions 13 and 15) is not true, that is, not every ω-regular N -language is
the set of fair computations of some system of N -processes.

4.4.1. Strict fairness and Muller condition. LetM = P1 × P2 be the system of two processes
(Figure 2), where all the subsets of the set of states {1, 2} are considered to be designated.

The behaviour of this system is

L= L∞(M) = (a, ε)∗ + (a, ε)∗(c, d)(a, b)∗ + (a, ε)ω + (a, ε)∗(c, d)(a, b)ω.

It is obvious that L ∈ Rat(Σ)∞ is the class of infinitary regular languages. The question that
arises is: does there exist a finite system S of 2-processes (P1, P2) such that C1(S) = L? The
infinite term (a, ε)ω in L shows that the process P2 is infinitely delayed. This shows that
(a, ε)ω can never be a strictly fair infinite behaviour of a certain finite system of 2-processes.
Consequently, there is no S such that C1(S) = L.

4.4.2. Weak fairness and Muller condition. Let M1 be the multitransition system
(Figure 3), where again all the subsets of {1, 2} are considered to be designated. We have

L= L∞(M1) = E1 + E2 + E3 with
E1 = (a, ε)∗,

E2 = (a, ε)∗(c, d)((a, b) + (ε, b))∗,
E3 = (a, ε)ω + (a, ε)∗(c, d)((a, b) + (ε, b))ω.

https://doi.org/10.1112/S1461157010000136 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157010000136

MULLER CONDITION AND FAIRNESS ON MULTITRANSITION SYSTEMS 107

(a,)

(, b)

(c, d)

(a, b)

1 2

ε

ε
Figure 3.

The question that arises also in this case is: are there finite systems of 2-processes S
such that L= C2(S)? Suppose that such a system exists, and consider the infinite word
w = (a, ε)∗(c, d)(ε, b)ω ∈ L.

From the hypothesis, we have w ∈ C2(S); consequently, there is in S a weak fair path σ
of corresponding run c, such that Π2(σ) = w. Let vec q ∈ inf(c) be the state met in c after
computing the prefix (a, ε)∗(c, d) of w. But, we have w1 = (a, ε)∗(c, d)(ε, b)∗(a, b)ω ∈ C2(S);
this shows that Π1(out(vec q)) = {a, ε} 6= ε; hence, the path σ is not weak fair, and therefore
the system S in question cannot exist.

4.4.3. Strong fairness and Muller condition. Note that the same counter-example cited
above for the weak fairness shows that there is no system of 2-processes S such that L= C3(S).

5. Concluding remark

We have shown that all kinds of fairness cited above are simulable by the Muller acceptance
condition on multitransition systems but the reverse is false. According to Theorem 2 and the
counter-examples cited in § 4.4, the behaviour L⊆ (

−→
Σ)∞ of any system of N -processes, with

any kind of fairness cited above as acceptance conditions, is an infinitary regular N -language;
this means that the class Fair(

−→
Σ)∞ of all fair sets on systems of N -processes is strictly included

in the class Rat(
−→
Σ)∞ of infinitary regular N -languages. This concluding result leads to the

following theoretical question: what are the properties that a language from Rat(
−→
Σ)∞ must

satisfy in order to belong to the subclass Fair(
−→
Σ)∞. Apparently, a closed infinitary regular

language is not necessarily a set of fair computations of some system of N -processes.

Acknowledgements. The author would like to thank the editor and Professor I. Guessarian.
He also wishes to offer many thanks to the anonymous referee for many corrections and
suggestions which led to an improvement of the content of the paper.

References

1. A. Arnold and M. Nivat, ‘Comportements de processus’, Colloque AFCET, les mathématiques de
l’informatique, Paris (1982), 35–68.

2. S. Eilenberg, Automata languages and machines, vol. A (Academic Press, New York, 1974).
3. M. Fernandez, Models of computations, an introduction to computability theory (Springer, Berlin, 2009).
4. I. Guessarian and W. Niar, ‘Fairness and regularity for SCCS processes’, RAIRO Inform. Theor. 23 (1989)

no. 1, 59–86.

Douadi Mihoubi
Department of Mathematics, LMPA
M’sila University
P.O. Box 166, M’sila 28000
Algeria

mihoubi douadi@yahoo.fr

https://doi.org/10.1112/S1461157010000136 Published online by Cambridge University Press

mailto:mihoubi_douadi@yahoo.fr
https://doi.org/10.1112/S1461157010000136

	1. Introduction
	2. Preliminaries
	3. SCCS processes and fairness
	4. Fairness and systems of N-processes
	4.1. Strictly fair computations
	4.2. Weakly fair computations
	4.3. Strongly fair computations
	4.4. Muller acceptance condition and fairness

	5. Concluding remark
	References

