
London Mathematical Society ISSN 1461–1570

COMPLETING THE BRAUER TREES
FOR THE SPORADIC SIMPLE LYONS GROUP

JÜRGEN MÜLLER, MAX NEUNHÖFFER, FRANK RÖHR and ROBERT WILSON

Abstract

In this paper, the Brauer trees are completed for the sporadic simple
Lyons group Ly in characteristics 37 and 67. The results are obtained
using tools from computational representation theory—in particular,
a new condensation technique—and with the assistance of the com-
puter algebra systemsMeatAxe andGAP.

1. Introduction

1.1. Background

In this paper we complete the Brauer trees for the sporadic simple Lyons group Ly
in characteristics 37 and 67. The results are stated in Section2; they will also be made
accessible in the character table library of the computer algebra systemGAP, and are
available electronically from [2]. While the shape of the Brauer trees, as well as the labelling
of nodes up to algebraic conjugacy of irreducible ordinary characters, has already been
described in [8, Section 6.19.], here we complete the trees by determining the labelling of
the nodes on their real stems and their planar embedding; proofs are given in Section4.
Together with the results in [8, Section 6.19.] for the other primes dividing the group order,
this completes all the Brauer trees for the group Ly.

Our main computational workhorse is fixed-point condensation, which was originally
invented for permutation modules and described in [19], but has also been applied to other
types of modules as well. To our knowledge, the permutation module that we have condensed
is the largest one for which this has been accomplished so far. The theoretical background
to the idea of condensation is described in Section3. Details of the particular condensation
technique used, and of some other computational tricks, are given in Section5. For the heavy
part of our computations, we have built upon and modified the implementation described
in [12]. In all areas of our work, we have made substantial use of the computer algebra
systemsMeatAxe [17] andGAP [6]. Due to our standard setting (see Section1.2), if we
wish to write down the set of Brauer characters in the casep = 67, we have to know the
67-modular reduction of

√
37 ∈ R

+. The latter depends on the Conway polynomialC67,18,
which was computed at our request, and is obtainable from [11]. As some tricks and heavy
computation are again involved in findingC67,18, we indicate in Section2.2what would be
known without havingC67,18 to hand.

We note that a method similar to the one described here has also been used to solve similar,
although admittedly much smaller-sized, problems for the sporadic simple Thompson group
Th [4], for the sporadic simple Rudvalis group Ru and its double cover 2.Ru [18], as well as
for the sporadic simple O’Nan group ON and its triple cover 3.ON [15]. The latter results
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Brauer trees forLy

Table 1: The Brauer tree forp = 37.
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completed all the Brauer character tables for 3.ON and 2.Ru, in all the characteristics
dividing each group order respectively.

1.2. The standard setting

We assume that the reader is familiar with block theory and the decomposition theory
of finite groups, as well as with the Brauer–Dade theory of blocks of cyclic defect; see, for
example, [5, Sections IV and VII].

Throughout, we use the standard choice ofp-modular systems(L, R, F ) as described
in [10, Introduction]. Here,L is an algebraic number field,R is a discrete valuation ring
in L, with maximal idealm� R and residue class fieldF := R/m of characteristicp. Let

: R → F denote the natural epimorphism. Assume thatζp,n := exp(2πi/(pn − 1)) ∈
R ⊂ L ⊂ C for somen ∈ N. Then the minimum polynomial ofζp,n ∈ F overFp is the
nth Conway polynomialCp,n ∈ Fp[X], where we again assume that the reader is familiar
with the compatibility properties ofCp,n, whenn varies.

2. Results

In this section, we state the Brauer trees for Ly for the casesp = 37 andp = 67. In both
cases, the principalp-block has defect 1, and is the only block of positive defect. The nodes
of the Brauer tree are labelled by 1, 2, . . ., where for each case we indicate the corresponding
irreducible ordinary characters of Ly according to the numbering given in [3, p. 174]. The
labelling of the nodes of the Brauer trees and their planar embedding depend on the definition
of the conjugacy classes of Ly in terms of the chosen pair of standard generators for Ly; see
Section4.3. For the planar embedding, we use the convention given in [8, Section 1.2.].

2.1. The casep = 37

Table1 1 2 3 4 5 6 7 8 9 10
[3] 1 2 3 4 7 8 11 12 24 25 33

Table1 11 12 13 14 15 16 17 18 19
[3] 39 40 41 42 43 47 48 49 52

The exceptional node 9 has multiplicity 2. The sets of algebraically conjugate ordinary
characters are:{2, 3} and{5,6}, consisting of pairs of complex conjugate characters, and
{11, . . . ,15}and{16,17}, consisting of real characters. The Brauer tree is given in Table1.
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Brauer trees forLy

Table 2: The Brauer tree forp = 67; fory see Section2.2.
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2.2. The casep = 67

Table2 1 2 3 4 5 6 7 8 9 10 11 12
[3] 1 2 3 5 6 11 20 21 22 24 25 26 27 28

Table2 13 14 15 16 17 18 19 20 21 22 23
[3] 29 30 31 32 39 40 41 42 43 44 50

The exceptional node 12 has multiplicity 3. The sets of algebraically conjugate ordinary
characters are:{2, 3} and{4, 5}, consisting of pairs of complex conjugate characters, and
{8,9},{10, 11},{13,14}, {15,16}and{17, . . . ,21}, consisting of real characters. We remark
that there is a mistake in [8, p. 271] concerning the relative position of the characters{8,9}
and{13,14} on the Brauer tree. The Brauer tree is given in Table2, where only the value
of y ∈ {10, 11}depends on the Conway polynomialC67,18; see Section1. As

X2 − 37 = (X − 38)(X− 29)∈ F67[X],
we have

√
37 = 38 ∈ F67 or

√
37 = 29 ∈ F67 anyway. The former case leads toy = 10,

while the latter leads toy = 11. Using the Conway polynomial

C67,18 = 2 + 13X+ 59X2 + 6X3 + 51X4 + 29X5 + 28X6

+55X7 + 33X8 + 18X9 + 52X10 + 63X11 + X12 + X18

computed in [11], we find that
√

37 = 38 ∈ F67; hencey = 10, for our standard choice of
67-modular system.

3. Condensation

3.1. The condensation functor

Let θ be a principal ideal domain or a field, and letA be aθ -algebra, which is a finitely
generatedθ -free θ -module. Letmodθ -A be the category of finitely generated andθ -free
right A-modules, where forV, W ∈ modθ -A the homomorphism set is the set of all
α ∈ HomA(V, W) such that im(α)6 W is aθ -pure submodule.

Let e ∈ A be an idempotent; that is, 06= e = e2. Then the additive exact functor
?⊗A Ae ∼= HomA(eA, ?) from modθ -A to modθ -eAe is called thecondensation functor
with respect toe; see [7, Section 6.2]. The imageV e ∈ modθ -eAe of someV ∈ modθ -A
under this functor is called thecondensedmodule ofV . Note that under this functor an
A-homomorphism defined onV is simply mapped to its restriction toV e.
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3.2. Simple modules

Let θ be a field, and letS ∈ modθ -A be simple; then eitherSe = {0} orSe ∈ modθ -eAe

is also simple, since for 06= v, v′ ∈ Se we havev ·eae = v′ for somea ∈ A. The following
lemma shows that we can distinguish non-isomorphic simple modules inmodθ -A by their
condensed modules, if the latter are different from{0}. Note that we do not assume that
Se 6= {0} holds for allS ∈ modθ -A.

Lemma. Let θ be a field, and letS, S′ ∈ modθ -A be simple, such thatSe 6= {0} 6= S′e.
ThenS ∼= S′ in modθ -A if and only ifSe ∼= S′e in modθ -eAe.

Proof. We need only to show the ‘if’ part. Assume thatSe ∼= S′e in modθ -eAe, and
choose a decomposition ofe as a sum of pairwise orthogonal primitive idempotents inA.
As HomA(eA, S) ∼= Se 6= {0}, there is a summand,eS say, such thateSA is a projective
indecomposable module witheSA/rad(eSA) ∼= S. Applying the condensation functor with
respect to the idempotenteS ∈ eAe, we obtainSeS

∼= S′eS in modθ -eSAeS . Hence we have
{0} 6= S′eS

∼= HomA(eSA, S′), and thusS′ ∼= S in modθ -A.

3.3. Reduction modulop

Let θ := R, whereR is as in Section1.2. LetAL := A ⊗R L andAF := A ⊗R F .
If ê ∈ A ⊂ AL is an idempotent, thene := ê ∈ AF is too. The exact additive functors
HomA(êA, ?)⊗RL and HomAL

(êAL, ?⊗RL) frommodR-A tomodL-êALê are equivalent,
as well as the exact additive functors HomA(êA, ?)⊗R F and HomAF

(eAF , ?⊗R F) from
modR-A to modF -eAF e.

This means that, given̂V ∈ modL-AL with R-form V ∈ modR-A, the p-modular
reductionV ê of the condensed module ofV can be identified with the condensed module
V e of thep-modular reduction ofV . In this sense we speak ofthe condensed module in
modF -eAF e of a representation ofAL.

3.4. Fixed-point condensation

We are going to apply a particular condensation functor, the so-calledfixed-point conden-
sation. Keeping the notation from Section3.3, letA = R[G] be the group algebra of a finite
groupG, and lete = eK := ê ∈ F [G], whereê = êK := |K|−1 ∑

k∈K k ∈ R[K] ⊆ R[G],
where in turnK is a subgroup ofG whose order|K| is not divisible by the characteristicp
of F .

Let� be a finite set acted on byG, and letF [�] be the correspondingF [G]-permutation
module. Then the condensed moduleF [�]e can be described as follows. Let{�i; 1 6 i 6 r}
be the set ofK-orbits on�, and let�+

i := ∑
ω∈�i

ω ∈ F [�] be the orbit sums. Then
{�+

i ; 1 6 i 6 r} is anF -basis ofF [�]e, and forg ∈ G the action ofege ∈ eF [G]e on
F [�]e is given as

�+
i · ege =

∑

16j6r

aij (g) · |�j |−1 · �+
j , whereaij (g) = |{ω ∈ �i; ωg ∈ �j }|,

and where we consideraij (g) and|�j | as elements ofF . Hence, to find the action ofege,
we have to find theK-orbits {�i}, their lengths|�i |, and theaij (g) ∈ Z. Note that this
does not depend on the particular choice ofF , and that an analogous description holds for
F replaced byR or L, and fore replaced bŷe.
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We shall apply a new variant of fixed-point condensation of permutation modules, the so-
calleddirect condensationtechnique, for which the basic idea was conceived by R. Parker
and R. Wilson. The technique was subsequently modified, extending its range of appli-
cability, in [12]. Here, we have built upon and modified the latter implementation; see
Sections4.4and5.2.

3.5. The dimension formula

Let V ∈ modF -F [G], and letϕV be its Brauer character, viewed as anL-valued
class function on thep′-classes ofG. ThenϕV can be extended to a class functionϕ̃V

on the whole ofG as follows. Forg ∈ G, let gp, gp′ ∈ G denote itsp-part and its
p′-part, respectively, and let̃ϕV (g) = ϕV (gp′). As F[K] is a semisimple algebra, we have
dimF (V e) = 〈(ϕV )K, 1K 〉K = 〈ϕ̃V , 1G

K 〉G, where〈·, ·〉G denotes the usual scalar product
for class functions onG.

Let W ∈ modL-L[G], and letχW be its ordinary character. In view of the remarks in
Section3.3, we have dimF (We) = dimL(Wẽ) = 〈(χW )K, 1K 〉K = 〈χW , 1G

K 〉G. Writing
ϕV as aZ-linear combination of ordinary characters restricted to thep′-classes ofG, the
dimension dimF (V e) can be computed in terms of ordinary characters. As the blocks under
consideration here are described by Brauer trees, these linear combinations can be read off
directly from the trees.

3.6. The trace formula

To solve the algebraic conjugacy problems, we apply the following idea. LetV ∈
modF -F [G], and letϕV be its Brauer character. IftV and tV e are the usualF -valued
trace functions, we have

tV e(ege) = |K|−1 ·
∑

k∈K

tV (gk) = |K|−1 ·
∑

k∈K

ϕ̃V (gk).

If V e is explicitly given, the tracetV e(ege) can be evaluated explicitly as well. On the other
hand,tV e(ege) can be computed ifϕV is known, and if it is known to which conjugacy
classes ofG the elements of the cosetgK belong.

4. Proofs

4.1. A permutation representation

Let G = Ly for short. We are looking for a permutation representation ofG, such
that its permutation character has sufficiently many constituents belonging to the principal
p-blocks, for both the casesp = 37 andp = 67. Let 53:L3(5) ∼= H < G be a maximal
subgroup of index 1 113 229 656 (see [3, p. 174]), let� be the set of right cosets ofH in
G, and letχ� be the character ofC[�]. Note that neitherp = 37 norp = 67 divides the
group order|H |, and henceF37[�] andF67[�] are projectiveF37[G]- andF67[G]-modules,
respectively.

Let V be the absolutely irreducible 111-dimensional representation ofG overF5. This
was constructed in [14], and is accessible electronically from [21], as representing matrices
for a pairG = {g1, g2} of standard generators, in the sense of [20]. In [21] we also find words
in G yielding a subgroup conjugate toH . These were obtained by a random search among
the subgroups generated by an involution and an element of class 3A; see [3, p. 174]. We
find the submodule structure of the restrictionVH of V to H , using the algorithms in [13],
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Table 3: Characters, multiplicities and condensed dimensions.

χ m d

1 1 1
2 . .

3 . .

4 1 4
5 . 1
6 . 1
7 . .

8 . .

9 1 1
10 . 5
11 2 14
12 1 20
13 . 9
14 2 18

χ m d

15 . 24
16 . 16
17 . 25
18 1 32
19 . 48
20 1 47
21 1 57
22 1 57
23 1 52
24 1 56
25 1 56
26 1 56
27 1 56

χ m d

28 1 56
29 2 88
30 2 88
31 1 82
32 1 82
33 2 81
34 1 87
35 . 78
36 2 109
37 . 102
38 1 98
39 1 120
40 1 120

χ m d

41 1 120
42 1 120
43 1 120
44 . 116
45 . 110
46 1 126
47 1 133
48 1 133
49 . 140
50 . 148
51 1 151
52 1 172
53 1 196

implemented in theMeatAxe. In particular, it turns out thatVH has a simple socleS of
dimension 10. AsH < G is a maximal subgroup andG acts irreducibly onV , we conclude
thatH is the stabilizer inG of S. Thus the action ofG on the setSG of subspaces ofV is
equivalent to its action on�, and we may identify� with SG.

4.2. A condensation subgroup

As we are going to condense the permutation moduleF [�] of dimension∼109, we
need a condensation subgroup of order at least∼105 to obtain a condensed module of
a dimension small enough that its structure can be analysed using theMeatAxe. Here, a
subgroup 2.A9 ∼= K < G, having order 362 880, springs to mind. In particular,K is
contained in a maximal subgoup 2.A11 ∼= L < G, for which we also find a generating
set as words inG in [21]. Such words are found, for example, by using the method de-
scribed in [1] for finding involution centralizers. We then find standard generators forL,
which are preimages of standard generators ofA11. The latter areA11-conjugate to the
pair {(1,2, 3), (3,4, 5,6,7,8,9,10, 11)} in the natural permutation representation ofA11.
From that, generators{k1, k2} for K are found as words inG.

Using the ordinary character tables ofH , K andG, accessible inGAP, and its library
functions dealing with conjugacy class fusions and scalar products between characters, the
fusions of the conjugacy classes ofH andK into those ofG are determined, as well as the
multiplicities m of the irreducible ordinary charactersχ of G in χ�. Taking into account
the remarks in Section3.5, the dimensionsd of the condensed modules of the irreducible
ordinary representations ofG, with respect to the condensation subgroupK, can also be
computed as scalar products. The results are given in Table3. In particular, the condensed
moduleF [�]e, wheree = eK , has dimension 3207, independent of the particular choice
of F .

23https://doi.org/10.1112/S146115700000067X Published online by Cambridge University Press

https://doi.org/10.1112/S146115700000067X


Brauer trees forLy

Table 4: Definition of the conjugacy classes of Ly.

ϕ̃V ϕ̃W ϕ̃X V, overF5 W, overF3 X, overF5
1A 111 651 2480
2A −1 11 −16
3A −24 651 104 t (g) = 1
3B 3 651 −4 t (g) = 3
4A 3 −5 0
5A 111 26 −20 t (g) = 1 t (g) = 2
5B 111 1 5 t (g) = 1 t (g) = 1
6A 8 11 8 t (g) = 3 r((g − 1)2) = 426
6B −1 11 −4 t (g) = 4 r((g − 1)2) = 430
6C −1 11 2 t (g) = 4 r((g − 1)2) = 429
7A −1 0 2
8A −3 −1 0 t (g) = 2
8B 1 −1 0 t (g) = 1
9A 0 651 −1

10A −1 6 4 t (g) = 4 t (g) = 0
10B −1 1 −1 t (g) = 4 t (g) = 1
11A 1 2 b11 t (g) = 1
11B 1 2 ∗∗ t (g) = 3
12A 0 −5 0 t (g) = 0
12B −3 −5 0 t (g) = 2
14A −1 4 −2
15A −24 26 4 t (g) = 1 t (g) = 2
15B 3 26 1 t (g) = 3 t (g) = 2
15C −24 1 −1 t (g) = 1 t (g) = 1
18A 2 11 −1
20A 3 0 0
21A ∗ 0 −1 t (g) = 1
21B −b21 0 −1 t (g) = 0
22A −1 0 −b11 t (g) = 4
22B −1 0 ∗∗ t (g) = 2
24A 0 −1 0 t (g) = 0, t (g2) = 0
24B 1 + r6 −1 0 t (g) = 0, t (g2) = 2
24C ∗ −1 0 t (g) = 2, t (g2) = 2
25A 111 1 0
28A 3 2 0
30A 8 6 −2 t (g) = 3
30B −1 6 1 t (g) = 4
31A e31∗4&8&16 0 0 t (g) = 1, t (g2) = 4
31B ∗2 0 0 t (g) = 4, t (g2) = 3
31C ∗4 0 0 t (g) = 3, t (g2) = 2
31D ∗8 0 0 t (g) = 2, t (g2) = 2
31E ∗16 0 0 t (g) = 2, t (g2) = 1
33A −2 2 b11 t (g) = 1
33B −2 2 ∗∗ t (g) = 3
37A 0 4 + b37 1 t (g) = 0 t (g) = 1
37B 0 ∗ 1 t (g) = 0 t (g) = 0
40A −3 4 + r10 0 t (g) = 2 t (g) = 2
40B −3 ∗ 0 t (g) = 2 t (g) = 0
42A −3 − b21 4 1 t (g) = 2
42B ∗ 4 1 t (g) = 3
67A −1 − c67 3 − c67 1 t (g) = 1
67B ∗2 ∗2 1 t (g) = 3
67C ∗4 ∗4 1 t (g) = 4
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Table 5: The class distribution ofg3K

class #
1A 0
2A 0
3A 0
3B 0
4A 16
5A 0
5B 89
6A 4
6B 172
6C 1105
7A 2172
8A 765
8B 3776
9A 6661

class #
10A 95
10B 7092
11A 5406
11B 5496
12A 1205
12B 5067
14A 2106
15A 172
15B 3976
15C 4891
18A 20394
20A 9035
21A 8767

class #
21B 8663
22A 16387
22B 16657
24A 15173
24B 15054
24C 15194
25A 14522
28A 13023
30A 3975
30B 4088
31A 11561
31B 11660
31C 11731

class #
31D 11721
31E 11659
33A 10935
33B 11115
37A 9927
37B 9775
40A 9183
40B 9008
42A 8707
42B 8589
67A 5413
67B 5269
67C 5429

4.3. A class distribution

Later on, we shall apply the formula given in Section3.6 to the elementg3 :=
(g1g2)

3g2 ∈ G, which has order 67. We have to find the distribution of the elements
in the cosetg3K into the conjugacy classes ofG.

The conjugacy classes of cyclic subgroups ofG are defined by group-theoretic data—
that is, by element orders, centralizer orders, and normalizer orders, as can be checked in
[3, p. 174]. Words inG giving representatives for the conjugacy classes of cyclic subgroups
are accessible from [21]. For our purposes, we have to distinguish algebraically conjugate
classes. To do this, we use traces and ranks of certain elements ofZ[G] on V , as well as
traces and ranks on the absolutely irreducible 651-dimensional representationW overF3,
which was constructed in [9] and is accessible from [21], and on one of the algebraically
conjugate 2480-dimensional absolutely irreducible representationsX, X̃ overF5, which are
5-modular reductions of ordinary representations. The latter have been constructed for the
purposes of this paper, using theMeatAxe, as constituents of the exterior square ofV ; they
are also accessible from [21]. To distinguishX andX̃, we define the conjugacy class 22A

of G to be the class containing the particular element of order 22 given in [21] as a word
in G. Using this,X is the 5-modular reduction of the representation affording the ordinary
characterχ2.

The details are given in Table4, wheret andr denote the trace and the rank, respec-
tively, and where we also give the values of the corresponding extended Brauer characters
(see Section3.5) using the notation of [3]. We find the numbers of elements belonging to
the different conjugacy classes as shown in Table5; for details of the computations, see
Section5.1.

4.4. Applying condensation

We condense the elementsg1, g2 and g3, whereG = {g1, g2} is as in Section4.1,
and whereg3 = (g1g2)

3g2 ∈ G is as in Section4.3; for details of the computations, see
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Table 6: Partial information forp = 37; see Section4.5.
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Table 7: Brauer characters and condensed dimensions forp = 37.

ϕ m d

1 2 1
2 . .

3 . .

4 1 .

5 1 .

6 2 120

ϕ m d

7 2 3
8 2 117
9 2 55

10 2 65
11 2 68
12 3 52

ϕ m d

13 4 29
14 2 27
15 2 13
16 3 7
17 3 7
18 1 113

Section5.2. Note that by Section3.4 this essentially amounts to finding theaij (g) ∈ Z;
hence we do not have to specify the fieldF beforehand.

4.5. The casep = 37

The partial information on the Brauer tree known from [8, p. 268] is shown in Table6,
where{x, x′} = {2, 3}, and{a, a′, a′′, a′′′, a′′′′} = {11, . . . ,15}, and{b, b′} = {16,17}.
Hence there are 480 possible cases left. We also give labels to the edges of the Brauer tree,
for future reference. The dimensionsd of the condensed modules of the irreducible modular
representations ofG can be computed from this information; for those in the principal block
they are given in Table7, where the numbering is as given in the Brauer tree in Table6. We
also give the multiplicitiesm of the corresponding Brauer characters in the principal block
component of the permutation characterχ�. The dimensions of the condensed modules of
the representations not in the principal block, and the multiplicities of the corresponding
ordinary irreducible characters, have already been given in Table3.

We now specifyF := F37. Using theMeatAxe, the condensed moduleF [�]e, acted
on by theF -algebraF [E ] generated byE := {eg1e, eg2e, eg3e}, turns out to have the
following constituents, where we denote the constituents by their dimension and a trailing
letter, and their multiplicities by exponents:

1a2, 1b1, 3a2, 7a3, 7b3, 13a2, 18a2, 27a2, 29a4, 32a1, 47a1,

52a3, 52b1, 55a2, 57a1, 57b1, 65a2, 68a2, 87a1, 88a2, 88b2, 98a1,

109a2, 113a1, 117a2, 120a2, 126a1, 151a1, 164a1, 168a1, 196a1.
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Here the constituents 164a and 168asplit overF372 andF373, respectively, while all the
others are absolutely irreducible.

If ϕ is an irreducible Brauer character occurring inχ�, which is afforded by the simple
F [G]-moduleSϕ , then eitherSϕe is equal to{0}, or it is a simpleeF [G]e-module; see
Section3.1. But as we haveF [�]e given as anF [E ]-module only, whereF [E ] might be
strictly smaller thaneF [G]e, we can only try to determine the constituents of(Sϕe)|F [E ]
and their multiplicities. This is done by comparing the dimensions and multiplicities of the
constituents ofF [�]e found by theMeatAxe, using the data given in Tables7 and3. These
considerations show that for allSϕe 6= {0}, the restriction(Sϕe)|F [E ] is simple as well, and
that this indeed gives a bijection from the set of irreducible Brauer charactersϕ occurring
in χ�, such thatSϕe 6= {0}, and the constituents found by theMeatAxe. Furthermore, this
bijection is uniquely determined, up to the fact that it maps{ϕ16, ϕ17} to {7a,7b}.

Recall thatF [�] is a projectiveF [G]-module. By decomposingχ� into projective
indecomposable characters and using the multiplicities given in Table7, we conclude
that in a given decomposition ofF [�] into projective indecomposable summands, both
the projective coversP16 of ϕ16 andP17 of ϕ17 occur with multiplicity 1. Furthermore,
none of the other projective indecomposable summands hasϕ16 or ϕ17 as a constituent.
TheMeatAxe, together with the peakword technique described in [13], shows that there is
anF [E ]-submoduleU1 6 (P16 ⊕ P17)e of dimension 34, having a simple head and a sim-
ple socle isomorphic to 7a, and containing the constituent 7bwith multiplicity 1, and an
F [E ]-submoduleU2 6 (P16 ⊕ P17)e of dimension 134 having a simple head and a simple
socle isomorphic to 7band containing the constituent 7awith multiplicity 1. As P16e and
P17e have dimensions 34 and 134, respectively, we haveU1 ⊕ U2 = (P16 ⊕ P17)e. By the
Krull–Schmidt theorem, we conclude thatU1 ∼= (P16e)|F [E ] andU2 ∼= (P17e)|F [E ]. Thus
the above bijection mapsϕ16 to 7a andϕ17 to 7b.

We find the following tracestSϕe(eg3e) ∈ F of the action ofeg3e:

ϕ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
tSϕe 1 . . . . 10 1 36 5 9 14 19 13 20 36 25 29 6

This gives the left-hand side of the trace formula in Section3.6for the condensed modules
corresponding to theϕi . Using the class distribution found in Section4.3, we compute
the right-hand side of the formula for the remaining 480 cases. It turns out that there are
precisely two cases that are consistent with the actual traces found by theMeatAxe; these
are the Brauer tree printed in Section2.1, for which we havex = 2, and the tree obtained
by reflecting the first case at its real stem, for which we havex = 3. Hence it remains to
determine the planar embedding of the Brauer tree.

4.6. The planar embedding

We still letF := F37. As both the pairsϕ1,2 andϕ3,4 condense to the zero module, the
condensation subgroupK is not suitable for us to use to determine the planar embedding
of the Brauer tree. Instead, we use another condensation subgroupK̃ ∼= 2.(A6 × A5).2
of order 86 400, which is also contained in the maximal subgroup 2.A11 ∼= L < G, and
we repeat the steps described in Sections4.2,4.3and4.4. The condensed moduleF [�]ẽ,
whereẽ = e

K̃
, has dimension 13 257. Note that (due to this large dimension) it would not

have been feasible to analyseF [�]ẽ, instead ofF [�]e, as completely as was necessary to
find the labelling of the nodes of the Brauer tree in Section4.5.

In particular, we find thatSϕ16ẽ, Sϕ17ẽ and Sϕ18ẽ have dimensions 16, 20 and 477,
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Table 8: Partial information forp = 67, see Section4.7.

s s s s s s

s

s

s s sg s

s

s

s s s s s s s s s
1 6 c a y b

x

5−x

d 7 12 a′

7−x

2+x

22 a′′ c′ b′ 23 a′′′ d ′ a′′′′ y′

respectively, and thatSχ7ẽ andSχ8ẽ both have dimension 1, whereχ7 andχ8 denote the
37-modular reductions of the ordinary charactersχ7 andχ8; see Section3.3. Furthermore,
ẽg3ẽ acts by multiplication with 21∈ F and 26 ∈ F on Sχ7ẽ and Sχ8ẽ, respectively.
In a given decomposition ofF [�] into projective indecomposable summands,P17 occurs
with multiplicity 1, and none of the other projective indecomposable summands hasχ7
or χ8 as a constituent. Hence the constituentsSχ7ẽ andSχ8ẽ of F [�]ẽ occur with multi-
plicity 1, and are constituents of theẽF [G]ẽ-submoduleP17ẽ 6 F [�]ẽ. By the submod-
ule structure of projective indecomposable modules in blocks of cyclic defect, there is a
unique minimal submoduleU 6 P17ẽ having bothSχ7ẽ andSχ8ẽ as constituents. Fur-
thermore,U has dimension 499, and is uniserial with the ascending composition series
Sϕ17ẽ, Sϕ5ẽ, Sϕ18ẽ, Sϕ4 ẽ.

We considerF [�]ẽ as a module for theF -algebraF [Ẽ ] being generated bỹE :=
{ẽg1ẽ, ẽg3ẽ}, and we letN := kerF [�]ẽ(ẽg3ẽ − 21ẽ). TheMeatAxe finds thatN has di-
mension 1, that theF [Ẽ ]-moduleÑ := N · F [Ẽ ] 6 F [�]ẽ has dimension 499, and that
it is uniserial with the ascending composition series 20a, 1a, 477a, 1b, whereẽg3ẽ acts
by multiplication with 26 ∈ F and 21 ∈ F on 1a and 1b, respectively. Furthermore,
the MeatAxe finds that ker

F [�]ẽ/Ñ (ẽg3ẽ − 21ẽ) = {0}, and hencẽeg3ẽ − 21ẽ ∈ F [Ẽ ]
is a peakword onF [�]ẽ for the constituent 1b; see [13]. From that we conclude thatÑ

is contained inU , and henceÑ = U is an ẽF [G]ẽ-submodule ofP17ẽ. Thus we have
(Sχ7ẽ)|F [Ẽ ] ∼= 1b ∼= (Sϕ4 ẽ)|F [Ẽ ], and hencex = 2.

4.7. The casep = 67

The partial information on the Brauer tree known from [8, p. 271] is shown in Table8,
where

{x, x′} = {2, 3};
{b, b′} = {8,9};
{y, y′} = {10, 11};
{c, c′} = {13,14};
{d, d ′} = {15,16};

{a, a′, a′′, a′′′, a′′′′} = {17, . . . ,21}.
Hence there are 3840 possible cases left. We find the Brauer tree by analysingF [�]e, where
we now specify thatF = F67, using similar techniques to those described in Sections4.5
and4.6; again, we omit the details here.
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Table 9: Modified orbit algorithm.

T := [1];
for g in T do

for k in K do
h := g · k;
if h not in T then

Append h to T ;
i := 1;
while i 6 t do

h′ := h · ki ;
if h′ not in T then

Append h′ to T ;
h := h′;
i := 1;

else
i := i + 1;

5. Comments on the computations

In this section we give some details of how the computations were done. We concen-
trate on the calculations for the condensation subgroupK; see Sections4.3 and4.4. The
condensation subgroup̃K (see Section4.6) was treated similarly.

5.1. Finding the class distribution

As described in Section4.3, we have to determine how the elements of the cosetg3K

distribute into the conjugacy classes ofG. To do this, we have to compute representing
matrices for the|K| = 362 880 elements in the cosetg3K on the modulesV , W andX, and
then to compute some traces or ranks. However, to keep|K| many(2480× 2480)-matrices
overF5 in memory would require∼7.5× 1011 bytes; hence we want to obtain a reasonable
number of matrices, which have to be stored simultaneously.

Let K = {k1, . . . , kt } be a fixed generating set forK. In a precomputation, we use an
orbit algorithm to enumerate the elements ofK, starting with 1∈ K. This yields a Schreier
tree forK with respect toK, whose shape depends on the particular strategy employed in
the orbit algorithm. Given a Schreier tree, we define a valuationv on its vertices as follows. If
the vertexg is a leaf, we letv(g) = 1. Otherwise, ifg1, . . . , gs are the immediate successors
of g in the Schreier tree, we letv(g) = max{v(gi); 1 6 i 6 s} if this maximum is assumed
exactly once, andv(g) = 1 + max{v(gi); 1 6 i 6 s} if it is assumed more than once. In
the recursive run through the Schreier tree, used to find the class distribution, we are now
able at each vertex to work through the most expensive subtree last. Hence, for each matrix
representation being considered, we have to store no more thanv(1) matrices at the same
time, in addition to the representing matrices forK. Our aim is thus to find a Schreier tree
such thatv(1) is reasonably small.

To find a suitable Schreier tree, we enumerate a regularK-orbit in V , as its elements
are in bijection with the elements ofK. The algorithm that we use is a modification of
thePubCrawl algorithm presented in [16, Section 5]; see Table9. Note thatT is a list that
collects the orbit during the algorithm. New vectors are appended toT within the loop that
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runs throughT . Of course, the loop must also run through these new vectors. The idea is to
use a standard breadth-first orbit algorithm as an outer loop to run through the whole orbit,
but each time we find a new element of the orbit (that is, a new vertex of the Schreier tree),
before going on with the standard algorithm we try to attach a ‘thread’ (that is, a lengthy
path without branching points) to the corresponding vertex in the Schreier tree.

We choose the generating setK as follows. We fix a 2-Sylow subgroup̃U of K as a
helper subgroup (hence|Ũ | = 27), and we letK be the union of the generating set{k1, k2}
of K (see Section4.2) and a set of generators ofŨ . Thus we end up with a Schreier tree
such thatv(1) = 3.

As |Ũ | is coprime to the characteristics ofV , W andX, we choose bases exhibiting the
semisimplicity ofV |

Ũ
, W |

Ũ
andX|

Ũ
. As the constituents of these modules have dimension

at most 8, this considerably reduces the amount of time needed for a matrix multiplication
with one of the generators of̃U . Furthermore, using theMeatAxe and the algorithms in [13],
X|K turns out to be a direct sum of 14 indecomposable modules, the largest of which has
dimension 560. We therefore adapt the basis ofX, such that it also exhibits a direct sum
decomposition ofX|K .

Building the Schreier tree, running through the elements ofg3K, and computing the
representing matrices, traces and ranks is easily done using the new fast finite field arithmetic
of GAP, which is based on the ideas of the arithmetic of theMeatAxe. Using a Pentium III
800 processor, this needed∼60 hours of CPU time.

5.2. Applying condensation

As described in Section4.4, we want to compute the action of the elements{eg1e, eg2e,
eg3e} on the condensed moduleF [�]e, where the permutation moduleF [�] is given by the
action of{g1, g2} on the set� = SG of subspaces ofV of dimension 10; see Section4.1.
As � is not yet known, it has to be enumerated first, and we subsequently have to compute
the integersaij (g)—see3.4—for allω ∈ � andg ∈ {g1, g2, g3}. But to store a subspace
of V of dimension 10 we need 370 bytes, and thus to store the whole orbit� of length
[G : H ] we would need∼4 × 1011 bytes. Hence we can only afford to store∼1/400, say,
of the elements of�, which would fit into∼109 bytes. We use a modification of the ideas
expounded in [12].

We choose a helper subgroupU 6 K 6 G, such that its elements can be enumerated,
and objects representing their action on� can be kept in memory. The basic idea is now to
modify the standard breadth-first orbit algorithm forG, such that� is enumerated piecewise,
namelyK-orbit byK-orbit, where these are in turn enumeratedU -orbit byU -orbit, keeping
track of how theU -orbits fall intoK-orbits. Hence, forω ∈ �, we are reduced to finding
out whether we have already encountered its orbitωU and, if this is the case, finding which
it is of the orbits that have already been encountered.

To do this, we choose a helperU -set2, such that there is a homomorphismq : �|U → 2

of U -sets. Furthermore, we assume that the elements of2 can be enumerated completely.
Let {2i; 1 6 i 6 s} be theU -orbits on2. For each 16 i 6 s, we choose aminimal
elementϑi ∈ 2i (for example, by using an injective function on2 into a totally ordered
set, which is quickly evaluated on the elements of2). An elementω ∈ � is calledq-minimal
if q(ω) is minimal. It is exactly theq-minimal elements that are stored in a table during the
enumeration of the whole of�; to recover elements quickly, we of course use a hashing
technique. If we are able to find a homomorphismq such that most of the{2i} as above
are regularU -orbits, then∼1/|U| of the elements of� will be q-minimal. We shall thus
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be content in this case with a subgroupU of order|U | ∼400.
Furthermore, letκ : 2 → P (U), whereP (U) denotes the power set ofU , be defined

as follows. Forϑ ∈ 2i , we letκ(ϑ) = {u ∈ U ; ϑ · u = ϑi}, which is therefore a left
coset of StabU(ϑi) in U . Since we assume that the elements ofU and those of2 can be
enumerated, we are able to compute all the setsκ(ϑ) explicitly. If we want to check, for
someω ∈ �, whether the orbitωU has been encountered before, we try to look upω · u,
for an arbitraryu ∈ κ(q(ω)), in the table. If it is there, we have encounteredωU before; if
it is not, we store all of the elements{ω · u; u ∈ κ(q(ω))} in the table.

Having fixed the subgroupU , we try to find a suitableU -set 2. We look for U -
modulesX1 andX2, each of dimension 11, such that there are epimorphisms ofU -modules
qi : VU → Xi , and ker(q1) ∩ ker(q2) < V is of codimension 22. Let2i be the set of all
subspaces ofXi of codimension 1, and let2′

2 be the set of all proper subspaces ofX2
of codimension at least 2. As� consists of subspaces ofV of dimension 10, there is a
homomorphism ofU -setsq : � → 2 := 21 ∪ 22 ∪ 2′

2, defined byq(ω) = q1(ω) if
q1(ω) ∈ 21, andq(ω) = q2(ω) otherwise.

A simple calculation shows the reason for this choice. AsXi has dimension 11 overF5,
there are(511−1)/(5−1) ∼1.2×107 and(511−1)(511−5)/((52−1)(52−5)) ∼5×1012

subspaces ofXi of codimension 1 and 2, respectively, and even more of higher codimension.
Thus it is possible to enumerate only the subspaces ofXi of codimension 1, and hence the
above-mentioned preprocessing is done only for21 ∪ 22. By going over to the dual space
X∗

i = HomF5(Xi, F5), we need 4 bytes to store one of these subspaces ofXi , which still
requires∼9.8 × 107 bytes for the whole of21 ∪ 22. This means that all the subspaces
of V mapped byq into 21 ∪ 22 are dealt with as explained above, but those mapped into
2′

2 simply have to be stored, and so for these we save no memory at all. The memory
requirements are estimated as follows.

There are
∏9

i=0(5
111 − 5i )/(510 − 5i ) subspaces ofV of dimension 10, but of these,

only
∏9

i=0(5
111 − 5100+i )/(510 − 5i ) intersect trivially with ker(q1). Hence∼ 1/20 of

these subspaces are not mapped into21 by q1. If we assume� to consist of a uni-
formly distributed random sample of subspaces ofV of dimension 10, this amounts to
∼1/20· [G : H ] ∼5.5× 107 subspaces. To store this many subspaces, at the cost of 370
bytes each, we would need∼2 × 1010 bytes. This shows the need for a second mapq2.
Then only∼1/400 of the elements of� are expected to be mapped byq into 2′

2, which
requires∼2.7 × 106 elements or∼109 bytes, which still means that we need as much
memory for these elements of� as for itsq-minimal elements. We remark that the memory
requirements in the actual computations did indeed fit well into this picture.

Despite these serious constraints, we were lucky to find a suitable maximal subgroup
32:2A4 ∼= U < A9 ∼= K/Z(K) of order 216. It is uniquely defined up to conjugacy in
A9; see [3, p. 37]. We letZ(K) × U ∼= U < K be the preimage ofU with respect to the
natural epimorphismK → A9; hence|U | = 432. Again, we chose a basis forV exhibiting
the semisimplicity ofV |U . As the constituents ofV |U have dimension at most 16, this
considerably reduces the amount of time needed for a matrix multiplication with one of
the elements ofU . Using theMeatAxe, together with the algorithms in [13], we found
epimorphic imagesX1 andX2 of VU , whereX1 ∼= 1− ⊕ 2 ⊕ 8 andX2 ∼= 3 ⊕ 8−. Here
Z(K) acts non-trivially on the constituents 1− and 8−, and trivially on the others. HenceU
acts faithfully on bothX1 andX2, andZ(K) acts non-trivially on subspaces ofX1 andX2
of codimension 1. The average orbit length ofU on subspaces of codimension 1 turned out
to be∼405 forX1, and∼415 forX2.
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With these preparations, we accordingly adjusted the implementation described in [12],
which allows for massive parallelization. We are grateful to the University of St. Andrews
for allowing us to use their PC cluster to run these computations. Using 50 Pentium II 450
processors, the computations needed∼13 hours of elapsed time, and hence∼650 hours of
CPU time.
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