Several classes of single variable polynomials over finite fields

MARIE HENDERSON

In this thesis we investigate several well-known classes of polynomials defined over a finite field \mathbb{F}_q . We consider various properties of the Dickson polynomials, in particular the Dickson polynomials of the second kind, and the linearised and sub-linearised polynomials.

A polynomial which represents a function that permutes the elements of \mathbb{F}_q is called a permutation polynomial. We find new classes of permutation polynomials of \mathbb{F}_q which are members of the class of Dickson polynomials of the second kind (DPSK). If a=0 then the DPSK are given by $f_k(X,a)=S^k$. The permutation behaviour of these polynomials is well understood so we focus on those where $a\in\mathbb{F}_q^*$. It is shown that the permutation behaviour of the tow DPSK, $f_k(X,a)$ and $f_k(X,a')$ where $a,a'\in\mathbb{F}_q^*$ and $\eta(a)=\eta(a')$, is equivalent (here η represents the quadratic character of \mathbb{F}_q). That is to say, either both polynomials are permutation polynomials of \mathbb{F}_q or both polynomials fail to be permutation polynomials of $\mathbb{F}-q$. Various classes dependent on k,q and whether $a\in\mathbb{F}_q^*$ is a square or non-square in \mathbb{F}_q are given. Simple restrictions on those k for which the Dickson polynomial of the second kind $f_k(X,a)$ is a permutation polynomial of \mathbb{F}_q are obtained.

The composition behaviour of the linearised and sub-linearised polynomials is discussed. A connection between the composition behaviour of certain linearised and sub-linearised polynomials is established. The question of which linearised and sub-linearised polynomials are indecomposable over \mathbb{F}_q is examined. An application of these results to cryptography is then developed. Cryptosystems based on both the linearised and sub-linearised polynomials are introduced. The security of the systems is discussed briefly.

School of Information Technology The University of Queensland Queensland 4072 Australia e-mail: marie@it.ug.edua.u

Received 15th October, 1997

Thesis submitted to The University of Queensland, March 1997. Degree approved, July 1997. Supervisor: Dr. R. Matthews, Dr. K. Matthews and Dr G. Havas.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/98 \$A2.00+0.00.