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Abstract

Background. Attention deficit and hyperactivity disorder (ADHD) and autism spectrum dis-
order (ASD) are child-onset neurodevelopmental disorders frequently accompanied by cogni-
tive difficulties. In the current study, we aim to examine the genetic overlap between ADHD
and ASD and cognitive measures of working memory (WM) and attention performance
among schoolchildren using a polygenic risk approach.
Methods. A total of 1667 children from a population-based cohort aged 7–11 years with data
available on genetics and cognition were included in the analyses. Polygenic risk scores (PRS)
were calculated for ADHD and ASD using results from the largest GWAS to date (N = 55 374
and N = 46 351, respectively). The cognitive outcomes included verbal and numerical WM
and the standard error of hit reaction time (HRTSE) as a measure of attention performance.
These outcomes were repeatedly assessed over 1-year period using computerized version of
the Attention Network Test and n-back task. Associations were estimated using linear
mixed-effects models.
Results. Higher polygenic risk for ADHD was associated with lower WM performance at
baseline time but not over time. These findings remained significant after adjusting by mul-
tiple testing and excluding individuals with an ADHD diagnosis but were limited to boys. PRS
for ASD was only nominally associated with an increased improvement on verbal WM over
time, although this association did not survive multiple testing correction. No associations
were observed for HRTSE.
Conclusions. Common genetic variants related to ADHD may contribute to worse WM per-
formance among schoolchildren from the general population but not to the subsequent cog-
nitive-developmental trajectory assessed over 1-year period.

Introduction

Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are
complex neurodevelopmental disorders that emerge during childhood (Lord, Elsabbagh,
Baird, & Veenstra-Vanderweele, 2018; Thapar & Cooper, 2016). Several aspects are common
to both conditions including early onset, delays and alterations in brain development, a male
preponderance and cognitive difficulties (Visser, Rommelse, Greven, & Buitelaar, 2016).

In this regard, cognitive performance of individuals with ADHD has been found to be con-
sistently lower compared to controls for several domains such as working memory (WM) or
variability in reaction time (RT), which reflects attentional lapses (Karalunas, Geurts, Konrad,
Bender, & Nigg, 2014; Pievsky & McGrath, 2018). Remarkably, cognitive performance has
been related to later symptom severity and functional outcomes among ADHD patients in
a longitudinal study (van Lieshout et al., 2017). Furthermore, cognitive deficits are related
to ADHD symptoms beyond clinical status. In a population-based sample study, inattention
symptoms were related to deficits in WM (Tillman, Eninger, Forssman, & Bohlin, 2011). In
the case of ASD, although some individuals exhibit cognitive strengths in certain domains
(Iuculano et al., 2014), impairments have been reported in functions such as WM or attention
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(Boxhoorn et al., 2018; Karalunas et al., 2018; Velikonja, Fett, &
Velthorst, 2019; Willcutt, Sonuga-Barke, Nigg, & Sergeant, 2008).

Family and twin studies indicate that common familial/genetic
factors are underlying these cognitive functions, ADHD and pos-
sibly ASD (Cheung, Fazier-Wood, Asherson, Rijsdijk, & Kuntsi,
2014; Frazier-Wood et al., 2012; Michelini et al., 2018). In line
with these findings, it has been suggested that cognitive difficul-
ties, social-communication behavioral traits and ADHD symp-
toms are underpinned at a biological level, which may involve
genetic variants related to these disorders (Martin, Hamshere,
Stergiakouli, O’Donovan, & Thapar, 2015). This can be examined
by computing polygenic risk scores which index genetic suscepti-
bility for a given disorder (Wray et al., 2014). Polygenic risk scores
can then be used to assess shared genetic influences across differ-
ent traits (Choi et al., 2020).

So far, a few studies have used polygenic risk scores to inves-
tigate the potential genetic overlap between ADHD and ASD
and cognitive deficits (Clarke et al., 2016; Du Rietz et al., 2018;
Schork et al., 2019; Stergiakouli et al., 2017). A study investigating
polygenic risk for ASD and ADHD in a large population-based
sample found that ASD-related variants may confer cognitive
advantages, while the polygenic risk for ADHD did not show a
consistent pattern of results for the cognitive domains analyzed
(Clarke et al., 2016). Another study also found evidence suggest-
ing that polygenic risk for autism is related with better perform-
ance in executive function (N = 417) but these findings were not
replicated in an independent sample (N = 3681) (Schork et al.,
2019). Other studies in children, adolescents and adults showed
negative associations between polygenic risk for ADHD and cog-
nitive and school performance (Du Rietz et al., 2018; Martin et al.,
2015; Stergiakouli et al., 2017). Thus, it is still not clear whether
the manifestation of polygenic risk for these neurodevelopmental
conditions involves cognitive deficits in population-based sam-
ples. Furthermore, none of these studies investigated attention
performance, a core aspect of ADHD (Barkley, 1997).

In the current study, we examined whether polygenic risk for
ADHD and ASD was associated with baseline and 1-year
cognitive-developmental trajectories of measures of WM and
attention performance among school-aged children from the gen-
eral population.

Material and methods

Study population

Participants were drawn from the BREATHE project (European
Commission: FP7-ERC-2010-AdG, ID 268479), a population-
based cohort of primary school-aged children designed to analyze
associations between air pollution and behavior, cognitive abilities
and brain structure and function. A full description of the project
is available elsewhere (Sunyer et al., 2015). The project was con-
ducted in 39 schools in or near Barcelona (Spain). All families
of children without special needs who were enrolled in second,
third and fourth grades at the selected schools were invited to par-
ticipate in the study. A total of 2897 children participated in the
project for which genotype data was available in 1667 children
of European ancestry.

All parents or legal guardians gave written informed consent,
and the study was approved by the IMIM-Parc de Salut Mar
Research Ethics Committee (No. 2010/41,221/I), Barcelona,
Spain; and the FP7-ERC-2010-AdG Ethics Review Committee
(268,479–22,022,011).

Cognitive measures

The outcomes of the study were WM and attention performance.
WM was assessed using the n-back task (Nelson et al., 2000). A
full description of the task can be found in Methods S2. Briefly,
in the n-back task, a series of stimuli are presented individually
at the center of the screen. Participants were required to monitor
those items and indicate whenever the stimulus matched the one
presented 1, 2 or 3 stimuli back, also known as back loads. Here,
we used numbers and words as stimuli in the 3-back level and we
calculated d prime (d′) as an indicator of WM accuracy. These
measures, 3-back numbers d′ and 3-back words d′ were treated
in the analysis as indicators of verbal and numerical WM
performance when using words and numbers, respectively, as
stimuli. These measures were analyzed as continuous variables.
Higher d′ scores indicated more accuracy and thus, better
performance.

Attention performance was assessed using the computerized
version of the Attention Network Test [ANT, (Rueda et al.,
2004)]. A full description of the test can be found in Methods
S1. Briefly, reaction time measures (i.e. the time between the
introduction of a stimulus and the reaction on the subject to
that stimulus) were used to calculate the different outcomes that
can be obtained with the ANT. The outcome analyzed herein cor-
responds to the hit reaction time standard error (HRTSE) (stand-
ard error of reaction time for correct responses), a measure of
intraindividual variability reflecting response speed and consist-
ency throughout the test. HRTSE was analyzed as a continuous
variable with lower scores indicating better performance.

The participants completed these tests repeatedly through four
different sessions (every 3 months) over 1 year. We used these
four repeated measures to model the 1-year developmental trajec-
tories of verbal and numerical WM and HRTSE. The modeled
1-year trajectory may include 1–4 repeated measures of the cog-
nitive measures based on available data.

Behavioral measures

To validate the PRS in our cohort, behavioral data were used to
test the association between the PRS and the phenotype.
Behavioral measures were obtained at the beginning of the
cognitive data collection (visit 1, baseline). ADHD symptoms
were assessed using a questionnaire based on the ADHD diagnos-
tic criteria described in Diagnostic and Statistical Manual of
Mental Disorders 4th edition [DSM-IV (American Psychiatric
Association., 2002)], and was completed by teachers. The
ADHD-DSM-IV questionnaire consists of a list of 18 symptoms,
assessing two separate symptom groups: inattention (nine symp-
toms) and hyperactivity/impulsivity (nine symptoms). Each
ADHD symptom is rated on a 4-point frequency scale from
never or rarely (0) to very often (3). The ADHD symptom
score ranges from 0 to 54, with higher scores indicating more
symptoms. ASD symptoms were not collected in this project.

Genotyping

DNA samples were obtained from saliva and genome-wide geno-
typing was performed using the HumanCore BeadChipWG-
330-1,101 (Illumina). A full description of the genotyping and
quality control procedures is available elsewhere (Alemany
et al., 2016) and summarized in Methods S3.
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Polygenic scoring

Genotyped data that passed quality control were used to compute
PRS using PRSice (Euesden, Lewis, & O’Reilly, 2015). PRSice cal-
culates individual polygenic scores by summing up all the SNP
alleles carried by the participants weighted by the SNP allele effect
size estimated in a previous GWAS. PRS based on five different p
value thresholds (PT) for SNP inclusion PT = {0.01, 0.05, 0.1, 0.5,
1} were calculated for each disorder. Polygenic scoring was per-
formed in clumped variants (representative genetic variants per
linkage disequilibrium block) using r2 > 0.1 as a cut-off for LD
independent markers in a 250-kb window. This means that
SNPs with the smallest p value in each 250 kb window is retained
and all those in LD (r2 > 0.1) with these SNPs are removed. All
PRS were standardized to a mean of 0 and a standard deviation
of 1. The number of variants included in the PRS for each PT
can be found in online Supplementary Table S1.

PRS were based on the most recent ASD and ADHD GWAS.
The ASD GWAS included 46 351 individuals (18 382 cases) of
European ancestry and 9 112 387 SNPs (Grove et al., 2019). The
ADHD GWAS included 53 293 individuals (19 099 cases) of
European ancestry and 8 047 421 SNPs (Demontis et al., 2019).

Statistical analysis

The final data included 1667 children with complete data on PRS,
verbal WM (N = 1504, representing 6130 observations), numer-
ical WM (N = 1490, representing 6100 observations) and
HRTSE (N = 1487, representing 6177 observations) (Fig. 1). Of
these, 80% had data on at least three of the four repeated assess-
ments. To validate the PRS, we tested the association between the
PRS and the behavioral manifestation of ADHD. We estimated
the associations between PRS for ADHD across all significance
thresholds and the behavioral measure using linear mixed-effects
models with the school as nested random effect. A total of 1555
individuals were included in these analyses.

We tested the cross-sectional association between polygenic
risk for ADHD (PRS-ADHD) and ASD (PRS-ASD) and cognitive
measures using linear mixed-effects models with the school as a
nested random effect. These associations were tested using the
cognitive outcomes assessed at baseline. The baseline measures
correspond to those obtained in visit 1 when participants com-
pleted the cognitive tasks for the first time.

In the validation and cross-sectional analysis, we included
schools as nested random effects to account for the multilevel
nature of the data (i.e. children within schools).

We analyzed the association between PRS-ADHD and
PRS-ASD and changes in cognitive measures repeatedly assessed
over 1-year period (1-year trajectories) using linear mixed-effects
models with individual children nested within schools as random
effects. An interaction between age (centered at visit 1) at each
visit and the PRS was included to capture changes in 1-year tra-
jectory associated with polygenic risk for ADHD or ASD as
shown below.

Ysit = b0 + b1PRS+ b2(Aget − Age1)+ b3(Aget − Age1)∗PRS
+b4Sex + b5PC1+ b6PC2+ b7PC3+ b8PC4+ us
+vi(s) + 1sit

where Ysit is the test score of the cognitive measure for the indi-
vidual i in school s at visit t, t = {1,2,3,4}; us is random effects at

the school level, vi(s) is random effects associated with individual
i in school s and ϵsit is the model residuals. Only participants with
data on at least two visits (representing around 85% of the sam-
ple) were included in the analyses of 1-year trajectories. Thus,
the modeled 1-year trajectory may include two–four repeated
measures of the cognitive outcomes per individual. Of note,
around 73% of the participants have data for the four visits.
Previous research in the BREATHE entire sample (n = 2897)
have shown age-related growth patterns on both WM and ANT
measures over the 1-year period (López-Vicente et al., 2016;
Suades-González et al., 2017). These findings suggest that the
repeated measures through the year were capturing developmental
trajectories where the accuracy of the tasks improved with age.
These trajectories are likely to reflect cognitive maturation pro-
cesses rather than practice effects because no important differ-
ences were observed in the median scores of children at same
age assessed in different sessions (López-Vicente et al., 2016;
Mollica, Maruff, Collie, & Vance, 2005).

Because ADHD and ASD present higher prevalence among
boys (Lord et al., 2018; Polanczyk, De Lima, Horta, Biederman,
& Rohde, 2007), we explored PRS interaction by sex by fitting
an interaction term in each model. Stratified models by sex are
presented when significant interactions between PRS and sex
were detected.

In addition, we performed sensitivity analyses, in which we
excluded individuals with ADHD diagnosis made by a medical
doctor. Clinical status of other psychiatric disorders was not col-
lected in the study.

In all models, PRS were the determinant and cognitive mea-
sures were the outcome. Cognitive measures included verbal
and numerical WM and HRTSE. All models were adjusted by
sex, age and the first four genetic principal components. One
model for each PT was constructed.

Effect sizes were reported as beta coefficients throughout the
results. Baseline and trajectory analysis were corrected for mul-
tiple testing across all PRS, generated at five different significance
thresholds, tested for association with three cognitive outcomes
using the false discovery rate (FDR) method (Benjamini &
Hochberg, 1995). Results at p uncorrected <0.05 were considered
nominally significant and results at p FDR<0.05 were considered
statistically significant.

All statistical analyses were conducted using the R statistical
software (version 3.6.0).

Results

Descriptive results

Descriptive characteristics of the subjects included in the analyses
are presented in Table 1. The mean age of the sample was 8.5 ±
0.9 years old, 46.9% were female and 61.4% of the mothers have
higher education (Table 1). In comparison with the participants
of the BREATHE project for whom genetic data were not available
(n = 1230), children who were included were significantly more
likely to be male and presented better verbal and numerical
WM performance as well as less HRTSE. Regarding behavioral
measures, children included had lower inattention and total
ADHD symptoms. There were no significant differences in
terms of age or hyperactivity symptoms (online Supplementary
Table S2). Boys performed better for numerical WM and
HRTSE measures and presented higher total ADHD, inattention
and hyperactivity symptoms (online Supplementary Table S3).
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Online Supplementary Fig. S1 shows the correlations between
cognitive measures in each visit and online Supplementary Fig. S2
summarizes the correlations between the PRS for ADHD and
ASD. Measures within each domain (i.e. WM and HRTSE)
were positively correlated across the four visits. WM and
HRTSE measures were negatively correlated, which indicates
that better performance in the first domain (high d′) is related
to better performance in the second (low HRT-SE).

Validation using behavioral measures

Polygenic risk for ADHD was positively associated with ADHD
symptoms total score and hyperactivity at all significance thresh-
olds. Positive associations between polygenic risk for ADHD and
inattention were observed at all significance thresholds but were
not significant at PT <0.01 (online Supplementary Table S4).

Cross-sectional association between PRS and cognitive
performance

PRS for ADHD were negatively associated with verbal WM across
all significance thresholds with the strongest association observed
at PT = 1 (β =−0.086, 95% CI = −0.139, −0.033; p-uncorrec. =
0.002, p-FDR = 0.026) (Table 2). All the associations remained
significant after FDR-correction except for the association with
PT = 0.05. Associations between PRS for ADHD and numerical
WM were also negative and nominally significant at all

significance thresholds except at PT <0.01. Only the association
between PRS for ADHD at PT <0.05 survived FDR-correction
(β =−0.078, 95% CI =−0.131, −0.025; p-uncorrec. = 0.004,
p-FDR = 0.028).

Polygenic risk for ASD did not show significant associations
with WM measures. Although not significant, a consistent pattern
of results was observed suggesting positive associations between PRS
for ASD and verbal and numerical WM performance (Table 2).

No significant associations were found between PRS for
ADHD or ASD and HRTSE (Table 2).

Significant interactions between PRS for ADHD and sex were
observed on verbal ( p value for interaction for PT <0.5 and PT <1
were 0.028 and 0.039, respectively) and numerical WM ( p value
for interaction for PT <0.01 and PT <0.05 were 0.038 and 0.028,
respectively) indicating that negative associations between PRS for
ADHD and WM measures were stronger among boys (online
Supplementary Table S5). Stratified results revealed that significant
associations were limited to boys (online Supplementary Table S5).

Association between PRS and cognitive performance over
1-year period

No significant associations at p-FDR<0.05 were observed between
PRS for ADHD or ASD and WM or HTRSE measures modeled as
1-year trajectories (Table 3).

A nominally significant association was observed between PRS
for ASD at PT < 1 and verbal WM (β = 0.041, 95% CI = 0.004,

Fig. 1. Flow chart depicting the final sample size for the outcomes analyzed including hit reaction time (HRT-SE) of ANT as a measure of HRTSE and d′ values from
the 3-back task with words and numbers as stimuli as measures of WM. Solid lines and boxes represent individuals remaining in the study, dashed lines and boxes
represent individuals excluded. Reason and number of individuals excluded are indicated in dashed boxes.
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0.077; p-uncorrec. = 0.032, p-FDR = 0.497) suggesting that higher
polygenic load for ASD is related to increased cognitive growth
over the 1-year period (online Supplementary Fig. S3).
Individuals with higher polygenic risk for ASD would improve
faster than individuals with lower loads.

No significant interactions by sex were detected (online
Supplementary Table S6).

Sensitivity analysis

Similar results were observed after excluding 174 children with an
ADHD diagnosis (online Supplementary Table S6). Specifically,
PRS for ADHD were negatively nominally associated with verbal
WM performance (d′) assessed at baseline across all significance
thresholds. At all significance thresholds, these associations
remained significant following FDR-correction except at PT <
0.05. The strongest association was observed at PT = 0.05 (β =
−0.086, 95% CI =−0.139, −0.033; p-uncorrec. = 0.002, p-FDR =
0.026). Nominally significant associations were also observed
with numerical WM performance (d′) for all significance thresh-
olds except PT < 0.01. Of these, one association survived
FDR-correction (β =−0.078, 95% CI =−0.131, −0.025;
p-uncorrec. = 0.004, p-FDR = 0.028) (online Supplementary
Table S7).

As previously observed in the sample including children with
ADHD diagnosis, PRS for ASD did not show significant associa-
tions with WM measures and no significant associations were
observed between PRS for ADHD or ASD and HRTSE (online
Supplementary Table S7).

Discussion

In the current study, we examined the genetic overlap between
ADHD and ASD and cognitive abilities among school-aged chil-
dren from the general population. We found that polygenic risk
for ADHD was associated with worse WM performance. These
associations were observed at baseline assessments but not over
time. In contrast, PRS for ASD did not show significant

associations with any of the cognitive measures analyzed at base-
line. Only a nominal association was observed between PRS for
ASD and increased cognitive growth in verbal WM over time,
although this association did not survive FDR-correction. The
exclusion of individuals diagnosed with ADHD from the analyses
did not change meaningfully these findings. No associations were
observed for HRTSE.

As expected, the polygenic risk for ADHD was positively asso-
ciated with ADHD symptoms total score, inattention and hyper-
activity. The association between polygenic risk for ADHD and
hyperactivity and inattention was very similar in strength and
magnitude. These findings provide additional support for a
dimensional conceptualization of ADHD with genetic factors
operating through the distribution of the trait (Larsson,
Anckarsater, Råstam, Chang, & Lichtenstein, 2012).

In our study, PRS for ADHD were associated with worse base-
line WM performance which is in line with previous studies
reporting negative associations between polygenic risk for
ADHD and cognitive measures. In the Avon Longitudinal Study
of Parents And Children population-based birth cohort, negative
associations were found between the PRS for ADHD and intelli-
gence and WM (N = 6832) (Martin et al., 2015). Also, PRS for
ADHD were related with worse educational outcomes (lower
scores obtained in national examinations) among children (N =
5748) and low intelligence quotient (IQ) scores among adoles-
cents (N = 4958) from the general population (Stergiakouli
et al., 2017). Another study conducted in three cohorts, the
Generation Scotland Scottish Family Health Study (N = 9863),
the Lothian Birth Cohorts 1936 and 1921 (N = 1522), and the
Brisbane Adolescent Twin Sample (BATS) (N = 921), did not
show consistent results regarding the associations between poly-
genic risk for ADHD and cognitive outcomes, but a negative asso-
ciation was observed with IQ at age 11 years in the Lothian Birth
Cohorts (Clarke et al., 2016). A more recent study based on a
large sample of adult individuals drawn from the UK Biobank
Study (N = 135 726) found that verbal-numerical reasoning
scores, a cognitive measurement related to IQ, decreased with
increasing polygenic load for ADHD (Du Rietz et al., 2018).
Remarkably, in this last study, summary statistics used to compute
PRS were the same used in the current study. Therefore, our find-
ings extend previous results suggesting a genetic overlap between
ADHD and worse WM performance during childhood.

Interestingly, when stratifying by sex, we observed that the det-
rimental effects of ADHD polygenic risk on WM performance at
baseline were limited to boys. This is in contrast with previous
studies that did not find evidence for differential sex-effects (Du
Rietz et al., 2018; Stergiakouli et al., 2017). Another study
observed sex-differential effects for PRS for ADHD on WM
assessed at age 8 years but limited to girls (Martin et al., 2015).
Our results may be explained by the higher prevalence of
ADHD symptoms observed among boys in our sample, which
is in agreement with the literature (Polanczyk et al., 2007).
Although the reasons underlying the higher rates of childhood
ADHD among boys remain unclear, recent research indicates
that the genetic variants related to ADHD largely overlap between
boys and girls (Martin et al., 2018). Nevertheless, an alternative
explanation for our findings regards the possibility that genetic
susceptibility for ADHD indexed using PRS operates via different
mechanisms in boys and girls.

Considering all the above findings, genetic risk variants for
ADHD may have pleiotropic effects in closely related cognitive
domains. These pleiotropic effects may arise from common

Table 1. Characteristics of the sample

Characteristic Study sample (n = 1667)

Sex (female), n (%) 782 (46.9)

Age (years), mean (S.D.) 8.5 (0.9)

Cognitive measures

Verbal WM, mean (S.D.)a 1.4 (1.0)

Numerical WM, mean (S.D.)a 1.3 (1.0)

HRTSE, mean (S.D.) 267.2 (88.0)

Behavioral measures

ADHD symptom scores, mean (S.D.) 7.7 (9.4)

Inattention, mean (S.D.) 4.6 (5.6)

Hyperactivity, mean (S.D.) 3.1 (4.9)

NOTE: ADHD total symptoms score, teacher-reported attention deficit hyperactivity disorder
symptoms where higher scores indicate more symptoms. HRTSE, standard error of the hit
reaction time obtained from the Attentional Network Test, higher scores indicate worse
attention performance. WM, working memory performance (d’ values) from the 3-back task
of the n-back test with words (Verbal) and numbers (Numerical) as stimuli, higher values
indicate better WM.
aBaseline (visit 1).
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genetic variants influencing both ADHD symptoms and cogni-
tion, reflecting horizontal or biological pleiotropy; or genetically
influenced mechanisms may lead to one trait that influences the
other, also known as vertical or mediated pleiotropy (Hemani,
Bowden, & Davey Smith, 2019). Furthermore, detecting these
associations in population-based samples, even after excluding
clinical cases, suggest that the association between genetic risk
for ADHD and worse WM performance is independent of clinical
status.

To our knowledge, this study is the first study to examine the
association between polygenic risk for ADHD and ASD on 1-year
cognitive-developmental trajectories. The interest in studying
1-year trajectories was exploring whether polygenic risk for
ADHD and ASD was related to cognitive changes over this

period. While we have observed that overall all children improve
their performance from the first to the last time that they com-
plete the task, there is substantial interindividual variation in
the speed (whether improvement occurs in the first or last visits)
and magnitude (difference in the score from first to the last visit)
of this improvement (López-Vicente et al., 2016; Suades-González
et al., 2017). However, our significant findings were largely lim-
ited to baseline assessments of WM performance. This is largely
in line with a previous study conducted in the entire BREATHE
sample (N = 2897), reporting worse WM performance at baseline
but similar cognitive growth trajectories for individuals with and
without ADHD diagnosis for tasks with numbers as stimuli
(López-Vicente et al., 2016). However, López-Vicente et al.
observed differences in WM trajectories for verbal tasks between

Table 2. Association results between polygenic risk scores (PRS) for attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) with
cognitive measures at baseline adjusting by age, sex and the first four genetic principal components

Outcome PRS N Beta coefficient (95% CIs) p-uncorrec. p-FDR ΔR2

Verbal WM (d′) (n = 1504) ADHD PT < 0.01 1504 −0.08 (−0.129; −0.028) 0.003 0.018 0.005

PT < 0.05 1504 −0.058 (−0.108; −0.007) 0.026 0.105 0.003

PT < 0.1 1504 −0.077 (−0.128; −0.026) 0.003 0.018 0.005

PT < 0.5 1504 −0.08 (−0.131; −0.03) 0.002 0.018 0.006

PT < 1 1504 −0.081 (−0.132; −0.03) 0.002 0.018 0.006

ASD PT < 0.01 1504 −0.01 (−0.062; 0.042) 0.701 0.980 0.000

PT < 0.05 1504 0.012 (−0.039; 0.063) 0.645 0.980 0.000

PT < 0.1 1504 0.02 (−0.03; 0.071) 0.431 0.980 0.000

PT < 0.5 1504 0.003 (−0.048; 0.054) 0.904 0.980 0.000

PT < 1 1504 0.002 (−0.049; 0.053) 0.941 0.980 0.000

Numerical WM (d′) (n = 1490) ADHD PT < 0.01 1490 −0.039 (−0.089; 0.011) 0.124 0.371 0.001

PT < 0.05 1490 −0.076 (−0.127; −0.026) 0.003 0.018 0.006

PT < 0.1 1490 −0.06 (−0.111; −0.01) 0.019 0.096 0.004

PT < 0.5 1490 −0.055 (−0.105; −0.005) 0.033 0.110 0.003

PT < 1 1490 −0.057 (−0.107; −0.006) 0.028 0.105 0.003

ASD PT < 0.01 1490 −0.001 (−0.052; 0.049) 0.963 0.980 0.000

PT < 0.05 1490 −0.012 (−0.062; 0.039) 0.653 0.980 0.000

PT < 0.1 1490 0.008 (−0.042; 0.058) 0.754 0.980 0.000

PT < 0.5 1490 −0.001 (−0.051; 0.05) 0.980 0.980 0.000

PT < 1 1490 0.006 (−0.045; 0.056) 0.829 0.980 0.000

HRTSE (n = 1487) ADHD PT < 0.01 1487 0.400 (−3.742; 4.542) 0.850 0.980 0.000

PT < 0.05 1487 0.823 (−3.336; 4.981) 0.699 0.980 0.000

PT < 0.1 1487 −0.174 (−4.359; 4.010) 0.935 0.980 0.000

PT < 0.5 1487 −0.404 (−4572; 3.765) 0.850 0.980 0.000

PT < 1 1487 −0.453 (−4.625; 3.718) 0.832 0.980 0.000

ASD PT < 0.01 1487 −2.044 (−6.245; 2.157) 0.341 0.931 0.001

PT < 0.05 1487 −1.597 (−5.734; 2.54) 0.450 0.980 0.001

PT < 0.1 1487 −0.114 (−4.245; 4.017) 0.957 0.980 0.000

PT < 0.5 1487 −0.057 (−4.181; 4.066) 0.978 0.980 0.000

PT < 1 1487 −0.231 (−4.367; 3.905) 0.913 0.980 0.000

NOTE: PT, significance threshold for inclusion of variants in the polygenic score; CI, confidence interval; p-uncorr., uncorrected p value; p-FDR, false discovery rate adjusted p value; ΔR2,
difference between the R2 of the full model (PRS + covariates) compared to the R2 of the model including only covariates.
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children with and without an ADHD diagnosis. Our results sug-
gest that genetic risk variants for ADHD may be underlying the
observed worse WM performance at baseline, but they are not
related to variability in 1-year cognitive-developmental trajector-
ies. In other words, in our study, children with a higher genetic
risk for ADHD showed worse performance the first time they
were tested, but these variants do not influence the subsequent
improvement in WM development during 1-year follow-up.
Although we cannot rule out practice effects (Mollica et al.,
2005), the improvement in WM tasks through childhood and
adolescence is thought to be an age-dependent process underlined
by brain maturation (Moriguchi et al., 2015; Tamnes et al., 2013;
Vuontela et al., 2003).

Regarding HRTSE the lack of significant associations with this
domain may be related to findings indicating that PRS for ADHD

are more strongly related with hyperactivity than inattention
symptoms (Brikell et al., 2020; Martin, Hamshere, Stergiakouli,
O’Donovan, & Thapar, 2014; Sudre et al., 2019; Vuijk et al.,
2019). However, this was not the case for our sample where we
found similar associations between PRS for ADHD and hyper-
activity and inattention symptoms. Indeed, as it has been previ-
ously stated (Sudre et al., 2019), WM and other cognitive
abilities such as intelligence have been shown to be genetically
correlated with ADHD (Martin et al., 2014; Savage et al., 2018).
However, up to our knowledge, genetic correlation or overlap
between ADHD and attentional measures at a molecular level
remains to be established.

In our study, the polygenic risk of ASD was not significantly
associated with any of the cognitive measures analyzed. Only a
nominal association was observed between polygenic for ASD

Table 3. Association results between polygenic risk scores (PRS) for attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) with
cognitive 1-year trajectories adjusting by age, sex and the first four genetic principal components

Outcome PRS N Beta coefficient (95% CIs) p-uncorrec. p-FDR ΔR2

Verbal WM (d′) ADHD PT < 0.01 4684 0.005 (−0.032; 0.042) 0.786 0.870 0.00001

PT < 0.05 4684 0.002 (−0.034; 0.039) 0.899 0.916 0.00000

PT < 0.1 4684 −0.006 (−0.043; 0.031) 0.751 0.867 0.00003

PT < 0.5 4684 −0.008 (−0.045; 0.029) 0.658 0.867 0.00006

PT < 1 4684 −0.007 (−0.044; 0.031) 0.729 0.867 0.00003

ASD PT < 0.01 4684 0.007 (−0.031; 0.044) 0.724 0.867 0.00003

PT < 0.05 4684 0.024 (−0.013; 0.06) 0.209 0.722 0.00045

PT < 0.1 4684 0.021 (−0.016; 0.058) 0.265 0.722 0.00035

PT < 0.5 4684 0.036 (−0.001; 0.072) 0.056 0.722 0.00113

PT < 1 4684 0.041 (0.004; 0.077) 0.030 0.722 0.00146

Numerical WM (d′) ADHD PT < 0.01 4668 0.008 (−0.029; 0.045) 0.680 0.867 0.00003

PT < 0.05 4668 0.016 (−0.021; 0.053) 0.398 0.859 0.00017

PT < 0.1 4668 0.014 (−0.023; 0.051) 0.470 0.859 0.00013

PT < 0.5 4668 0.01 (−0.027; 0.048) 0.588 0.859 0.00006

PT < 1 4668 0.01 (−0.027; 0.047) 0.602 0.859 0.00006

ASD PT < 0.01 4668 0.015 (−0.022; 0.053) 0.418 0.859 0.00019

PT < 0.05 4668 0.024 (−0.013; 0.061) 0.206 0.722 0.00047

PT < 0.1 4668 0.022 (−0.015; 0.059) 0.249 0.722 0.00039

PT < 0.5 4668 0.029 (−0.008; 0.066) 0.128 0.722 0.00072

PT < 1 4668 0.031 (−0.006; 0.068) 0.097 0.722 0.00085

HRTSE ADHD PT < 0.01 4646 0.886 (−3.72; 4.56) 0.595 0.859 0.00017

PT < 0.05 4646 2.872 (−2.1; 6.161) 0.081 0.722 0.00150

PT < 0.1 4646 2.105 (−2.211; 6.066) 0.205 0.722 0.00085

PT < 0.5 4646 1.723 (−1.924; 6.407) 0.304 0.759 0.00060

PT < 1 4646 1.986 (−2.202; 6.113) 0.236 0.722 0.00075

ASD PT < 0.01 4646 0.95 (−7.558; 0.522) 0.565 0.859 0.00007

PT < 0.05 4646 0.173 (−7.078; 1.2) 0.916 0.916 −0.00002

PT < 0.1 4646 0.394 (−6.066; 2.099) 0.812 0.870 −0.00001

PT < 0.5 4646 −0.917 (−4.955; 3.117) 0.577 0.859 0.00013

PT < 1 4646 −1.105 (−5.364; 2.764) 0.501 0.859 0.00018

NOTE: PT, significance threshold for inclusion of variants in the polygenic score; CI, confidence interval; p-uncorr., uncorrected p value; p-FDR, false discovery rate adjusted p value; the R2 of
the full model (PRS + covariates) compared to the R2 of the model including only covariates.
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and increased cognitive growth in verbal WM over time suggest-
ing that common genetic variants related to ASD may be related
to better cognitive performance on this domain. This agrees with
previous findings from the abovementioned studies by Clarke and
colleagues in three cohorts and findings in one of the samples
analyzed in Schork and colleagues (Clarke et al., 2016; Schork
et al., 2019). In these studies, a higher polygenic risk for ASD
was associated with better cognitive functioning. Thus, although
not significant, our results at baseline and over time show a dir-
ection consistent with previous findings. The fact that they were
not significant may not be only related to sample size since this
association was significant in a smaller sample in the study by
Schork et al. (2019). Further research is needed to elucidate
which are the effects of genetic variants related to ASD on
cognition.

Our results should be interpreted in the context of several
strengths and limitations. One of the strengths of the study
regards the obtention of cognitive measures using computerized
tests which reduces the examiner bias. Also, we used well-powered
GWAS to compute PRS, a key aspect to increase the accuracy of
the PRS (Choi et al. 2020). Among the limitations, first, our
study has a relatively small sample (N = 1667). It has been pointed
out that a target sample of around 2000 subjects provides sufficient
power to detect a significant proportion of variance explained,
which is slightly larger than our sample (Marees, Stringer, Claire,
& Derks, 2018). Second, ASD symptoms were not available, thus
we were not able to confirm that PRS for ASD were capturing
this phenotype in our sample. Third, children included in the
study presented better cognitive performance compared to excluded
children which might have resulted in underestimated associations
between PRS for ADHD and cognition. Finally, polygenic scores
typically explain only a small proportion of the total phenotypic
variance of complex traits (Wray et al., 2014).

To conclude, common genetic variants related to ADHD may
be, at least partially, underlying cognitive deficits among school-
aged children regarding WM performance. These associations
were limited to baseline assessment suggesting that polygenic
risk for ADHD is not associated with 1-year trajectories of cogni-
tive development. Our findings suggest that genetic risk variants
for ADHD may have pleiotropic effects in WM, a closely related
neurodevelopmental domain in the context of ADHD. Further
research is needed to characterize the neurobiological mechan-
isms underlying the genetic overlap between ADHD and WM.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291720003189.
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