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Abstract. One-to-one correspondences are established between the set of all nondegenerate graded
Jacobi operators of degree�1 defined on the graded algebra 
(M) of differential forms on a smooth,
oriented, Riemannian manifold M , the space of bundle isomorphisms L:TM!TM , and the space
of nondegenerate derivations of degree 1 having null square. Derivations with this property, and
Jacobi structures of oddZ2-degree are also studied through the action of the automorphism group of

(M).
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Introduction

Let M be a smooth manifold, and let 
(M) be its graded algebra of differential
forms. In this note we center our attention on the graded differential operatorsD of
order 6 2 acting on 
(M), that define a graded Poisson structure on this algebra
through the bracket they generate in the sense of [Kz]. These are called graded
Jacobi operators. A Jacobi operator is nondegenerate if its corresponding Poisson
structure is nondegenerate. We determine here all the nondegenerate Jacobi oper-
ators of degree �1 by establishing a one-to-one correspondence between them,
and bundle isomorphismsL:TM!TM (Thm. 2.3). This is done through an inter-
esting duality defined, amongst the differential operators on 
(M), by the Hodge
operator associated to a Riemannian metric (Thm. 1.4). As a by-product, a rela-
tionship is established between graded Jacobi operators and differentials on 
(M);
that is, derivations whose square is zero (Thms. 1.8, and 2.2). We also describe
all the nondegenerate differentials, and all the nondegenerate Jacobi operators of
odd Z2-degree in terms of the action of the automorphism group of the algebra

(M) (Thm. 3.4): It is shown that the former are obtained as ' � d � '�1 (Prop.
2.4), whereas the latter as ' � � � '�1 (Prop. 3.1), where ' is an automorphism of

(M) restricting to the identity on C1(M) = 
0(M), and � is the codifferential
associated to a given Riemannian metric. We exhibit two main families of non-
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44 J.V. BELTRÁN ET AL.

degenerate graded Jacobi operators parametrized respectively by nondegenerate
bivectors, and by Riemannian metrics on M (Prop. 4.3). We finally compute the
Hamiltonian vector fields associated to the generators of the algebra 
(M) for
these families of examples (Prop. 4.4).

1. Graded Jacobi operators on 
(M)

Let M be a smooth manifold of dimension n, and let 
(M) =
Ln

k=0 

k(M) be

its Z-graded algebra of differential forms. An R-linear operator D:
(M)!
(M)
is said to be of degree jDj if D(�) 2 
k+jDj(M), for all � 2 
k(M). It is not
difficult to see that End
(M) =

Ln
k=�n Endk 
(M), where Endk 
(M) is the

subspace of linear operators of degreek. LetF andG be two linear operators having
degrees jF j, and jGj, respectively. Their graded commutator is the linear operator
defined by [F;G] = F �G� (�1)jF j jGjG � F . A linear operator D 2 End
(M)
is a differential operator of order 0 if for any � 2 
(M), [D;��] = 0, where
�� 2 End
(M) denotes the linear operator of left multiplication by �. Note that
� 2 
k(M) defines via �� a differential operator of degree k and order 0, and all
such operators are precisely of this form. Now D 2 End
(M) is a differential
operator of order 6 r, iff for each � 2 
(M), [D;��] is a differential operator
of order 6 r � 1. We shall write [D;�] instead of [D;��] when no confusion
may arise. We shall denote by Dkr (M) the set of all differential operators of order
6 r which have degree k. We shall also refer ourselves to the Z2-graded structures
of both, the algebra 
(M), and the 
(M)-submodules �kD

k
r (M). These are

naturally inherited from their correspondingZ-gradings. We fix the convention that
a reference to an element of ‘odd degree’ is to be understood with respect to its
inherited Z2-graded structure: Therefore, it will be a sum of elements of every
possible odd Z-degree, unless stated otherwise.

DEFINITION 1. ([Kz]). Let D be a differential operator of order 6 2, of odd
degree, and such that D(1) = 0. The bracket on 
(M) generated by D is:

[[�; �]]D = (�1)j�j(D(� ^ �)�D(�) ^ � � (�1)j�j� ^D(�)):

Remark. Let D and D0 be two differential operators of order 6 2, and odd
degree, with D(1) = D0(1) = 0. It is easy to see that [[ ; ]]D = [[ ; ]]D0 if and only
if D � D0 2 D�

1(M); that is, if and only if they differ by some derivation. This
defines an equivalence class of operators. In this work we shall only be interested
in the equivalence classes obtained in this manner. A reference to the ‘equivalence
classes of operators’, shall always mean these equivalence classes.

From the work in [Gr] on abstract Jacobi structures we adopt the following
terminology (we refer the reader to [BM2] for the basics on graded Poisson struc-
tures):

DEFINITION 2. Let D be a differential operator of order 6 2 and odd degree,
such that D(1) = 0. D is a graded Jacobi operator if its associated bracket, [[ ; ]]D ,
is a graded Poisson bracket on 
(M).
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The first step in understanding the structure of graded Jacobi operators is the
following characterization given by Koszul

PROPOSITION 3. ([Kz]). Let D be a differential operator of order 6 2, of odd
degree, and such that D(1) = 0. Then D is a graded Jacobi operator if and only
if D2 = D �D is in fact a differential operator of order 6 2.

Remark. Observe that D�
�(M) = �k

�
[rD

k
r (M)

�
has the structure of an asso-

ciative R-algebra, and also the structure of a (left) 
(M)-module. Both structures
are filtered by the order and graded by the degree. The graded commutator satisfies,

[Dkr (M);D`s(M)] � Dk+`r+s�1(M):

Note that a differential operator D like in the proposition above, satisfies D2 =
1
2 [D;D], and it is, in general, a differential operator of order 6 3. This explains
the strength of Proposition 3, and the methods of this paper provide a criterion for
deciding whether or not D2 2 D

�2
2 (M) when D 2 D�1

2 (M). This is possible by
letting Riemannian metrics come into the description of differential operators; a fact
that was already used in [BM1] to obtain a decomposition theorem for operators in
D�1

2 (M). Here we exploit the duality relationship between differential operators
of different orders and degrees established by the Hodge operator. This however,
requires the manifold M to be orientable. The precise statement is the following

THEOREM 4. Let M be an oriented Riemannian manifold of dimension n, and
let � 2 End
(M) be the Hodge operator defined by the Riemannian metric g on
M . The map D 7! �D, where �D = (�1)(2p�k�1)k=2 ��1 �D � �j
p(M), restricts to

a one-to-one correspondence between Dkr (M), and D�k
k+r(M) for all k + r > 0.

Proof. Since � maps 
`(M) into 
n�`(M), it is easy to check directly that
the degree of the operator �D is �k, whenever the degree of D is k. The nontrivial
assertion is that the order of �D is 6 k + r when D is of order 6 r. This, however,
can be proved by induction on r+ k. The actual source of the induction process is
found in the following Lemma. In the course of its proof, use is made of the fact
that any differential operator of order r and degree�r on 
(M) is uniquely of the
form iQ for some Q 2 �(�rTM); that is, it is given by total contraction against
Q. Indeed: Let D 2 D�r

r (M) (r > 1). Then, [D; f ] = 0 for any f 2 C1(M),
and D(�) = 0 for all � 2 
s(M), with 0 6 s 6 r � 1. In particular, D is
tensorial and it is completely determined by its value on r-forms. Let � 2 
r(M).
Since the elements of D�

�(M) are local operators, the map � 7! D(�) 2 
0(M)
defines a unique Q 2 �(�rTM), such that D(�) = iQ�. (The notation iQ is
explained as follows: Let �(TM) be the C1(M)-module of vector fields on M .
Each X 2 �(TM) defines a differential operator of order 1 and degree �1 on

(M); namely, the contraction iX against X . The fact that iX � iX = 0 yields a
uniqueC1(M)-linear extension of i to�(�TM), and iX1^���^Xr = iX1� � � � � iXr ,
on generators).
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LEMMA 5. Let � 2 End
(M) be the Hodge operator defined by a given
Riemannian metric g on the orientedn-dimensional manifoldM . Let�� 2 D1

0(M),
and iX 2 D

�1
1 (M) be the differential operators defined by multiplication by

� 2 
1(M), and contraction against X 2 �(TM), respectively. Then,

(�1)k�1 ��1 ��� � �j
k(M) = ig](�); (�1)k ��1 �iX � �j
k(M) = �g[(X);

where g]:�(T �M)!�(TM), and g[:�(TM)!�(T �M) are the natural isomor-
phisms associated to g.

Proof of the Lemma. Let �g 2
n(M) be the volume form associated to the
Riemannian metric g. Let � be a k-form. By definition, the Hodge operator on

(M) is given by �� = (�1)k(k�1)=2i� �g, where i� is defined through the metric
g�1 on 
(M), via g�1(i� �; �) = (�1)k(k�1)=2g�1(�; �� �), and � fixed by the
property, ��g = 1. Since, g�1(�; g[(X) ) = �(X) = iX � = g(g](�);X) for
any 1-form �, and vector field X , and since g�1 is defined on 
(M) through a
determinant, one verifies in a straightforward fashion that the map � 7! i� � is a
derivation of degree�1, whenever� 2 
1(M), and that it is actually equal to ig](�).

Since g] and g[ are extended to�(�T �M)!�(�TM), and�(�TM)!�(�T �M)
as algebra isomorphisms, it also follows that i� = ig](�) 2 D

�k
k (M) for any k-form

�, and that ig](�)  = (�1)k(k�1)=2g( g](�); g]() ) for any �, and  2 
k(M).
We now compute the commutator [�; i� ]. This is a differential operator of

degree �(k � 1) and order 6 k � 1. Therefore, it is of the form iQ, where Q is a
multivector of degree k � 1. We claim that Q = g](i��) (= g](ig](�) �) ). In fact,
Q is completely determined by the value of [�; i� ] on a k � 1 form , but,

[�; i� ] = �(�1)ki�(� ^ ) = �(�1)kig](�)(� ^ )

= �(�1)k+(k(k�1)=2)g(g]�; g](� ^ ))

= �(�1)k(k+1)=2g�1(ig](�)(�); )

= �(�1)k(k+1)=2g (g](ig](�)(�) ); g
]() )

= �(�1)(k(k+1)+(k�1)(k�2))=2ig](i
g](�)

(�) ) ()

= �(�1)k
2�k+1ig](i

g](�)
(�) ) ()

= ig](i
g](�)

(�) ) ();

which proves our claim. Finally,

��1 � � � �(�) = (�1)k(k�1)=2 ��1 �� � i� (�g)

= (�1)k(k�1)=2 ��1 �[�; i� ] (�g)
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= (�1)k(k�1)=2 ��1 � ig](i
g](�)

(�) ) (�g)

= (�1)k�1ig](�)(�):

Thus, (�1)k�1 ��1 �� � �j
k(M) = ig](�). The second assertion is now a conse-
quence of this one, and the well known formulae for � � � (cf, [Lh]). 2

We may now conclude the proof of Theorem 4: The first step in the induction
process corresponds to k + r = 0, since the degree k of a differential operator is
always greater than or equal to �r; r being the order. Now, use the fact that any
differential operator of order6 r and degree�r is given by total contraction against
some r-vector, Q 2 �(�rTM). Then, the lemma implies that conjugation of the
operator iQ by the Hodge operator yields, up to a sign, the operator of multiplication
by the r-form g[(Q). Therefore, D 2 D�r

r (M), does imply, �D 2 Dr0(M), where
�D = (�1)(2p+r�1)r=2 ��1 �D ��j
p(M). (Similarly, the lemma implies that for any
� 2 
`(M), we have (�1)(2(n�p)+`�1)`=2 � �� � ��1j
p(M) = ig]�).

Now, let s be a natural number greater than 0. We suppose by induction
that the following statement holds true: If D 2 Dkr (M), with k + r 6 s then,
�D 2 D�k

k+r(M). Let D 2 Dkr (M) with k + r = s + 1. We claim that [ �D;�] 2

D`�kk+r�1(M), whenever � 2 
`(M). Indeed, this commutator is equal (up to a
sign) to ��1 � [D; ig](�)] � �, since, acting on 
p(M),

[ �D;�]

= (�1)(2p�k�1+2`)k=2(��1 �D � � � �� � � ��1 �D � �)

= (�1)(2p�k+`�1)(k�`)=2(��1 �D � ig](�) � � � (�1)`k ��1 �ig](�) �D � �
�

= (�1)(2p�k+`�1)(k�`)=2 ��1 �[D; ig](�)] � �:

Now, ig](�) belongs to D�`
` (M). This implies that, [D; ig](�)] 2 D

k�`
r+`�1(M).

Applying now the induction hypothesis (as, (k� `)+(r+ `�1) = k+r�1 = s),
we conclude that [D; ig](�)] is a differential operator of order6 k+r�1 and degree

`�k. Therefore, [ �D;�] 2 D`�kk+r�1(M) as claimed. Whence, �D 2 D�k
k+r(M)which

follows from the definition of the order of a differential operator. 2

Remark. The duality established in the Theorem 4 between differential operators
makes D�(r�1)

r (M) to correspond in a one-to-one fashion with Dr�1
1 (M). In

particular, the well-known decomposition theorem for derivations of degree k

(Thm. 6, below) gives rise – via conjugation by � – to a decomposition theorem for
differential operators of order 6 1 + k and degree �k. We recall that D�

1(M) =
�k��1D

k
1 (M) is a graded Lie submodule of D�

�(M) (since, [Dk1 (M);D`1(M)] �

Dk+`1 (M) ), and that D�
1(M) ' Der 
(M)�
(M) (indeed: given D 2 Dk1 (M),

for any homogeneous �, and � in 
(M), one has
�
[D;�]; �

�
= 0. Using this, it
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easily follows that D � D(1) 2 Der 
(M). The summand 
(M) in D�
1(M) is

precisely D�
0(M)).

THEOREM 6. ([FN]). Let Derk 
(M) be the subspace of Endk 
(M) consisting
of derivations of degree k (k > �1). For each D2Derk 
(M) there exist unique
TM -valued forms K 2 
k+1(M ;TM), and L 2 
k(M ;TM), such that, D =
iK + [iL; d].

Remark. One observation to be made from this decomposition is that the operator
[iL; d] is not tensorial, and it is completely characterized by the fact that it commutes
with d; i.e.,

�
[iL; d]; d

�
= 0. We adhere ourselves to the now standard notation

LL for the derivation [iL; d] (the generalized Lie derivative with respect to L 2


(M ;TM)), and call it the nontensorial part of D.

The next result follows now as an easy consequence of Theorems 4 and 6.

PROPOSITION 7. There exists a one-to-one correspondence,

8><
>:

Equiv. Classes
of Operators in

D�1
2 (M)

9>=
>;  !

8><
>:

Data:
K 2 
2(M ;TM)

L 2 
1(M ;TM)

9>=
>; :

In fact, givenD 2 D�1
2 (M), there exist uniqueTM -valued formsK 2 
2(M ;TM),

and L 2 
1(M ;TM) ' �(EndTM), such that,

D = (�1)n�p(� � iK � ��1 + � � LL � �
�1)j
p(M) (mod Der�1
(M)):

Proof. From Theorem 6, and the remark immediately above it, we see that a
differential operator fromD1

1(M) can be uniquely written in the form iK+LL+��.
Theorem 4 says that an isomorphism is established between D1

1(M) and D�1
2 (M)

upon conjugation by �. Therefore, for each D 2 D�1
2 (M), there exist unique

K 2 
2(M ;TM), L 2 
1(M ;TM), and � 2 
1(M), such that, (�1)p ��1 �D �

�j
p(M) = iK + LL + �� 2

We are now in position of determining when does an operatorD2D�1
2 (M) has

the property of being Jacobi. Note that,

D2 = �
�
� � (iK + LL + ��) � �

�1�2
j
p(M)

= � � �(iK + LL)
2 � ��1j
p(M) (modD�2

2 (M));

whereas,

�(��1 �D � �)2j
p(M) = (iK + LL)
2 (modD2

0(M)):
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THEOREM 8. Under the correspondence of Proposition 7, the differential oper-
ator D 2 D�1

2 (M) is a graded Jacobi operator if and only if the derivation
iK + LL 2 Der1
(M) it comes from, has null square.

Proof. Supose D2D�1
2 (M) is Jacobi. Then, D2 2D�2

2 (M) implies � ��1

�D2��j
p(M) 2 D
2
0(M). Therefore, (iK+LL)

2 2 D2
0(M)must be (multiplication

by) a 2-form. But (iK+LL)2 is a derivation, since it is equal to 1
2 [iK+LL; iK+LL].

Therefore, (iK + LL)
2 = 0. The converse is trivial. 2

2. Relationship with differentials of 
(M)

This section collects some properties of nondegenerate differentials defined on

(M) and their relationship with nondegenerate graded Jacobi operators. The main
conclusion to be drawn is that there exist one-to-one correspondences between
nondegenerate graded Jacobi operators, bundle isomorphisms TM!TM , and
nondegenerate differentials of 
(M).

DEFINITION 1. An odd derivation D, with no component of Z-degree �1, is a
nondegenerate differential of 
(M) if D2 = 0, and for any coordinate system
(U; fxig) the system of differential forms fDxig generates 
(U).

Our next result characterizes the nondegenerate differentials of 
(M) having
Z-degree 1:

THEOREM 2. There is a one-to-one correspondence between nondegenerate dif-
ferentials of Z-degree 1 and bundle isomorphisms L:TM!TM .

Proof. Given a bundle isomorphism L:TM!TM , we consider L�:T �M!

T �M , and its extension to an algebra isomorphism 
(M)!
(M) (still denoted
by L�). The conjugation L� � d � (L�)�1 of the exterior differential is clearly a
nondegenerate differential of Z-degree 1. We now show that this correspondence
is one-to-one. The injectivity is obvious. To prove the surjectivity, let D be any
nondegenerate differential of Z-degree 1, and write it in the form D = iK + LL
where, K 2 
2(M ;TM), and L 2 
1(M ;TM). The nondegeneracy of the
differential implies that L defines a bundle isomorphism. Use this isomorphism to
get L� � d � (L�)�1. Note that the derivation D � L� � d � (L�)�1 acts on smooth
functions as zero: Indeed,

(D � L� � d � (L�)�1) f = LL(f)� L�(df) = df � L� L�(df) = 0:

This now implies that (D � L� � d � (L�)�1)(Df) = 0 for any f 2 
0(M) =
C1(M). Since D is nondegenerate, it follows that D � L� � d � (L�)�1 vanishes
on generators of 
(U) for any open coordinate neighborhoodU . Since derivations
are local operators, we conclude that D = L� � d � (L�)�1. 2
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50 J.V. BELTRÁN ET AL.

Remark. Note that the derivation L� � d � (L�)�1, according to the Frölicher–
Nijenhuis decomposition, is given by:L� � d � (L�)�1 = LL+ i�(1=2)L�1�[L;L]FN

,
where [L;L]FN stands for the Frölicher–Nijenhuis bracket of L with itself (cf.
[FN]). This follows, since the value of L� � d � (L�)�1 on a smooth function f is
L�(df) = LLf . Thus, writing the differential as iK + LL, one may easily obtain
the conditions needed to satisfy (iK + LL)

2 = 0: They are,

(a)
1
2 [L;L]FN + iKL = 0 and;

[L;K]FN + 1
2 [K;K]RN = 0;

where now [K;K]RN stands for the Richardson–Nijenhuis bracket ofK with itself
(cf. [NR]). Now, when L 2 
1(M ;TM) ' �(EndTM) is a bundle isomorphism,
the first equation fully determines K as,

K(X;Y ) = � 1
2L

�1([L;L]FN (X;Y ))

= �L�1[LX;LY ] + [LX; Y ] + [X;LY ]� L[X;Y ];

and, the second equation in (a) always holds for such a K .

As it was mentioned in the introduction, a graded Jacobi operatorD 2 D�1
2 (M)

is nondegenerate whenever the graded Poisson structure it defines on 
(M) is
nondegenerate. In view of this remark, Proposition 1.7, and Theorem 2 above, we
may now conclude the following

THEOREM 3. There exists a one-to-one correspondence between (equivalence
classes of) nondegenerate graded Jacobi operators D of degree �1, and bundle
isomorphisms, L:TM!TM .

In the following section we shall indicate how an alternative proof of this fact
may be obtained. We shall close this section, however, by looking at the action of
the automorphism group of the algebra 
(M) on the nondegenerate differentials
of odd degree

PROPOSITION 4. Let D be a nondegenerate differential of 
(M) of odd degree.
Then, there exists an algebra isomorphism ' 2 Aut 
(M), that restricts to the
identity on C1(M) = 
0(M), and such that D = ' � d � '�1.

Proof. The derivation D can be uniquely written as D1 + D>3, where D1

is a derivation of degree 1 and D>3 = D � D1. Condition D2 = 0 implies
D2

1 = 0. Nondegeneracy of D implies nondegeneracy of D1. Therefore D1 is a
nondegenerate differential of 
(M) of degree 1 and then D1 = L�1 � d � (L�1)

�1,
where L1 2 
1(M ;TM) is an isomorphism. Note that the composition (L�1)

�1 �

D � L�1 is a derivation of the form d+D3 +D>5, and its square is zero. Also note
that D3 satisfies [d;D3] = 0. Therefore, D3 is a derivation of the form LL3 where
L3 2 
3(M ;TM). Now, it is easy to check that exp(�iL3) � (d +D3 +D>5) �
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exp(iL3) = d+D5 +D>7. By repeating this process we get, after a finite number
of steps, that if ' = exp(iL`) � � � � � exp(iL3) � L

�
1, then ' � d � '�1 = D. 2

3. Jacobi operators under the action of Aut
(M)

The aim of this section is to complete our description of the graded Jacobi operators
by proving the following analog of Proposition 2.4.

PROPOSITION 1. Let M be an oriented Riemannian manifold, and let g be its
metric tensor. Let � be the Hodge operator associated to g, and let � = (�1)n�p �
�d���1j
p(M) be its corresponding codifferential operator. Given a nondegenerate
graded Jacobi operator D, there exists an automorphism ' of the algebra 
(M),
such that ' restricts to the identity on 
0(M) = C1(M), and D = ' � � � '�1

(mod Der
(M)).

The proof of this result makes use of some graded-geometry techniques. Since
nondegenerate Jacobi operators come from nondegenerate graded Poisson brackets
of odd degree, which in turn come from graded symplectic forms on 
(M) of odd
degree, the problem can be traced down to the structure of the latter. This was
understood in [BM2] by looking first at the graded symplectic structures of Z-
degree +1 (i.e., graded Poisson brackets of Z-degree�1), and studying afterwards
their orbits under the Z2-graded automorphisms of the algebra 
(M)

PROPOSITION 2. ([BM2: Prop. 3.3 and Cor. 3.4]). There is a one-to-one corre-
spondence between graded symplectic forms of Z-degree +1 and bundle isomor-
phisms L:T �M!TM .

Remark. Note how our previous Theorem 2.3 can also be recovered as a corollary
of this result, with L = L � g[. A few more comments about this Proposition are in
order: First of all, graded symplectic forms of odd degree on 
(M) are necessarily
exact. This is a consequence of the fact that the cohomology defined by the graded
exterior differential is isomorphic to the cohomology of the base manifold. It is in
this way that a bijective correspondence is set between graded symplectic forms
on 
(M) of degree +1, and bundle isomorphisms L:T �M!TM : Any graded
symplectic form of Z-degree +1 can be written as !L = dG�L, where �L is the
graded 1-form of degree +1 defined by the linear isomorphism L:T �M!TM

(that graded 1-forms of degree +1 are in one-to-one correspondence with bundle
isomorphisms T �M!TM , is easy). The Z2-graded description is then completed
by looking at the orbits through the graded symplectic form !L, under the action
of the group of Z2-graded algebra automorphisms of 
(M)

PROPOSITION 3. ([BM2]). Any graded symplectic form on 
(M) of odd Z2-
degree is of the form '�(!L), where' is an automorphism that induces the identity
on M .
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Thus, any nondegenerate graded Poisson structure (resp., Jacobi operator) of
odd Z2-degree is reached from a graded Poisson structure (resp., Jacobi operator)
ofZ-degree�1, by the corresponding action of Aut
(M). Therefore we conclude
the following

THEOREM 4. Any nondegenerate graded Jacobi operator is the conjugation by
an automorphism of 
(M) that induces the identity on M , of a nondegenerate
graded Jacobi operator of degree�1.

Proof. Let D be a nondegenerate graded Jacobi operator. Its nondegenerate
odd Poisson bracket is associated to an odd graded symplectic form !D, which is
of the form '�(!L), and !L is the graded symplectic form of Z-degree 1 defined
by a linear isomorphism L:T �M!TM ; ' being an automorphism of 
(M) that
induces the identity on M . Let D�1 be the graded Jacobi operator of degree �1
corresponding to L = L � g]. Then, it is easy to check that D = ' � D�1 � '

�1

and,

[[�; �]]D = '
�
[['�1(�); '�1(�)]]D

�1

�
: 2

We may now give the proof of Proposition 1

Proof of Proposition 1. According to Theorem 4, there exists an automorphism
' of 
(M), restricting to the identity on 
0(M), such that, '�1 �D �' = D�1 is
a graded Jacobi operator of degree �1. By Theorem 2.3 its class defines a unique
bundle isomorphism L:TM!TM . By Theorem 2.2, the operator L� � d � (L�)�1

is a nondegenerate differential of 
(M), andD�1 = (�1)n�p � �L� � d � (L�)�1 �

��1j
p(M), by Theorem 1.4. We may then consider the isomorphism �L� : 
(M)!


(M) defined by means of �L� = � � L� � ��1, so that,

D = ' �D�1 � '
�1 = ' � ((�1)n�p � �L� � d � (L�)�1 � ��1j
p(M)) � '

�1

= ' � �L� � � � (�L�)�1 � '�1:

Whence,D = '0���'0
�1, where,'0 = '��L�, and � = (�1)n�p��d���1j
p(M).2

4. Main examples of Jacobi operators

From [Kz], and [BM1], we know that a good source of nondegenerate graded Jacobi
operators is found amongst the nondegenerate Poisson bivectors P 2 �(�2TM);
namely, such a P yields the Jacobi operator D = LP 2 D

�1
2 (M). To exhibit this

family of general examples we need to recall the following alternative decomposi-
tion for differential operators from D�1

2 (M).

PROPOSITION 1. Let M be an oriented Riemannian manifold, and let g be its
metric tensor. Let � be the Hodge operator associated to g, and let � be its cor-
responding codifferential operator. If D 2 D�1

2 (M) is a differential operator on
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(M), then there exist unique sectionsP 2 �(�2TM),Q 2 �g-sym(T �M
TM),
C 2 �(T �M 
 �2TM), and X 2 �(TM), such that,

D = LP + �Q + iC + iX ;

where �Q = [iQ; �], and �g-sym(T �M 
 TM) is the space of TM -valued 1-forms
Q satisfying g(Q(X); Y ) = g(X;Q(Y )).

Proof. For any f 2 C1(M), [D; f ] 2 D�1
1 (M); i.e., it is, a derivation of degree

�1. Thus, [D; f ] = iHf
for some vector fieldHf 2 �(TM) depending on f . In fact,

it depends on df because the mapC1(M) 3 f 7! Hf 2 �(TM) is easily seen to be
a derivation; i.e.,Hfh = fHh+hHf . This follows by applying [[[D; f ]; h]; �] = 0,
for any � 2 
(M), and any f; h 2 
0(M), as D 2 D�1

2 (M). So we write
Hf = Ĥdf , and the map �(T �M) 3 df 7! Ĥdf 2 �(TM) defines a section L

Ĥ
2

�(TM 
 TM), by letting L
Ĥ
(df ; dh) = df(Ĥdh). Conversely, each section L 2

�(TM 
 TM) uniquely defines a C1(M)-linear map HL:�(T �M)!�(TM),
through HL

df = L(df ; ), where L(df ; )h = L(df ; dh).
Now givenL 2 �(TM
TM), we may decompose it in the formL = Ls+La,

where Ls 2 �(S2TM), and La 2 �(�2TM). Now, Ls is used to construct

a g-symmetric endomorphism Q = L
(g)
s 2 �(EndTM), for a given Riemannian

metric g, by letting�(L(g)
s (X)) = Ls(g(X; );�), for any 1-form�. It follows that

g(L
(g)
s (X); Y ) = g(X;L

(g)
s (Y )). Now consider the operatorD0 = D�LLa��L(g)

s
,

where LLa = [iLa ; d], and �
L
(g)
s

= [i
L

(g)
s
; �] for the codifferential operator �

associated to g. Thus, P = La, and Q = L
(g)
s . A straightforward computation

shows that D0 is C1(M)-linear, so it is uniquely of the form iC + iX for some
C 2 �(T �M 
 �2TM), and some X 2 �(TM). 2

Given an isomorphism L:TM!TM , and a Riemannian metric g on M as
in Section 1, we shall write L = L � g]:T �M!TM . Since, each Jacobi operator
D 2 D�1

2 (M) defines a Poisson bracket [[ ; ]]D on
(M) of degree�1, we may now
relate our results in Section 2 and Section 3, with the Poisson brackets previously
studied in [BM2] (see also [Kr]). We therefore start with the following

DEFINITION 2. Let L:�T �M!�TM be the algebra isomorphism defined by
the universal extension of the bundle isomorphism L : T �M!TM . The Poisson
bracket of degree �1 on 
(M), [[ ; ]]L, associated to L is defined by,

[[�; �]]L = �L�1� [L(�);L(�)]SN �;
for �; � 2 
(M). Here [ ; ]SN , denotes the Schouten-Nijenhuis bracket on multi-
vectors.

To further explicit the correspondence between the isomorphisms L and graded
Jacobi operators D of degree �1, we compare the brackets [[ ; ]]L and [[ ; ]]D. In
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particular, from Definition 2 above we may compute its value on functions and on
exact 1-forms

[[f; h]]L = 0; [[df; h]]L = �dh(L(df));

[[df; dh]]L = �L�1� [L df;L dh]
�
;

for f; h 2 C1(M). These fromulae completely determine [[ ; ]]L on 
(M). On
the other hand, Definition 1.2 yields:

[[f; h]]D = 0;

[[df; h]]D = �D(h df) + hD(df);

[[df; dh]]D = �(D(df ^ dh)�D(df)dh+D(dh) df);

for f; h 2 C1(M). Now, to establish the desired correspondence note that the
following formula completely determines L when D is known

L(df ; dh) = df(L(dh)) = [[f; dh]]L = [[f; dh]]D

= D(f dh)� fD(dh) = [D; f ](dh):

That is, Ĥdf = L�(df) = df � L is the unique vector field such that i
Ĥdf

= [D; f ]

(see the proof of Prop. 1 above). Conversely, if L is a linear isomorphism, then the
corresponding differential operator of degree �1 and order 6 2 is determined by
the following conditions: First, for any smooth function f ,

(b) [D; f ] = [[f; ]]D = [[f; ]]L = iL�(df):

This determines the nontensorial part of D, and therefore, its value on 1-forms
(see the proof of Prop. 1 above). The value of D on 2-forms is determined by the
formula

(c)

�(D(df ^ dh)�D(df) dh+D(dh) df)

= [[df; dh]]D

= [[df; dh]]L = �L�1� [L df;L dh]
�
:

Now, it is very easy to check that the bracket generated by D is in fact the graded
Poisson bracket that L defines because they agree on generators.

Since an isomorphism L:T �M!TM defines a tensor fieldL 2 �(TM
TM),
we may now obtain two main classes of nondegenerate graded Jacobi operators:
those associated to linear isomorphisms T �M!TM coming from symmetric ten-
sor fields g 2 �(S2TM); i.e., Riemannian metrics on M , and those coming from
skew-symmetric tensor fields P 2 �(�2TM); i.e., nondegenerate bivectors (not
necessarily Poisson bivectors!). We shall denote by P:T �M!TM the linear iso-
morphism corresponding to P .
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PROPOSITION 3. Under the correspondence between nondegenerate graded
Jacobi operators of degree �1 and linear isomorphisms T �M!TM , we have:

(1) A Riemannian metric g 2 �(S2TM) corresponds to the Jacobi operator
� �g , where �g is the codifferential associated to g.

(2) A nondegenerate bivector P 2 �(�2TM) corresponds to the Jacobi oper-
ator LP + iC , where C 2 �(T �M 
�2TM) is determined by the condition

[P; P ]SN = �2C(P ; ; ):

Proof. (1) According to Proposition 1, a symmetric tensor L 2 �(TM 
 TM)
gives rise to a differential operator of the form D = �Q+ iC for some Riemannian
metric g and a g-symmetric tensorQ 2 �(T �M
TM) ' �(End TM). In fact,D
and L are related by [D; f ] = iL�df , where, L(�; �) = �(L�) for �; � 2 
1(M).
Since L is symmetric and nondegenerate, it defines a Riemannian metric. So
we choose g so that L(�; �) = g�1(�; �). Now, Proposition 1 says that Q is
defined through �(Q(X)) = L(g(X; ); �). So, our choice of g immediately
implies Q(X) = X . That is, �Q = �Id = [iId; �

g ]. In particular, the value of
D = [iId; �

g] + iC on exact 1-forms is

D(df) = [iId; �
g ](df) + iC(df) = ��g(df);

where we have used the fact that iC(df) = 0, iId(df) = df , and iId(h) = 0 for any
smooth functions f , and h. On the other hand, using eqn. (c) above, we know what
the value of D on 2-forms df ^ dh has to be

D(df ^ dh) = D(df)dh� dfD(dh) + L�1� [L df;L dh]
�

= ��g(df) dh+ df�g(dh) + g[([g](df); g](dh)])

= ��g(df ^ dh);

where in the last step we have used the formula (see for example [Va]):

(d) �g(� ^ �) = �g(�) ^ � + (�1)p� ^ �g(�)� g[([g]�; g]�]SN );

for � 2 
p(M). We therefore conclude that, D = ��g since they both coincide
on 1-forms and 2-forms, thus proving (1).

(2) Similarly, skew-symmetric tensors produce differential operators of the form
D = LP + iC for some bivectorP , and some^2TM -valued 1-formC . The graded
Poisson bracket associated to D is determined by

[[f1; f2]]D = 0; [[df1; f2]]D = P (df2; df1);

[[f1; df2]]D = P (df2; df1); [[df1; df2]]D = dP (df2; df1)� C( ; df2; df1);
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for f1; f2 2 C1(M). Let us suposse that D is Jacobi. Then it comes from the
linear isomorphism L determined by (b). Then,

[[f1; df2]]D = df2P(df1) = P (df2; df1) = df1
�
�P(df2)

�
= [[f1; df2]]�P;

and it follows that L = �P. In particular, P is nondegenerate. Also note that

(e) dP (df2; df1)� C( ; df2; df1) = P�1� [P df1;P df2]
�
:

Both sides are differential forms of degree 1. Computing their value on a vector
field of the form P(df3), we obtain the desired condition

[P; P ]SN (df3; df1; df2) = �2C(P df3; df1; df2):

On the other hand, if P is a skew-symmetric, nondegenerate section of �2TM ,
and,

[P; P ]SN (df3; df1; df2) = �2C(P df3; df1; df2)

for all smooth functions f1; f2; f3, then [[ ; ]]D = [[ ; ]]�P, because both brackets
yield the same value on generators. Therefore, [[ ; ]]D is a graded Poisson bracket,
since [[ ; ]]�P is; whence D is a graded Jacobi operator. 2

The following proposition now computes some Hamiltonian graded vector fields
associated to the graded Poisson brackets of our main examples of graded Jacobi
operators. Note that it suffices to compute Hamiltonian fields for 0-forms and exact
1-forms, since any other Hamiltonian graded vector field may then be computed
using the graded derivation property of the Poisson bracket [[ ; ]]D .

PROPOSITION 4. Let D be a nondegenerate graded Jacobi operator of degree
�1.

(1) If D is of the form LP + iC for some bivector P , andC is its corresponding
^2TM -valued 1-form, then,

[[f; ]]D = iPdf ; [[df; ]]D = LPdf � iC( ; ;df);

for any f 2 C1(M). Moreover, if 
 is the differential 2-form associated to the
nondegenerate bivector P , then,

[[
; ]]D = d + ieC ;
where eC 2 
2(M ;TM) is defined by eC(X;Y ;�) = 1

2 [P; P ]SN (P
�1X;P�1Y; �),

for X;Y 2 �(TM) and � 2 
1(M).
(2) If D is of the form ��g for some Riemannian metric g, then,

[[f; ]]D = ig](df); [[df; ]]D = �Lg](df) + iĝ(df);

where ĝ(df) 2 
1(M ;TM) ' �(EndTM) is the TM -valued 1-form defined by
the map TM!TM , which is the composition of the map TM!T �M , given by
X 7! (Lg](df) g)( ;X), and the map g]:T �M!TM .
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Proof. A direct consequence of the fact that the operator D is Jacobi of degree
�1, is that [[�; ]]D is in fact a derivation of degree k� 1 whenever � 2 
k(M). In
particular, we shall use this formula in the cases � = f 2 
0(M), and � = df 2

1(M). In any case [[ ; ]]D = [[ ; ]]L for the linear isomorphism L corresponding
to D, as it was shown in the proof of Proposition 3. Thus, [[f; ]]L is a derivation of
degree �1 (of the form iXf

for some Xf 2 �(TM)), which will be completely
determined by its value on exact 1-forms

(f1) [[f; ]]L(dh) = [[f; dh]]L = �[f;L dh]SN = (L dh) f = L(df ; dh):

On the other hand, [[df; ]]L is a derivation of degree 0. It is therefore, completely
determined by its value on 0-forms, and exact 1-forms:

(f2)
[[df; ]]L(h) = [[df; h]]L = �[[h; df ]]L = �L(dh; df);

[[df; ]]L(dh) = [[df; dh]]L = �L�1([L df;L dh]):

Now, if D is of the form LP + iC , the isomorphism L is equal to �P, and using
formula (e) we get

[[f; dh]]�P = �P (df; dh) = iP df dh;

[[df; dh]]�P = P�1([P df;P dh]) = dP (dh; df)� C( ; dh; df)

= LP df � iC( ; ; df)(dh):

Finally, note that the Hamiltonian [[
; ]]D is a derivation of degree 1. So, it is
determined by its value on differentiable functions, and on exact one forms:

[[
; f ]]D = [[f;
]]�P = iP df
 = df;

[[
; df ]]D = �[[df;
]]�P = �iP df (d
) + iC( ; ; df)
:

A straightforward calculation using (e), and,

d
(P df;X; Y ) = � 1
2 [P; P ]SN (P

�1X;P�1Y; df);

determines the value of the differential 2-form [[
; df ]]D on the pair of vector fields
(X;Y ):

[[
; df ]]D(X;Y ) = �d
(P df;X; Y )� C(X; P�1Y; df)

+C(Y ; P�1X; df)

= 1
2 [P; P ]SN (P

�1X;P�1Y; df) = eC(X;Y ; df):
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We now prove (2): If D is of the form��g the isomorphism L is equal to g] (which
we now write as g�1, for consistency with the notation used in the first part of the
proof). Then, formulae (f1) and (f2) yield

[[f; ]]g�1(dh) = [[f; dh]]g�1 = g�1(df; dh) = ig�1(df) dh;

[[df; ]]g�1(dh) = [[df; dh]]g�1 = �g([g�1(df); g�1(dh)]):

The nontensorial part of [[df; ]]g�1 (which is a derivation of degree 0), is determined
by its value on 0-forms:

[[df; ]]g�1(h) = [[df; h]]g�1 = �[[h; df ]]g�1 = �Lg�1(df)h:

Therefore, its tensorial part is,

([[df; ]]g�1 + Lg�1(df))(dh) = �g([g�1(df); g�1(dh)]) + Lg�1(df)(dh):

Now note that, for any vector field X ,

g
�
Lg�1(df) g�1(dh)

�
(X) = g

�
Lg�1(df) g�1(dh) ;X

�

= Lg�1(df)
�
g(g�1(dh);X)

�
� (Lg�1(df) g)(g

�1(dh);X)

�g(g�1(dh);Lg�1(df)X)

= Lg�1(df)
�
dh(X)

�
� (Lg�1(df) g)(g

�1(dh);X) � dh (Lg�1(df)X):

Therefore,

([[df; ]]g�1 + Lg�1(df))(dh)(X)

= (Lg�1(df) dh)(X) �Lg�1(df)
�
dh(X)

�

+(Lg�1(df) g)(g
�1(dh);X) + dh (Lg�1(df)X)

= (Lg�1(df) g)(g
�1(dh);X) = (iĝ(df) dh)(X);

where the last step defines the TM -valued 1-form ĝ(df) of the statement. 2

COROLLARY 5. Let 
 be the differential 2-form associated to the nondegenerate
bivector P as in Proposition 4, and let H
 = d + ieC be its Hamiltonian graded
vector field. Then H
 � H
 = 0 if and only if P is a Poisson bivector.

Proof. The nontensorial part of the derivation H2

 = 1

2 [H
;H
] is LeC . There-

fore, H2

 = 0 implies eC = 0, but then, [P; P ]SN = 0, i.e., P is a Poisson

bivector. 2
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[FN] Frölicher, A. and Nijenhuis, A.: Theory of vector valued differential forms, Part I. Indaga-
tiones Math. 18 (1956), 338–359.

[Gr] Grabowski, J.: Abstract Jacobi and Poisson structures. Quantization and star-products, J.
Geom. Phys. 9 (1992), 45–73.

[Kr] Krasilshchik, I. S.: Schouten bracket and canonical algebras, in Global Analysis III, Lecture
Notes in Math., vol. 1334, Springer Verlag, Berlin and New York, 1988, pp. 79–110.

[Kz] Koszul, J. L.: Crochet de Schouten-Nijenhuis et Cohomologie, Astérisque h.s. (1985),
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