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Abstract. Comet-like orbits with low perihelion distances tend to be affected by relativistic
effects. In this work we discuss the origin of the relativistic corrections, how they affect the orbital
evolution and how to implement these corrections in a numerical integrator. We also propose a
model that mimics the principal relativistic effects and, contrary to the original “exact” formula,
has low computational cost. Our model is appropriated for numerical simulations but not for
precise ephemeris computations.
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1. Introduction
The problem of computing relativistic effects in the Solar System is of increasing

importance for study of low perihelia and low semimajor axis populations. It is a usual
practice in textbooks to show the relativistic effect in a planet’s perihelion starting from
a simplified problem that gives rise to a unique radial perturbation to the Newtonian
potential conserving the angular momentum. But, a more rigorous analysis (Brumberg
1991, Shahid-Saless & Yeomans 1994) gives rise also to a transverse component so the
angular moment is not more conserved and the expression for the relativistic perturbation
becomes:

Δr̈ =
μ

r3c2

[(
4μ

r
− v2

)
r + 4(v.r)v

]
(1.1)

where μ = k2m� (Anderson et al. 1975, Quinn et al. 1991). This expression, that has
no normal component, is valid when considering the relativistic effects generated only
by a spherically symmetric and non rotating Sun. When the rotation of the Sun is
considered, a new effect called gravitomagnetic Lense-Thirring effect appears (Soffel 1989,
Iorio 2005a). Furthermore, if all bodies have relativistic contributions a more complex
expression should be used as explained in, for example, Benitez & Gallardo (2008). The
time in Eq. (1.1) should be considered as the coordinate time; in order to compare with
observables it is necessary to transform, for example, to Barycentric Coordinate Time
(TCB) or Terrestrial Time (TT) (Shahid-Saless & Yeomans 1994, Soffel et al. 2003).

In order to avoid either the computational cost or the non sympletic form of Eq.
(1.1), some simpler models that only depend on r have been proposed which mimic or
reproduce the correct relativistic shift in the argument of the perihelia of the bodies under
the gravitational effect of a central mass (Nobili & Roxburgh 1986, Saha & Tremaine
1992). But, as pointed out by Saha & Tremaine (1994), these models correctly recover
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the perihelion motion but fail in reproducing the evolution of the mean anomaly, M ,
point that we will discuss in this work.

These r-dependent secular models have a disadvantage when used to compute high
eccentricity low perihelion orbits in constant time-steps algorithms of the type “advance-
impulse-advance”, as is the usual case in sympletic algorithms. In this case, the relativistic
perturbation when computed as an impulse, generates spurious results near the perihelion
where the relativistic perturbation is stronger and poorly sampled. This is because the
expression for the acceleration has a term that goes with 1/r3 and for low r values
this impulse can be excessively high. For example, in the Solar System the relativistic
perturbation for an object at r < 0.1 AU is greater than the gravitational perturbation
by Jupiter. Saha & Tremaine (1994), in a sympletic method for planetary integrations,
incorporate part of the relativistic correction (1.1) in the “advance” part of the algorithm
but an acceleration proportional to 1/r3 remains as part of the “impulse”.

In this work we review the relativistic effects on orbital elements with special attention
to mean anomaly (Rubincam 1977, Calura et al. 1997, Iorio 2007) and we propose an
r-independent model that correctly reproduces the secular evolution of the argument of
the perihelion even for high eccentricity orbits which is very useful for constant timestep
algorithms.

2. Secular Relativistic Effects due to the Sun
By means of the Gauss planetary equations, averaged on an orbital period, one can

compute the secular variations of orbital elements produced by Eq. (1.1). The only non
zero variations obtained for this acceleration are those corresponding to the argument of
perihelion and the mean anomaly:

< ω̇ >=
3

c2(1 − e2)

√
μ3

a5 (2.1)

< Ṁ >=
3
c2

√
μ3

a5

(
2 − 5√

1 − e2

)
(2.2)

where units are radians per day. Eq. (2.1) is the well known relativistic effect on the
argument of the perihelion and, for small eccentricities, Eq. (2.2) coincides, for example,
with the approximate expressions for the secular drift in M given by Iorio (2005b) and
with the secular drift in M generated by the relativistic model for low eccentricities
used by Vitagliano (1997). The exact formula, valid for all eccentricities, is Eq. (2.2) and
can be checked numerically integrating a particle using the classic model and then the
relativistic one. The effect in M is several times greater than in ω.

3. Models that Mimic the Secular Relativistic Effects
3.1. Proposed Models

If we are interested in computing the relativistic effects due to the Sun on a small body,
we could just introduce Eq. (1.1) into an integrator. The problem is that this accelera-
tion depends on both vectors position and velocity of the particle, so the speed of the
integrator may be slowed down in order to calculate accurately the vectorial products at
small heliocentric distances. To overcome this difficulty, some alternative simpler models
have been created in the last two decades. The relativistic precession of the argument of
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perihelion is correctly reproduced defining the radial perturbation:

R = − 6μ2

c2r3 (3.1)

(Nobili & Roxburgh 1986). Inserting this R in the time averaged Gauss planetary equa-
tions, the exact secular drifts generated by Eq. (1.1) are recovered except for mean
anomaly. Saha & Tremaine (1992) added one more term into (3.1) in order to account
for both ω and M drifts:

R = − 6μ2

c2r3 +
3μ2

ac2

(
4√

1 − e2
− 1

)
1
r2 (3.2)

Hence, with this perturbation, Eq. (2.1) and Eq. (2.2) are recovered. This apparent
improvement to the original model of Nobili & Roxburgh (1986) is not so at all as
pointed out by Saha & Tremaine (1994). The point is that given an initial osculating a0
the mean ā generated by the evolution under Eq. (1.1) is different from the mean āR

generated by the evolution under Eq. (3.2). Then, model (3.2) will not reproduce the
secular evolution of an object with the correct ā but with a different mean semimajor
axis given by āR . In consequence, the model introduces a secular drift in M and no
evident progress is done in comparison with Eq. (3.1). This problem can be solved taking
appropriate initial conditions.

3.2. Our r-independent Model
The corrections exposed above, though computationally better than Eq. (1.1) because the
v-dependence is eliminated, still have the problem that near perihelion the perturbation
can be high enough to introduce numerical errors in constant time-step integrators. In
order to overcome this difficulty, we propose the following constant radial perturbation:

R =
3μ2

c2a3
√

(1 − e2)3
(3.3)

which generates the expected variation in the argument of perihelion given by Eq. (2.1).
However, for mean anomaly we obtain a different expression:

< Ṁ >= − 9
c2

√
μ3

a5(1 − e2)3 (3.4)

The discrepancy for the drift on M with respect to Eq. (2.2) is irrelevant in numerical
simulations because, as we have explained, the predictions for M given by models cannot
coincide with the true relativistic effect if the same set of initial conditions for all models
are taken. The advantage of model (3.3) is that it maintains the precision of the numerical
integration even for very small perihelion orbits while the original Eq. (1.1) and the other
models need a strong reduction in the step size. For low eccentricity orbits, both Eq. (2.2)
and Eq. (3.4) give the same result.

3.3. On Initial Conditions
Initial conditions should be used according to the theory they were determined. For
example, the model of Saha & Tremaine (1992) can be used confidently for generating
precise ephemeris only if the initial conditions were obtained adjusting observations to
this model. That is the underlying idea of the very accurate method for computing
ephemeris of low eccentricity orbits proposed by Vitagliano (1997). But, it is not possible
to follow the exact evolution of the mean anomaly if there is no consistence between the
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initial conditions (which should also be very precise) and the model used. Then, any of
the models we have analyzed are valid to follow the secular evolution of an orbit and, in
particular, our constant radial perturbation model is computationally more convenient.

For illustrative purposes, in order to compare the variations of the orbital elements
produced by the different models given by Eq. (1.1), Eq. (3.2) and Eq. (3.3), we inte-
grated numerically our planetary system for one million years. Results corroborate what
we have already stated by means of the Gauss equations: the secular relativistic evolution
of all orbital elements is very well reproduced. And even with strong differences in M , of
the order of 102 degrees, the orbital evolution of the different models is almost undistin-
guishable. For planet Mercury for example, at the end of the integration, differences of
the order of 10−5 in e, 10−3 degrees on ω, 10−4 degrees on Ω, and even lower differences
for i were obtained.

4. Conclusions
At least three models are able to reproduce the secular drift in ω but for high eccen-

tricity orbits only the model by Saha & Tremaine (1992) can follow the exact secular
drift in M and only if appropriate initial conditions are taken. For secular evolution stud-
ies of numerous populations by means of numerical integrations, if no precise ephemeris
are required, our constant radial r-independent model is very convenient specially if low
perihelion orbits are involved. For accurate ephemeris computations of real bodies, the
original formula (1.1), or even the full relativistic N-body one should be used with a
control of the integrator’s precision in the case of low perihelion orbits.
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