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Abstract. The extensive ground-based spectroscopy campaign from the VIMOS Ultra-Deep
Survey (VUDS), and the deep multi-wavelength photometry in three very well observed ex-
tragalactic fields (ECDFS, COSMOS, VVDS), allow us to investigate physical properties of a
large sample (∼4000 galaxies) of spectroscopically confirmed faint (iA B � 25 mag) SFGs, with
and without Lyα in emission, at z ∼ 2–6. The fraction of Lyα emitters (LAEs; equivalent width
(EW) � 20Å) increases from ∼10% at z ∼ 2 to ∼40% at z ∼ 5–6, which is consistent with previ-
ous studies that employ higher Lyα EW cut. This increase in the LAE fraction could be, in part,
due to a decrease in the dust content of galaxies as redshift increases. When we compare best-fit
SED estimated stellar parameters for LAEs and non-LAEs, we find that Es(B-V) is smaller for
LAEs at all redshifts and the difference in the median Es(B-V) between LAEs and non-LAEs
increases as redshift increases, from 0.05 at z ∼ 2 to 0.1 at z ∼ 3.5 to 0.2 at z ∼ 5. For the lu-
minosities probed here (∼L∗), we find that star formation rates (SFRs) and stellar masses of
galaxies, with and without Lyα in emission, show small differences such that, LAEs have lower
SFRs and stellar masses compared to non-LAEs. This result could be a direct consequence of
the sample selection. Our sample of LAEs are selected based on their continuum magnitudes
and they probe higher continuum luminosities compared to narrow-band/emission line selected
LAEs. Based on our results, it is important to note that all LAEs are not universally similar and
their properties are strongly dependent on the sample selection, and/or continuum luminosities.
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tal parameters

1. Introduction
In recent years, the unprecedented increase in the sensitivity of the space-based as well

as the ground-based observations has revolutionized our understanding of high redshift
(z � 2) galaxies (e.g., Finkelstein et al. 2015; Bouwens et al. 2015; Ellis et al. 2013;
Hathi et al. 2010). This large reservoir of star-forming galaxies (SFGs) has tremendous
implications on our understanding of the process of galaxy formation and evolution.
Lyman alpha (Lyα) is typically the strongest UV emission line in SFGs and a crucial
spectroscopic signature to confirm high redshift galaxies selected based on their colors.
The first studies of Lyα emitters (LAEs) predicted that they could represent the first
galaxies in formation (e.g., Partridge & Peebles 1967). Although originally predicted to
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be extremely young, recent studies have shown that LAEs have a variety of ages, from
1 Myr to 1 Gyr (e.g., Gawiser et al. 2006; Finkelstein et al. 2007; Lai et al. 2008; Kornei
et al. 2010), range in dust extinction (e.g., Pirzkal et al. 2007; Finkelstein et al. 2009), and
a wide range in stellar masses (e.g., Shapley et al. 2003; Erb et al. 2006; Pentericci et al.
2007; Hathi et al. 2015). Such a large diversity in physical properties of LAEs implies that
these are not galaxies undergoing their first burst of star formation. It is also puzzling
that some LAEs show high dust content as Lyα photons cannot easily escape from dusty
galaxies because they are resonantly scattered by neutral hydrogen. These results, which
are based on both narrow-band (NB) as well as broad-band selection, show a wide range
of stellar properties for LAEs which contradicts early predictions of LAEs as young, first
galaxies. In the era of large surveys, it is now possible to study statistically significant
sample of these galaxies at all redshifts and get better insight into the physical nature of
LAEs, which has important implications on our understanding of evolutionary properties
of galaxies and the state of intergalactic medium (IGM) in the early universe.

2. Observations and Sample Properties
The VUDS observations were done using the low-resolution multi-slit mode of VIMOS

on the VLT. A total of 15 VIMOS pointings (∼224 arcmin2 each, ∼1 deg2 total) were
observed covering the full wavelength range from 3650Å to 9350Å in three deep survey
fields (ECDFS, VVDS-02h, COSMOS), which has extensive multi-wavelength data. The
primary selection criterion for galaxies in the VUDS program was photometric redshifts.
Therefore, the targets for the VUDS program include a representative sample of all SFGs
at a particular redshift within a given magnitude limit (iAB � 25 mag, with some galaxies
as faint as iAB ∼ 27 mag). A detailed discussion about these observations, data reduc-
tion process, target selection, reliability of the redshift measurements and corresponding
quality flags is presented in Le Fèvre et al. (2015).

We select all VUDS objects between z = 2 and z = 6, keeping only the best reliabil-
ity flags (2,3,4,9) — which gives very high probability (75-85%, 95-100%, 100%, 80%,
respectively; see Le Fèvre et al. 2015 for details) for these redshifts to be correct. The
redshift distribution of the sample is shown in the left panel of Figure 1. Our sample of
SFGs has only little contamination from AGN identified based on their X-ray emission
and IRAC colors (∼2–3%). The Le PHARE software package (Ilbert et al. 2006) was used
to fit the broad-band observed spectral energy distributions (SEDs) with synthetic stellar
population models. A detailed discussion about the SED fitting process is presented in
Hathi et al. (2015). From the best-fit model, we estimate stellar mass, dust extinction
Es(B-V), star-formation rate (SFR), and stellar age for each galaxy.

The middle panel of Figure 1 shows UV (1500Å) absolute magnitudes (M1500) and
stellar masses as a function of redshift for the VUDS SFG sample. We are probing UV
continuum luminosities around L∗ (or brighter) at these redshifts, and similar median
stellar masses (within error bars) at all redshifts.

The Lyα equivalent widths (EWs) for VUDS SFGs were measured as described in Cas-
sata et al. (2015) and Hathi et al. (2015). We divide the SFG population into three sub-
groups based on their Lyα EW. The galaxies that show no Lyα in emission (EW � 0Å)
are defined as SFGN, while the galaxies with Lyα in emission, irrespective of its strength
(EW > 0Å), are defined as SFGL. The third group is for strong Lyα emitters (EW � 20Å)
called LAEs. The fraction of LAEs in SFGs increases from ∼10% at z ∼ 2 to ∼40% at
z ∼ 5–6 as shown in the right panel of Figure 1. This result is in agreement with the
general scenario that the fraction of LAEs in SFGs increases as redshift increases reach-
ing ∼30-40% at z � 6 (e.g., Stark et al. 2010; Cassata et al. 2015).
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Figure 1. [Left] The VUDS spectroscopic redshift distribution of SFGs at z ∼ 2–6 in our sam-
ple, which includes only the redshifts with best quality flags. [Top-middle] The UV absolute
magnitude, M1500 , as a function of redshift. The density of points (in both middle panels) is
color-coded as shown in the color-bar. The median (red squares) M1500 values with 16 and 84
percentiles (error bars) are shown for each redshift bin. The black line shows the evolution of
the characteristic magnitude, M∗, based on the values from Hathi et al. (2010) and Finkelstein
et al. (2015). [Bottom-middle] The distribution of stellar mass as a function of redshift. The
median (red squares) stellar mass values with 16 and 84 percentiles (error bars) are shown for
each redshift bin. [Right] The LAE fraction as a function of redshift. Here, LAEs are defined as
galaxies with rest-frame Lyα EW � 20Å, where positive EWs indicate Lyα in emission.

3. Results
We use a large (∼4000) spectroscopic sample of SFGs at z ∼ 2–6 from VUDS to inves-

tigate their spectral and photometric properties. Figure 2 shows a comparison between
SED-based stellar parameters of the LAEs, SFGL, and SFGN samples. Here, we have
applied a UV absolute magnitude cut (M1500 � –21.0), which is around M∗ for galaxies
at z ∼ 3–6 (Finkelstein et al. 2015), to investigate any evolutionary trend as a function
of redshift. The SED-based dust indicator, Es(B-V), shows smaller values for LAEs com-
pared to SFGN galaxies. The difference between median Es(B-V) values for LAEs and
non-LAEs seems to increase as redshift increases (0.05 at z ∼ 2 to 0.1 at z ∼ 3.5 to 0.2 at
z ∼ 5). This could be one of the reasons why we observe an increase in the LAE fraction
as a function of redshift (Figure 1). The SED-based SFRs depend on the amount of dust
in galaxies and hence, show small decrease in their median values for LAEs compared to
non-LAEs. This difference, on average, is �0.3 dex. The SED-based stellar masses (�0.2
dex), stellar ages (�0.1 dex), and M1500 (�0.1 mag) show, on average, smaller difference
between LAEs and non-LAEs, as shown in Figure 2. These trends in SED parameters,
between LAEs and non-LAEs, remains the same irrespective of the M1500 cut.

The small but significant differences that we observe in the SED-based parameters of
LAEs and non-LAEs could be a direct consequence of our sample selection. Our sample
of LAEs (and non-LAEs) is selected based on their continuum magnitudes compared to
NB/emission line selection of LAEs. The NB/emission line selected LAEs are physically
different as they probe lower continuum luminosities and typically extend to higher EW
(� 200Å) LAEs. From various studies on this topic, including this one, it is imperative to
note that LAEs have a wide range of stellar properties depending on their selection crite-
ria, luminosities, and stellar masses. A small difference in SED-based stellar parameters,
between LAEs and non-LAEs, points to the fact that the escape of Lyα emission from
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Figure 2. The best-fit SED parameters as a function of redshift for galaxies with M1500 � –21.0.
The density of points is color-coded as shown in the color-bar. The median values of each SED
parameter, in each redshift bin, for the SFGN , SFGL , and LAE samples are denoted by the
black squares, red circles, and blue circles, respectively. The error bars in x illustrate the sizes
of the bins, while the errors in y are ±1σ scatter (dashed error bars) corresponding to the range
between 16th and the 84th percentile values within each bin, while smaller solid error bars are
the errors on the median values (σ/

√
Ngal). It is important to note that these trends in SED

parameters, between LAEs and non-LAEs, are valid for the whole sample.

galaxies is a complex process, and could be affected by intrinsic properties of these galax-
ies which includes, the dust content/geometry, morphology, kinematics and interstellar
medium geometry, and/or change in the Lyman continuum escape fraction. Our future
studies will continue to explore various aspects affecting Lyα emission from galaxies to
better understand the difference in physical properties of LAEs and non-LAEs.
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Le Fèvre, O., Tasca, L., Cassata, P., et al. 2015, A&A, 576, A79
Partridge & Peebles 1967, ApJ, 147, 868
Pentericci, L., Grazian, A., Fontana, A., et al. 2007, A&A, 471, 433
Pirzkal, N., Malhotra, S., Rhoads, J., et al. 2007, ApJ, 667, 49
Shapley, A., Steidel, C., Pettini, M., et al. 2003, ApJ, 588, 65
Stark, D. P., Ellis, R. S., Chiu, K., et al. 2010, MNRAS, 408, 1628

https://doi.org/10.1017/S174392131501039X Published online by Cambridge University Press

https://doi.org/10.1017/S174392131501039X

