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Abstract

A nutrient-consumer model involving a distributed delay in material recycling and a discrete
delay in growth response has been analysed. Various easily verifiable sets of sufficient
conditions for global asymptotic stability of the positive equilibrium solution of the model
equations have been obtained and the length of the delay in each case has been estimated.
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1. Introduction

In the present paper, we analyse a mathematical model in which a biotic species
such as micro algae or fungi feeds on a limiting nutrient (for example, nitrogen or
phosphorous or vitamin Bi2) in a cultured environment. That is, we wish to study
the influence of the limited supply of a single nutrient on the growth of the consumer
(biotic species) assuming that all other factors that influence the growth are managed,
so as not to disturb the system. Many mathematical models have been proposed to
explain the biological process involved in limited nutrient-consumer dynamics. One
such popular model is a chemostat model. The name chemostat is associated with a
laboratory device in which a continuously cultured environment is created to study
the behaviour of the species with the supply of the growth-limiting nutrient under the
control of the experimenter. The predictions made by the analysis of the chemostat
models may be tested in this device, thus establishing a formidable link between
mathematics (theory) and biology (experiment). In [31] it is also highlighted that a
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chemostat is the case where "mathematics precedes the experiment". A fundamental
mathematical model describing the growth in a chemostat is given by

= Dx0 - Dx(t) - aU(x(t))y(t),
(1.1)

In (1.1), x(t) denotes the growth-limiting nutrient and y(t) denotes the biotic species
feeding on x at any time t.

Here x0 is the input nutrient concentration which is a positive constant, measured
in mol/vol. It denotes the quantity of nutrient available within the system at any time.
The positive constant D > 0 is the rate at which the nutrient is supplied and also
the rate at which the contents of the growth medium are removed. It is popularly
known as the washout rate and is measured in 1/sec. Here a > 0 is the maximal
consumption rate of the nutrient and also the maximum specific growth rate of the
microorganisms. This choice implies that the consumption means growth here. We
note that U is the functional response of the microorganisms describing how the
nutrient is consumed by the species and is usually called the uptake function. For
more details on chemostat models and the early development of them, we refer the
readers to Smith and Waltman [31].

As a further development, the chemostat is seen as a replica of a simple lake.
However there are some basic differences between the two. The main point that
differentiates a lake from a chemostat is the inflow/outflow rate (washout rate). The
washout rate in a chemostat is usually very high whereas in a lake it is low for most
of the year. If one tries to treat the chemostat as a model of a natural lake, one
should study the growth of microorganisms under a low washout rate. Due to this
low washout (inflow), the nutrient becomes scarce which is a major survival problem
for the species. One may even expect an extinction of the species. But observations
(see [5,9,29] and references therein) show that the species survive in spite of the low
availability of nutrient. But the species growth is found to be low and oscillatory. To
account for this oscillatory behaviour, mathematicians proposed different phenomena
in the models such as periodic nutrient input or periodic inflow rate or a combination
of both. But most mathematicians preferred the introduction of time delays in the
growth response of the microorganisms to nutrient uptake in the models as a means of
understanding the oscillatory behaviour. Freedman, So and Waltman [16] introduced
time delays in a chemostat model with a discrete delay in the growth response of the
consumer species and obtained conditions for the coexistence of competing species.
We refer the readers to Ellermeyer [10] and Waltman [32] for some details on these
models.

Again, when the washout rate is very small, the dead biomass in a lake resides there
for a long time and hence there is every possibility of regeneration of nutrient due to
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bacterial decomposition of this dead biomass. It is natural to expect a time delay in the
regeneration of nutrient due to bacterial decomposition. Nutrient-consumer models
incorporating a distributed delay in nutrient recycling have been extensively studied in
Beretta, Bischi and Solimano [2] and Freedman and Xu [18] (see also [5-7,12, 19]).

These models describing the growth of microorganisms in a lake may be termed as
chemostat-like models as they may be viewed as modifications of chemostat models
(see [25] for a good account of these models).

Chemostat-like models with distributed time delays both in growth response and
material recycling have received much attention in recent years (see [ 1, 5-7,19,20,22-
30,33,34]). The models described above feature either discrete delays or distributed
delays but none has considered the combination of these two features. According
to Nisbet and Gurney [21], the experimental data encourages the introduction of a
discrete delay in the growth response of the consumer species. Further, when the
delays are small, systems with constant fixed delays serve as good approximations to
those with distributed delays. This prompts us to study the influence of the presence of
a discrete delay in the growth response of the microorganisms in a chemostat model.
Since the residence time of dead biomass in the system is measured on a timescale
of years and because of the slow, continuous process of decomposition of the dead
biomass, a distributed time lag seems more appropriate for nutrient recycling ([5]).

The model under consideration is based on the following biological principles:
• There is an external source from which the nutrient is supplied to the system.

In the model, x0 denotes the input nutrient concentration and D denotes the rate
at which it is supplied.

• There is an outlet to the system from which the nutrient and the consumer
species are removed (washed out) at the same rate D.

• The consumer species consume the nutrient continuously at a constant rate a and
the consumption is nonlinearly related to the nutrient. Further, the consumption
reaches a saturation level which means that unlimited supply of nutrient does
not imply unlimited consumption. In our model the function U represents this
consumption.

• The growth of the consumer species is a delayed process while death is instan-
taneous.

• The growth of the consumer species is governed by the finite carrying capacity
of the environment. The term d represents the death rate due to this finite
carrying capacity so that 1 /d denotes the carrying capacity.

• The consumer biotic species are subject to a natural death besides a washout.
The constant y represents this death rate.

• The nutrient population is enriched by the recycling of a portion b of the dead
biomass of the consumer and this process is not instantaneous.

In the present paper, we estimate the length of the delay for which the positive
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equilibrium solution of the model equations is asymptotically stable, employing a
Lyapunov functional technique. This, of course, provides a lower bound for the
length of delay for which the stability of the system is guaranteed. It is interesting to
note that no linearisation of the nonlinearities has taken place. Thus our study is not
merely a local stability analysis of the model.

A chemostat-like model with a distributed time delay in material recycling and a
discrete delay in growth response has been studied by Ruan ([29]) and He and Ruan
([19]). We wish to consider, for the first time, the influence of the finite carrying
capacity of the environment in a model with a distributed time delay in nutrient
recycling and a discrete time delay in the growth response of the consumer species.
The model we study in this paper is fairly general in the sense that the models described
in [1-7, 16,18] and [19,29] become special cases of this model as we shall see in the
coming sections. We obtain five sets of easily verifiable sufficient conditions for the
global asymptotic stability of the positive equilibrium. It may be seen that our study
includes fairly general classes of delay kernels and uptake functions.

The paper is organised as follows. Section 2 deals with the model. Further,
basic properties of solutions of the model equations and the existence and uniqueness
of equilibria have been discussed in this section. In Section 3, we obtain various
easily verifiable sets of sufficient conditions for the global asymptotic stability of the
positive equilibrium solution of the model equations. Global asymptotic stability of
some important special cases is discussed in Section 4. Finally, a discussion follows
in Section 5.

2. The model and some preliminaries

The above discussion yields the following system of equations describing the
dynamics of the nutrient and the consumer populations:

= D(xQ - JC(O) - aU(x(t))y(t) + by I f(s)y{t - s) ds,
Jo (2l)

= -(y + D)y(t) + cy(t)U(x(t - r)) - dy\t),
at

with the initial conditions

-oo<s<0, (2.2)

where <pj, j = 1,2, are nonnegative, bounded and continuous functions on (—oo, 0].
In (2.1), x denotes the limiting nutrient and y represents the microorganism feeding

on a:. Again D > 0 is the constant washout rate of the biomass and the nutrient, while
*o > 0 represents the constant nutrient input concentration. The positive constant a
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represents the maximum uptake rate of the nutrient, while 0 < c < a represents the
maximum specific growth rate of the species y. Herey > 0 is the death-rate coefficient
of y. The constant b 6 (0, 1) represents the portion of the dead biomass recycled.
The positive constant d accounts for the finite carrying capacity of the environment.
We note that 0 < r < oo is the delay in the growth response of the consumer species.
The function U is known as the uptake function or response function of the species y
and represents how y consumes x. A mathematical realisation of the third biological
principle may lead us to the following assumptions on the uptake function U.

(AO U(x) is a continuous, real-valued function defined on R+ = [0, oo) such that
U(0) = 0, {/(*)> 0 for * > 0 and l i m , ^ U(x) = L, < oo. It is clear that U(x) is
bounded and therefore there exists an L > 0 such that U(x) < L for all x 6 R+.

The delay kernel / describes how the dead biomass is recycled and the mathematical
imposition on / is that it is a nonnegative function satisfying

(A2) /<T /(•*)d s = l and /o°° sf^ ds < °°-
The second assumption on / in (A2) obviously implies that the average time delay in
material recycling is finite.

Proceeding as in [6], it is easy to see that the system (2.1)—(2.2) has unique,
continuable solutions on their maximal intervals of existence when U satisfies a
Lipschitz condition. However, conditions weaker than the Lipschitz condition on U,
which ensure the existence and uniqueness of solutions have been presented in an
earlier work of the authors [22]. Henceforth, it is tacitly assumed that the system
(2.1)—(2.2) has unique, continuable solutions. Further, proceeding as in ([6,22]), it
can be proved that the solutions of system (2.1) are nonnegative, bounded owing to
the initial conditions (2.2) and that

x{t) < max lxo + -77" - , sup (0,(0) and
I au -oo</<o J
\cL I

y(t) < max{—, sup {<t>2{t)}\ .
[ U -oo</<0 J

Now an equilibrium solution of (2.1) is a solution of the system

Dx0 - Dx - aU(x)y + byy = 0,

- ( / + D)y + cyU(x) - dy2 = 0.

Clearly (x0, 0) is a solution of the system which is a partially feasible equilibrium of
the system (2.1).

As in [22], it can be shown that a necessary and sufficient condition for the existence
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of a unique positive equilibrium solution (x*, y*) for the system (2.1) is that

< i/cn < \ ±R + ^L+ (Y + D by\
c a Y V c a )

2
y + D by Uy + D by\ AdD

1 " 4 + x0ac
• (2.3)

Clearly (x*, y*) satisfies

Dx* +aU(x*)y* -byy* = Dx0 and cU(x*) - dy* = y + D,

or
(aU(x*)-by)(cU(x*)-y-D)

dD (2 4)
. _ cU(x*) - y - D K '

Hereafter, we tacitly assume that the system (2.1) has a unique positive equilibrium
solution (x*, y*) and confine ourselves to the study of this positive equilibrium so-
lution. Also, we may establish that the existence of a unique positive equilibrium
ensures the instability of (x,,, 0) (see [22]).

It may be observed that system (2.1) is very general in the sense that many of the
models studied earlier become special cases of it as we see below:

Choice
r = 0
r = 0 ,
r = 0 ,
y=0 ,
d = 0

of

d--
d--
d -.

parameters

= 0
= 0, f(s) =
= 0, f(s) =

S(s)
S(s)

Models
[7]
[2,6,7,

[1]
[4,16]
[19,29]

studied in

18]

3. Stability results

In this section, we shall obtain various sets of sufficient conditions on the parameters
that establish the asymptotic stability of the positive equilibrium solution (x*, y*)
of (2.1) and estimate the length of the delay for which these hold, employing a
Lyapunov functional technique.

We recall that for the system

X'(t) = F(X), (3.1)

where F is continuous in X for X e G and G is an open set in R", we have the
following definition.
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DEFINITION. V(X) is a Lyapunov function in G for (3.1) if V" = VV • F < 0 on G.

Consider the system (for example, (2.1))

X'(t) =

where F is continuous in X, and defined by X,(s) = X(t + s), s G (—oo, 0] such
that F(0) = 0 for X e G and G is an open set in K". Let XH(t) denote the set
BC(—oo, 0] such that ||X,|| < H. Now consider the autonomous system (*) with
the initial conditions 0 which are nonnegative, bounded and continuous functions on
(-co, 0] such that \\<p\\ < H. Then the following result holds.

THEOREM A ([8]). Let V(X,) be a scalarfunctional such that V : XH(t) ->• [0, oo)
and it is uniform Lipschitz on Xn(t)for some H > 0. If furthermore,

u>i(ll*(OII) < V(X,), V(0) = 0, V;t)(X,) < -w2(\\X(t)\\),

for all t > 0, then the trivial equilibrium of (*) is globally (uniformly) asymptotically
stable.

Here w,(s), i — 1, 2, s > 0 are scalar continuous nondecreasing functions such
that Wj(0) = 0, Wj(s) > 0 for 5 > 0 and lim.v_oo wt(s) = +oo.

The difficulty lies in finding a suitable Lyapunov functional that satisfies the con-
ditions of Theorem A. There are no general rules for finding a Lyapunov functional,
but usually it is convenient to construct it step by step as we see below.

Before proceeding further, we make the following change of variables:

y ( O - v *
J C , ( O = * ( / ) * * y ( / )

y*

Then (2.1) after a rearrangement assumes the form

x\(t) = -Dxt(t) ~ ay'Udxdt)) - ay*U(x(t))y,(t)

f(s)ydt-s)ds, (3.2)I
JoJo

y\(t) = (1 + yx(t))[cUx(xdt - x)) - dy*y,(t)],

where' denotes d/dt.
The following assumptions on the transformed uptake function U\ are used in our

subsequent discussion.

(A3) U e C'[0, 00) and there exists a positive constant Mt such that dU/dx < Mt.
In other words, d(J\/dx\ < M\ for xt e [— x*,oo).
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(A4) xx U\ {x\) > 0 for all x{ ^0 and there exist positive constants aua2 and fi such
thatai < U\{xx)/xx <a2for;C| > — x* and £ = minXl>_x.{xi/Ui(xi)}.

The foregoing discussion explains the construction of a Lyapunov functional that will
be useful in establishing our main results.

Consider the functional

f(y + B[y,(t) - log(l + y,(r))], (3.3)

where /\ and B are positive constants which will be chosen appropriately.
The time derivative of V\ along the solutions of (3.2) is given by

^ Axl(tdt I

j t-s)ds\ + Byl(t){cUl(xl(t-z))-dy*yl(t)\

x](t) -

- I
Jo

f{s)y]{t-s)ds
Jo

+ Bcyx(t)Ux(xx(t - r)) - Bdfy]{t). (3.4)

Now consider

yx(f)Ux{xx{t-T))=yx(t) Ux(xx(t))-J j-(Ux(xx(s))ds]

i(*i(O)~ / —
dxx(s) ds

' /dUx(Xl(s))\

)ds\) J

L( dxx(s) J

x l-Dxds) -ay*Ux(Xl(s)) -ay'

* I+ byy* I f(s)yi(s-u)du\ds

- / x](s)ds + ^-l
£• Jf-T ^ Jt-T

^~ U2(x(s))yx
2(s)ds

Uf(xx(s))ds
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ft />OO

.2/byy* f f°°
H z— I I f {u)y\(s — u) du ds.

2 Ji-x Jo

Using this in (3.4), we get

dV, ( byy*\ ,
-r1 <-A[D- - ^ - x2(t) - Aay*U(x(t))Xl (t)yt (t)
dt \ 2 )

+ BcUiixdMyiO) - B [dy* - C-(D + 2ay* + byy*)Mz] y2(t)

— Aay Ui(x\(t))X\(t) + A / t(s)yAt — s)ds
2 io

BcD [' , ay*c [' ,
+ - = - / x2(s)ds + B^— U2(X](s))ds

U2(x(s))y2(s)ds

*c f f
- / / /(«)

Jl-x Jo
2

using (A3) and denoting M — M2. Now consider the functional

V2(t) = V2(x\(t), yx(t))

= ^T f f \Dx2iM+ay*Ufri(v))+ay*U2(x(v))y*(v)
*• Jt — t Js I

+ byy* / f(u)y2(v - u) du\ dv.
Jo J

Then the time derivative of V2 is given by

dV2(t)

dt 2

f(u)y2(t-u)du\z
io

Be

+ byy* I f(u)y2(s-u)du\ds. (3.6)

Now from (3.5) and (3.6), we have

f̂ L + ̂  < _A (D _ Of) x]{t) _ Aaf
dt dt \ 2 )
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- B [dy* - UD + lay* + byy*)Mx\ y]{t)

- Aay*Ut (*, (O)*,(O + A^f- [°° f(s)y](t - s) ds
£ Jo

+
+ YT{ D;c?C) + ay'Ufei (0) + ay*U\x{t))y](t)\

Be r°°
+ -z-bYy*x I f{u)y]{t - u)du. (3.7)

^ Jo
Now define the functional

byy* f°° [' ,
V3(O = V3(jc,(r), v,(r)) = [A + Bcz)^- / f(s) / y](z)dzds.

*• Jo Jl-s

The time derivative of V3 is given by

f(s)yf(s)y*(t-s)ds]. (3.8)

We now define our main Lyapunov functional

V(O = V(x,(r), y,(r)) = V,(f) + V2(t) + V3(t).

Then clearly V(0, 0) = 0 and V(xdt), y,(/)) > 0 for ;<:,(/) > Oand >>,(/) > 0. Using
(3.7) and (3.8), the time derivative of V along the solutions of (3.2) is given by

x2(t)-Aay*U(x(t))xl(Oydt)

- B [dy' - C-(D + lay* + bYy*)Mx\ y\(f)

byy*

[(D + lay* + byy*)M + byy* + ay*U2(x(t))]z j y2(t)
_ Bc^

~ T
- Aay*U(x(t))xi(t)yl(t) + Be

(3.9)
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Case I Let (D - byy*/2) > 0 and Bdy* - Abyy*/2 > 0.
Now inequality (3.9) upon further simplification and rearrangement yields

_ < _ | ^ D _ _t2L ) _ _ _ r | , ? ( 0 + [Afl/t/(jc(0) -

ivy*

where a2 and /3 are as defined in (A4).
Then dV /dt is negative definite if

Aay*p > —ay*x and C] < (A, - B,r)(A2 - B2r), (3.10)

where 2C, = Aay*L - Bca2, A, = A(D - byy*/2), B{ = BcD/2, A2 = Bdy* -
Abyy*/2 and B2 = Bc[(D + 2ay* + byy*)M + byy* + ay*L2)}/2, using that
U(x) < L.

Now the second inequality of (3.10) implies that

B\B2x
2 - (A,fi2 + AIB\)T + AtA2 - C\ > 0.

Consider

BiB2z
2 - (AiB2 + A2B{)T + (A,A2 - C2) = 0. (3.11)

A necessary condition for the second inequality in (3.10) to hold is that C] < AtA2.
This condition implies that both the roots of (3.11) are real, distinct and positive, since
A], A2, B\ and B2 are all positive.

Let X\ and r2 represent the two roots of (3.11) and without loss of generality, let
T, < T2. Clearly, T| <A,/B, < x2 and rf < A2/B2 < r2. Therefore, if we choose
r* = minfr,, 2Afl/Bc} then dV /dt is negative definite for 0 < x < T* where

We now consider the following case.
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Case II Let A(D - byy*/2 - (ay*/2)L) - Bca2/2 > 0 and Bdy* - Abyy* 12 -
(Aay*/2)L - Bca2/2 > 0.

We now observe that inequality (3.9) may be simplified as

Aay* Bca2 BcD .

fica2

Bcz
[(D + 2ay* + byy*)M + byy* + ay*U2(x(t))]\ y]{t)

Then dV/dt is negative definite if we choose 0 < r < r*, where

A(2D -byy* -ay*L)- Bca2
r = mm ,

BcD Be

2Bdy* - Abyy* - Aay*L - Bca2

Bc[(D + 2ay* + byy*)M + byy* + ay*L2]

Upon eliminating the arbitrary constants A and B from the above, we obtain

dy*(2D - byy* - ay*L) - Dca2 > 0,

which gives a sufficient condition for the existence of r* > 0.
We now simplify (3.9) as

dV

It
< —

BcD

Bdy* - ^

- ^[M{D + 2ay* + byy*) + byy* + ay*L2]z] y](t)

- Aay*U(x(t))xi(t)y,(t) + Bca2xl«)yi(t)

x](t)

- [Aay*U(x(t)) - Bca2\xi{l)y,(t)

Abyy*
- Bdy* -
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- Y[M(D + lay* + byy*) + byy* + a / y]{t).

425

(3.12)

We now consider a third case.

Case III Let A(D - byy* 12 + ay*at - ay*L/2) - Bca2/2 > 0 and Bdy* -
Abyy* 12 - Aay*L/2 - Bca2/2 > 0.

Now upon using the inequality xy < (x2 + y2)/2 and rearranging, (3.12) assumes
the form

dV

~dT ~ '

- r [M(D + 2ay* + byy*) + byy* + ay*L2]

Therefore, for 0 < r < r* = min{mi, m2), where

AQ.D - byy* + 2ay*aK - ay*L) - Bca2

Bc(D + ay*a2)

2Bdy* - Abyy* - Aay*L - Bca2

mi =

m2 = Bc[M{D + 2ay* + byy*) + byy* + ay*L2\ '

we havedV/dt < 0.

Case IV Let D - byy* 12 + ay*a{ > 0 and Bdy* - Abyy* 12 > 0.
Now from (3.12), we have dV/dt < 0 provided

C;2 <(A\-B\x)(A'2-B1x),

that is, B[B'2z
2 - (A\B'2 + A'2B[)z + (A\A'2 - C']) > 0, in which

A\ = A(D - byy* 12 + ay*a,), B\ = - ^ ( D + ay*a\),

1 Abyy*
C\ = -(Aay*L - Bca2), A2 = Bdy* — and

B'2 = y [ M ( D + 2ay* 4- byy*) + byy* + ay*L2].

Arguing as in Case I, it can be shown that the equation

(3.13)

B\B'2z
2 - (A\B2 + A'2B\)T + (A\A'2 - C'\) = 0 (3.14)
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has two distinct, positive, real roots, say, ft, f2(> fi). Further, it is easy to see that
fi < A\/B\ < f2 and f, < A'2/B'2 < f2. Therefore, for

we have dV/dt < 0.
We are now in a position to state and prove our result which provides four different

estimates of a lower bound for the length of time delay for which the equilibrium
solution (0, 0) of (3.2) and hence the positive equilibrium (x*, y*) of (2.1) is globally
asymptotically stable.

THEOREM 3.1. Assume that the delay kernel f satisfies (A2) and the uptake func-
tion U) satisfies (A\), (A3) and (A4). The equilibrium solution (0.0) of (3.2) is globally
asymptotically stable for 0 < r < r*, where r* may be estimated as follows with
suitably chosen positive constants A and B.

Case I. (D - byy*/2) > 0, Bdy* - Abyy*/2 > 0 and (3.10) hold. Then

where

z = min

A, =

2A6

• 2 I T+T~i\T~T

byy" BcD
, 2C, =

Case II. Suppose A(D-byy*/2-ay*L/2) - Bca2/2 > OandBdy* - Abyy*/2-
Aay*L/2 - Bca2/2 > 0. Then

T =

A(2D -byy* - ay*L) - Bca2 2A0

2Bdy* - Abyy* - Aay*L - Bca2

Bc[(D + 2ay* + byy*)M + byy* + ay*L2]

Case III. Suppose A(D + ay*a,/2 -byy' /2 - ay* L/2)- Bca2/2 > Oand Bdy*-
Abyy*/2 — Aay*L/2 — Bcct2/2 > 0. Then r* = min{wi, '"2}. where

HI I =

A(2D - byy* + 2ay*a, - ay*L) - Bca2

Bc(D + ay*a\)
2Bdy* - Abyy* - Aay*L - Bca2

Bc[M(D + 2ay* + byy*) + byy* + ay* L2]
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Case IV. Suppose A(D + ay*ax/2 - byy*/2) > 0 and Bdy* - Abyy*/2 > 0. Then

where A\ = A(D - byy*/2 + a/or,), B\ = Bc(D + ay*a2
2)/2, C\ = C,, A'2 = A2

and B'2 = B2.

PROOF. Since the negative definiteness of d V/dt follows from each of the Cases I-
IV depending on which case r* is estimated from, it is easy to see that V, constructed
above, is the required Lyapunov functional, and hence the conclusion of the theorem
follows from standard arguments (see [22]). D

The following example illustrates the above result.

EXAMPLE 3.2. Consider the system (2.1) with D = 1, a = 4, b = 0.2, y = 1,
c = 3 and d = 20. That is,

r-oo

x\t) = (x0 - x(t)) - 4U(x(t))y(t) + (0.2) I f(s)y(t - s) ds,
Jo

y\t) = -2y(t) + 3U(x(t - r)) - 20/(0,

in which JC0 % 9.68 and U(x) = x/(l + x). Clearly, (JC*. / ) = (8, 1/30) and
U(x*) = 8/9. Further, M = 1, 0 = 9, a2 = 1/9 and a, = 0.0122, assuming the
bound x(t) < JC0 + bycL/dD, given in Section 2.

Then for the choice of A = 1 and B = 1 we have, from Theorem 3.1,

(I) r, = 0.3043, r2 = 0.6724 and 2Afi/Bc = 6 and thus r* = 0.3043,
(II) r* = 0.202,

(III) w, = 0.5093, m2 = 0.203 and thus r* = 0.203, and
(IV) f, = 0.3055, f2 = 0.673 and r* = f, = 0.3055.

We observe that the estimates on r* in these cases may be improved by proper choice
of the parameters A and B. For example, the choice A = 0.75 and B = 1 yields
r* = 0.211 and r* = 0.212 respectively in cases (II) and (III).

REMARK 3.3. We observe that the stability region obtained depends on the selection
of Lyapunov function(al) and any modification of this function(al) either in terms of
functions used or the parameters included in the functional may produce a different
portion of the stability region of the system. It is the observation of the authors that,
in general, no two Lyapunov function(al)s produce the same stability region for the
system under consideration. At this juncture, we draw the attention of the readers to
the normalisation of y in (3.2). Theorem 3.1 may be tried without a normalisation
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of y to obtain a different estimation on the delay r. For example, Cases I and II of
Theorem 3.1 with a nonnormalised y assume the following form:

Case I (a) (D - by/2) > 0, Bdy - Abyy*/2 > 0 and

T = min
2A/J
17' 2 I B, ' B2

where At = A(D - by/2), fi, = BcD/2, 2C, = AaL - fica2, A2 = Brf - Afty/2
and fl2 = Bc[{D + a(\ + y*) + by)M + by + aL2]/2.
Case II (a) A{D - by/2 - aL/2) - Bca2/2 > 0 and Bd - Aby/2 - AaL/2 -
Bca2/2 > 0 with

I A(2D - by - aL) - Bca2 2Ap
T = mm { , ,

I BcD Be
2Bd - Aby - AaL - Bca2

Bc[(D + a(l+y*)+ by)M + by + aL'

For these estimations, we get for the parametric values of Example 3.2, for Case I (a),
r, = 0.5507, r2 = 0.6724 and 2Ap/Bc = 6, and hence r* = 0.5507 = r,.

Thus in this case we have obtained a better estimation on T than Case I of Theorem 3.1.
But we notice that Case II (a) above cannot be applied here as the first condition

2 2

fails to hold for the above parametric values.

It would be interesting to know what changes the nonnormalised term y brings in
the other cases. Further, the functional used in the proof of Theorem 3.1 is not unique
and an enthusiastic reader may try different ones for a few more stability conditions.

REMARK 3.4. Theorem 3.1 gives the length of the delay for which the system is
stable when the system has a finite carrying capacity (d > 0). But for large d, we have
from the equilibrium solutions (2.4) that y* takes small values and eventually y* -*• 0
as d —*• oo. From the conditions on the parameters of the system in Theorem 3.1, we
can see that r* increases for increasing d, but is always bounded (by cL — y — D),
eventually tending to cU(x()) — y — D. But when d -> oo, y* -* 0 which means that
the consumer population becomes extinct. This is surely not desirable. This means
that when the system has a definite carrying capacity it can tolerate a delay in the
growth response of the species and under the conditions of Theorem 3.1, the species
will survive.
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We may notice that Assumptions (A3 MA4) restrict the choice of the uptake function
very much for global stability of the positive equilibrium. In order to consider a more
general class of uptake functions we shall now try to establish global stability of the
positive equilibrium solution of (2.1) employing the following condition which is a
special case of a Lipschitz condition. We recall that the existence and uniqueness of
the solutions for (2.1) are ensured by conditions weaker than a Lipschitz condition
on U as noted in Section 2.

For this we suppose that there exists a k > 0 such that

\U(x)-U(x*)\<k\x-x*l for all x € R+. (3.15)

Letting JC,(O = jc(/) -x*, yt(t) = y(t) - y* and £/,(*,(/)) = U(x(t)) - U(x*), we
rewrite system (2.1) as

x'l(t) = -Dxdt)-aU(x(t))y1(t)-ay*Ul(xl(t))

+ by [ f(s)yi(t-s)ds, (3.16)
Jo

— r)) — dyi(t)].

We now have the following result.

THEOREM 3.5. Assume that the delay kernel f satisfies (A2) and the uptake func-
tion U\ satisfies (A|) and (3.15). The equilibrium solution (0, 0) of (3.16) is globally
asymptotically stable for

f D -ck- aky* d + act - by 1
0 < r < r* = mm { —, } ,

[ (D + ay*)ck (aL + by)ck\

provided D — ck — aky* > Oandd + act — by > 0, in which a = m\nx>.x-[U(x)}.

PROOF. We consider the functional, V(t) = V,(t) + V2(t), where

(yi(/) + _y*\| f°° f
]\ + bY I f(s) \y(u)\duds

and

= ck\D I ds f \xi(u)\du + aL f ds f \y,(u)\du
[_ J t — X JX J t — T Jx

+ ay* f ds f |t/,(JC,(«))I rfii
Jl-z Jx

+ by f ds f f(z) f \yt(u)\dudz].
Ji-t Jo Js-z J
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• by\Mt)\ - d\yi(t)\-

x\(s)ds

OJC,(S) - aU(.x(s))Ms) - ay*

+ by J f(z)Ms-z)dz]ds

<k\Xl(t)\+k\D \x{(s)\ds + aL \y,(s)\ds
L Jl-X Jl-x

+ ay*f \Ui(xds))\ds + by f f f(z)\yds - z)\dzds \ .
Jl-x Jl—x Jo

430

Consider

D+

Now we have

\Udxdt - r))\

V.

V,(t)<-

+

<k\x,(t-

= k *i(O

Sree Hari R

D|JC|(/)| -

c\U\(X\(t

-x)\=k

-£,[•

Thus we have

ck\D ( \Xl(s)\ds+aL f \yds)\ds
L Jt—X Jl—T

ay'
/

i pi /•<» -i

\U](x\(s))\ds +by / / f(z)\y\(s - z)\ dzds . (3.17)
- r Jl-x Jo JNow

D+V2(t) = ck[D\XlU)\r + aL\ydt)\r +ay*\Udxdt))\r + by\yi(t)\r]

-ck\D f \xx{s)\ds + aLl \y,{s)\ds + ay* I
L Jl-x Jl — x Jl-x

+ by f I f{z)\yds-z)\dzds\ (3.18)
Jl-x J() J

Using (3.17) and (3.18) we have after some simplifications,

D+ V(t) < - (D -ck- aky*)\xi(t)\ -(d + aU(x) - by)\ydt)\

+ ck{D + ait/)r|jc,(/)| + ck(aL + by)x\yi(t)\

= -(D -ck- aky* - ck(D + aJt/)r)|jr,(OI

-(d + aU(x) -by - ck(aL + by)x)\ydt)\.

The negative definiteness of D+ V(t) follows from the hypotheses. The remainder of
the proof may be completed employing standard arguments. D
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Notice in this case that we have not normalised any variables here. The purpose is
only to introduce different Lyapunov functionals and techniques.

The delay-free system We now consider a special case of (2.1), namely, the system

x'(t) = D(xo-x(t))-aU(x(t))y(t)+by f f(s)y(s)ds,
Jo (3.19)

y'(t) = -{y + D)y + cll{x{t)) - dy\t).

which is obtained by letting the delay parameter r = 0 in (2.1). The system (3.19)
is studied in [7]. Notice that the equilibria of (2.1) and (3.19) are the same and thus
a unique positive equilibrium of (3.19) is given by (2.4) under the conditions (2.3)
again. Observing that the parametric conditions of Theorem 3.1 are valid for the
case r = 0 as well, we now establish sufficient conditions for the global asymptotic
stability of the positive equilibrium solution of (3.19). We shall not provide the details
of the proof as it may be obtained by a modification of the Lyapunov functional used
in the proof of Theorem 3.1 and appropriate manipulation of the terms. We also notice
that the condition (A3) on U is no longer required here. Thus, we have the following
result.

THEOREM 3.6. Assume that the delay kernel f satisfies (A2), and the uptake
function U\ satisfies (A|) and (A4). The positive equilibrium solution (x*, y*) of
(3.19) is globally asymptotically stable for r = 0 provided there exist positive con-
stants A and B such that the following conditions hold: A\ = A(D — byy* /2) > 0,
A2 = Bdy* - Abyy*/2 > 0andAtA2 > C,2, where 2C, = Aay'L - Bca2.

We now give examples to compare Theorem 3.6 with some known results ([7]).

EXAMPLE 3.7. Consider (3.19) with D = \3,a = 8,b = 0.8, y = 2, c '= 7.6 and
d = 10. That is,

(•00

x'(t) = (\3)(x0 - x(t)) - 8U(x(t))y(t) + (\.6) / f(s)y(t - s)ds,
Jn

y'if) = -0.3)y(t) + g.6)U(x(t)) - 10/(0,

in which JC0 % 1.0923 and U(x) = x/(l +x). Clearly, (x*,y*) = (1, 1/20) and
U(x*) = 1/2. It is easy to see that all the hypotheses of Theorem 3.6 are satisfied
for the choice of A = 5, B = 1 and hence (x*, y*) is globally asymptotically stable
by virtue of Theorem 3.6. It may be observed that the parametric conditions of both
Theorems 4.1 and 4.3 of [7] are violated, and hence they are not applicable here.

https://doi.org/10.1017/S1446181100009925 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100009925


432 V. Sree Hari Rao and P. Raja Sekhara Rao [20]

EXAMPLE 3.8. Consider the system

x'(t) = (x0 - x(t)) - 20U(x(t))y(t) + 2 [ f(s)y(t - s)ds,
J

y'(t) = -5y(t) + \6U(x(t)) - 2/(0,

in which D = 1, a = 20, b = 0.5, y - 4, c = 16, d = 2, x0 = 22 and U(x) =
x/O + x). Clearly, (x*, y') = (9, 7/2) and U(x*) = 3/4. Since D - byy*/2 < 0,
Theorem 3.6 cannot be applied here, while both Theorems 4.1 and 4.3 of [7] ensure
the global asymptotic stability of (x*, y*) in this case.

It is clear from the above examples that Theorem 3.6 is independent of Theorems 4.1
and 4.3 of [7].

Thus our study adds one more result on global stability in this area.

4. Some special cases

4.1. System with infinite carrying capacity Theorem 3.5 motivates us to study the
stability of the following chemostat-like model under the influence of the time delay
r > 0 in the growth response:

dx(t) r°°
—— = D(x0 - *(/)) - aU(x(t))y(t) + by / f(s)y(t - s) ds,

= -(y + D)y(t) + cy(t)U(x(t - r)).
at

System (4.1) is obtained from (2.1) for the choice d = 0 which implies that the
carrying capacity of the environment no longer influences the dynamics of the system.
All the terms (4.1) have the same meaning and definition as in (2.1). The conditions
(A|) and (3.15) on the uptake function and (A2) on the delay kernel / are assumed to
hold in this section also.

Under these assumptions, it is shown in [19,29] that the solutions to (4.1) do exist,
and are unique and continuable in their maximal intervals of existence with appropriate
initial conditions (for example, (2.2)). It is further shown that the solutions of (4.1)
are dissipative and bounded.

It may be noticed that (.v0, 0) is an equilibrium solution of (4.1) also. But we are
interested in the survival of the species and look for a positive equilibrium solution
which, if it exists, should satisfy

Dx* + aU(x*)y*-byy* = Dxa and cU(x*) = y + D.
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By Assumption (A|), x* > 0 exists if y + D/c < L and y* given by y* =
D(x0 - x*)/(aU(x*) - by) exists and is positive if (x0 - x*)(aif(x*) - by) > 0.
Since c < a and b G (0, 1), we have aU(x*) — by > 0 whenever x* > 0 exists.
Therefore y* > 0 exists if JC0 > x*.

In this context we assume that

y + D
< L and x0 > x*, (4.2)

c

where x* is such that U(x*) — y + D/c, which implies the existence of a positive
equilibrium solution (JC*, y*) for (4.1).

In the following result, we obtain a lower bound for r > 0 for which the positive
equilibrium solution (x*, y*) remains globally asymptotically stable. As the proof of
this result is quite similar to that of Theorem 3.5, we only state the result.

THEOREM 4.1. The equilibrium solution (x*, y*) of (4.1) is globally asymptotically
stable for

. , D — ck — aley* aa — by
0 < r < r* = min ' *

ay*)ck ' (aL + by)ck\'

provided D — ck — aky* > 0 andaa — by > 0, in which a = min^> .̂ [U(x)\ and k
is the Lipschitz constant defined in (3.15).

REMARK 4.2. System (4.1) is considered by HeandRuan in [19]. It may be noticed
that the technique adopted by He and Ruan in [19] enforces the restrictions

Tf = / /(s)[exp(>/+D)v -\]ds < oo and T} = / /(*)[1 - exp'y's]ds < oo,
Jo Jo

yx = c — y — D on the delay kernels, in addition to (A2). This reduces the choice of
delay kernels / in [19]. Moreover, the terms f/ and Tj are included in the estimation
of the delay r which implies the direct influence of the delay kernel on r of [19]. This
clearly establishes that our estimate is quite different from that obtained in [19].

The following example compares the lengths of the delay parameter estimated by
Theorem 4.1 above and [19, Theorem 4.1].

EXAMPLE 4.3. Consider the system

x'(t) = 8(x0 - JC(O) - 22U(x(t))y(t) + f f(t- s)y(s) ds,
J -oo

y'(t) = -\0y(t) + 20U(x(t -T)),
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in which D = 8, y = 2, b = 0.5, x0 = 11 and U(x) = */(10 + x). Then (**, / ) =
(10, 0.8) and U(x*) = 0.5 with k = 0.1. For these parametric values, the length of
the delay given by Theorem 4.1 for which the system is globally asymptotically stable
is r* = 0.2172 while [19, Theorem 4.1] estimates the delay to be r* = 0.162.

The following example supports the claim in Remark 4.2.

EXAMPLE 4.4. Consider the system

x\t) = 2(14 - x{t)) - l4U(x{t))y(t) + [ f(t- s)y(s) ds.

in which y = 4, b = 0.75 and U{x) = x/(4 + x) with f(s) = 4e~4s. Then
(*•, y*) = (12, 8/15) and U(x') = 0.75 with k = 1/8. Clearly all the conditions of
Theorem 4.1 are satisfied, yielding r* = 0.00704. Therefore Theorem 4.1 ensures the
global asymptotic stability of (12, 8/15) for 0 < r < r* = 0.00704. When

/•O

/

Jo
-l]ds-* oo,

[19, Theorem 4.1] cannot be applied here.

We understand here that the conditions provided by He and Ruan may yield larger
values for r in some cases but this may not be achieved without severely restricting
the other parameters of the system. At the same time, the parametric conditions of
Theorem 4.1 are easy to work with and Theorem 4.1 is applicable in many cases as
we have seen in the above examples.

REMARK 4.5. No monotonicity or differentiability conditions are placed on the
uptake function U in Theorem 4.1 unlike as in earlier studies ([1-7, 10,16-20,29,30]).
TheMichaelis-Menten uptake function, namely, U(x) = ax/{m + x), is chosen as the
one suitable for studies in a chemostat. But one cannot expect all the microorganisms
in nature to be of the same form. Some more specific forms of uptake functions
studied by researchers which have experimental support are given below (see [31] for
more details).

(1) Consider the function U(x) = mx2f{a\ +x)(bi + x), in which mt, a\ and b\
are positive constants.
(2) Another well-known example of an uptake function is the following:

m
U(x)= m,b,c>0,

1 + b/x + x/c

which is an example of a nonmonotonically increasing uptake function.
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All the earlier studies ([1-7,10,16-20,29,30], see also the discussion before The-
orem 3.5) have defined their uptake functions to follow the properties of the above
functions which are at least obviously bounded and continuously differentiable.

Now consider the function

x"
U(x) = r , OJ > 0, 0 < a < £ .

(l) + XP

Termed a generalised Michaelis-Menten uptake function (see [22]), this function
satisfies a Lipschitz condition for a > 1 and fails to satisfy the condition at x = 0
whenO <a < 1. Observe also that x = 0 is the only such point at which the condition
fails to be satisfied. The behaviour of all the functions that are mentioned above
as experimentally proved uptake functions in a chemostat can be studied from this
function. In [22], the authors established the existence and uniqueness of solutions to
the system under consideration. The system considered in [22] deals with a distributed
delay in the growth equation of y in place of a fixed delay r as in (2.1). Further, the
stability of equilibria with such uptake functions is also discussed in [22]. However,
in the present case we require a Lipschitz-type condition (3.15) on the system (4.1) (or
(2.1)) to establish sufficient conditions for stability. We observe that it is the selection
of Lyapunov function that imposes this condition on U.

Hence we remark that our results apply to a more general class of delay kernels
and uptake functions than those envisaged by [19].

4.2. System without material recycling We shall now consider the case when the
death of the species is attributed only to the washout. That is, the washout is fast
enough that natural death numbers are insignificant (y = 0). In such a case, (4.1)
further reduces to

x\t) = D(x0 - x(t)) - aU(x(t))y(t),
(4.3)

y(t) = -Dy(t) + ci/(x(t - r)).

System (4.3), a chemostat model with time delay in growth response was studied in
[4,16]. It is known that solutions to (4.3) do exist and are positive and bounded under
suitable initial conditions (see (2.2)).

System (4.3) has a positive equilibrium solution under the conditions D < cL and
jto > x", where x* > 0 is such that U(x*) = D/c (see the discussion above (4.2)).

Recently, Beretta and Kuang [4] estimated the delay length for which the positive
equilibrium solution (x*,y*) is globally asymptotically stable assuming c = a in
(4.3). We observe that Theorem 4.1 enables us to study the stability of (x*, y*) in
this special case also. We now present an example to compare the results of both
Theorem 4.1 when y = 0 and Theorem 3.1 of [4].
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EXAMPLE 4.6. Consider the system

x'(t) = 3(*0 - *(0) - 5U(x(t))y(t),

in which D = 3, a = 5 = c, x0 = 5.5 and U(x) = x/Q + x). Then (x*, y*) =
(4.5, 1) with k = 2/15 and a = 3/5. Now from Theorem 4.1, we have after some
calculations, r* = 5/16. This further implies that (x*, y*) is globally asymptotically
stable for 0 < T < 5/16 by virtue of Theorem 4.1.

By appropriate scaling we obtain (9/11,2/11) as the corresponding equilibrium
solution of system (1.1) of [4]. The length of the delay for which this equilibrium is
stable is estimated to be r* = 0.002115, employing [4, Theorem 3.1]. It is clear in
this case that the estimate on the length of the delay parameter given by Theorem 4.1
here is much larger than the one given by [4, Theorem 3.1]. Further, we have noticed
that the procedure suggested in [4] for the estimation of r* is tedious as it involves a
large number of calculations. Moreover, the length of the delay parameter given by
[4, Theorem 3.1] depends on the bounds on the solutions of the system which, in turn,
depend on the delay parameter itself, which is not the case with Theorem 4.1 above.

REMARK 4.7. The choices D = 1, x0 = 1 and a = c = 1, (or by appropriate
scaling) reduce (4.3) to the considerations of Beretta and Kuang ([4]). Noting that
the equilibrium solution (x*, y*) satisfies 1 - x* — y* = 0 and U(x*) = 1, the length
of the delay r* in this case is given by r* = min{l - kx*/(l + y*)k, l/Lk}, using
Theorem 4.1. Thus if we can find k defined in (3.15) such that kx* < 1, then for
0 < T < r*, the system (1.1) of [4] is globally asymptotically stable. It may be
seen that this estimate on r* is different from the one obtained in [4]. Further, no
differentiability conditions are placed on U unlike as in [4].

5. Discussion

It is interesting to note that delay-independent results (with stability, no matter how
large the delay is) would severely restrict the parameters of the system. Due to these
restrictions, delay-independent stability results become less applicable. Moreover,
these results are of little interest given that increasing time delays always destabilises
the system [11,13-15]. Hence it is worthwhile discussing results which depend on the
delay (that is, delay-dependent stability results) for which the equilibrium is stable.
This is the starting point of our discussion in the present paper in which we have
proposed a mathematical model involving a discrete delay in the growth response of
the consumer species and a distributed delay in the nutrient recycling. Employing a
Lyapunov functional technique, we have obtained various sets of sufficient conditions

https://doi.org/10.1017/S1446181100009925 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100009925


[25] Stability analysis of resource-consumer dynamic models 437

on the parameters, estimating the length of the delay for which the positive equilibrium
is globally asymptotically stable. We have not placed any a priori conditions on the
parameters for the stability of the positive equilibrium of the delay-free system. Thus
our method applies to the delay-free system as well (that is, when r = 0).
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