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Abstract. Machine-learning methods may be used to perform many tasks required in the analy-
sis of astronomical data, including: data description and interpretation, pattern recognition, pre-
diction, classification, compression, inference and many more. An intuitive and well-established
approach to machine learning is the use of artificial neural networks (NNs), which consist of a
group of interconnected nodes, each of which processes information that it receives and then
passes this product on to other nodes via weighted connections. In particular, I discuss the first
public release of the generic neural network training algorithm, called SkyNet, and demon-
strate its application to astronomical problems focusing on its use in the BAMBI package
for accelerated Bayesian inference in cosmology, and the identification of gamma-ray bursters.
The SkyNet and BAMBI packages, which are fully parallelised using MPI, are available at
http://www.mrao.cam.ac.uk/software/.
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1. Introduction
In astrophysics and cosmology, one is faced with analysing large, complicated and

multidimensional data sets. Such analyses typically include tasks such as: data description
and interpretation, pattern recognition, prediction, classification, compression, inference
and many more. One way of performing such tasks is through the use of machine-learning
methods (see, e.g., MacKay (2003), Ball & Brunner (2010) and Way et al. (2012)).

In supervised learning, the goal is to infer a function from labeled training data, which
consist of a set of training examples. Each example has known ‘input’ quantities whose
values are to be used to predict the values of the ‘outputs’. Thus, the function to be
inferred is the mapping from input to outputs. Once learned, this mapping can be applied
to datasets for which the values of the outputs are not known. Supervised learning is
usually further subdivided into classification and regression.

An intuitive and well-established approach to machine learning is based on the use of
artificial neural networks (NNs), which are loosely inspired by the structure and func-
tional aspects of a brain. They consist of a group of interconnected nodes, each of which
processes information that it receives and then passes this product on to other nodes via
weighted connections. In this way, NNs constitute a non-linear statistical data modeling
tool, which may be used to model complex relationships between a set of inputs and
outputs. Many machine-learning applications can be performed using only feed-forward
NNs: an input layer of nodes passes information to an output layer via zero, one, or many
‘hidden’ layers in between. Moreover, a universal approximation theorem Hornik et al.
(1990) assures us that we can approximate any reasonable mapping with a NN of a given
form. A useful introduction to NNs can be found in MacKay (2003).
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In astronomy, feed-forward NNs have been applied to various machine-learning prob-
lems for over 20 years (see, e.g., Way et al. (2012), Tagliaferri et al. (2003)). Nonetheless,
their more widespread use in astronomy has been limited by the difficulty associated
with standard techniques, such as backpropagation, in training networks having many
nodes and/or numerous hidden layers (i.e. ‘large’ and/or ‘deep’ networks), which are of-
ten necessary to model the complicated mappings between numerous inputs and outputs
in modern astronomical applications. We therefore introduce SkyNet Graff et al. (2014),
an efficient and robust neural network training algorithm that is capable of training large
and/or deep feed-forward networks.

An important recent application of regression supervised learning in astrophysics and
cosmology is the acceleration of the Bayesian analysis (both parametet estimation and
model selection) of large data sets in the context of complicated models. At each point
in parameter space, Bayesian methods require the evaluation of a ‘likelihood’ function
describing the probability of obtaining the data for a given set of model parameters. For
some problems each such function evaluation may take up to tens of seconds. Substantial
gains in performance can thus be achieved if one is able to speed up the evaluation of
the likelihood, and a NN is ideally suited for this task. The blind accelerated multimodal
Bayesian inference (BAMBI) algorithm Graff et al. (2012) uses SkyNet for training such
NNs, and combines them with a nested sampling Skilling (2004) approach that efficiently
calculates the Bayesian evidence (also referred to as the marginal likelihood) for model
selection and produces samples from the posterior distribution for parameter estimation.
It particular, BAMBI employs the MultiNest algorithm Feroz & Hobson (2008), Feroz
et al. (2009), Feroz et al. (2013), which is a generic implementation of nested sampling,
extended to handle multimodal and degenerate distributions, and is fully parallelised.

This paper will discuss results from applying SkyNet within the BAMBI algorithm to
accelerate Bayesian inference in cosmology, and also to the identification of gamma-ray
bursters.

2. Network structure
A multilayer perceptron feed-forward neural network is the simplest type of network

and consists of ordered layers of perceptron nodes that pass scalar values from one layer
to the next. The perceptron is the simplest kind of node, and maps an input vector
x ∈ �n to a scalar output f(x;w, θ) via

f(x;w, θ) = θ +
n∑

i=1

wixi, (2.1)

where w = {wi} and θ are the parameters of the perceptron, called the ‘weights’ and
‘bias’, respectively. In a feed-forward NN, the value at each node is computed by applying
an ‘activation function’, g, to the scalar value calculated in Equation 2.1. The activation
function used for nodes in hidden layers is g(x) = 1/(1 + e−x) = sig(x), the sigmoid
function. For output layer nodes, g(x) = x. The non-linearity of g for the hidden layers is
essential to allowing the network to model non-linear functions. The weights and biases
are the values we wish to determine in our training (described in Section 3). As they vary,
a huge range of non-linear mappings from inputs to outputs is possible. By increasing
the number of hidden nodes, we can achieve more accuracy at the risk of overfitting to
our training data.

3. Network training
In training a NN, we wish to find the optimal set of network weights and biases that

maximise the accuracy of predicted outputs. However, we must be careful to avoid over-
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fitting to our training data at the expense of making accurate predictions for input values
on which the network has not been trained. The set of training data inputs and outputs,
D = {x(k) , t(k)}, is provided by the user. Approximately 75 per cent should be used for
actual NN training and the remainder retained as a validation set that will be used to de-
termine convergence and to avoid overfitting. This ratio of 3:1 gives plenty of information
for training but still leaves a representative subset of the data for checks to be made.

3.1. Network objective function
Let us denote the network weights and biases collectively by the vector a. SkyNet con-
siders the parameters a to be random variables with a posterior distribution given by the
likelihood multiplied by the prior. The likelihood, L(a;σ), encodes how well the NN, char-
acterised by a given set of parameters a, is able to reproduce the known training data out-
puts. This is modulated by the prior S(a;α), which is assumed to have the form of a Gaus-
sian centered at the origin with multiplicative factor α inside the exponential. α deter-
mines the relative importance of the prior and the likelihood. The prior here acts as a reg-
ularization function; in a full Bayesian treatment it may have a different functional form.

The form of the likelihood depends on the type of network being trained. For regres-
sion problems, SkyNet assumes a log-likelihood function for the network parameters a
given by the standard χ2 misfit function, but including hyperparameters σ that describe
the standard deviation (error size) of each of the outputs. For classification problems,
SkyNet again uses continuous outputs (rather than discrete ones), which are inter-
preted as the probabilities that a set of inputs belongs to a particular output class. This
is achieved by applying the softmax transformation to the output values, so that they
are all non-negative and sum to unity. The classification likelihood is then given by the
cross-entropy of the targets and softmaxed output values MacKay (2003).

3.2. Initialisation and pre-training
The training of the NN can be started from some random initial state, or from a state
determined from a ‘pre-training’ procedure. In the former case, the network training
begins by setting random values for the network parameters, sampled from a normal
distribution with zero mean and variance of 0.01. SkyNet can also make use of the pre-
training approach developed by Hinton et al. (2006), Hinton & Salakhutdinov (2006),
which obtains a set of network weights and biases close to a good solution of the network
objective function.

3.3. Optimisation of the objective function
Once the initial set of network parameters have been obtained, either by assigning them
randomly or through pre-training, the network is then trained by iterative optimisation
of the objective function. NN training proceeds using an adapted form of a truncated
Newton (or ‘Hessian-free’ Martens (2010)) optimisation algorithm, to calculate the step,
δa, that should be taken at each iteration. The required step is obtained using a stable
and efficient procedure applicable to NNs that avoids explicit calculation and calcula-
tion of the Hessian Schraudolph (2002), Pearlmutter (1994). Following each such step,
adjustments to α and σ may be made before another step is calculated (using formulas
derived from the MemSys software package Gull & Skilling (1999)). The combination of
the above methods makes practical the use of second-order derivative information even
for large networks.

3.4. Convergence
Following each iteration of the optmisation algorithm, the likelihood, posterior, corre-
lation, and error squared values are calculated both for the training data and for the
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Figure 1. A flowchart depicting the transitions between sampling and NN training within
BAMBI. N is given by updInt from MultiNest.

validation data. When these values begin to diverge and the predictions on the validation
data no longer improve, it is deemed that the training has converged and optimization
is terminated. This helps to prevent excessive over-fitting to the training data.

4. SkyNet Regression and BAMBI: learning likelihoods
The BAMBI algorithm combines neural networks with nested sampling. After a speci-

fied number of new samples from MultiNest have been obtained, BAMBI uses these to
train a regression network on the log-likelihood function using the SkyNet algorithm in
order to perform likelihood interpolation. Using the network reduces the log-likelihood
evaluation time from seconds to microseconds, allowing MultiNest to complete analysis
much more rapidly. The user also obtains a network or set of networks that are trained to
easily and quickly provide more log-likelihood evaluations near the peak if needed, or in
subsequent analyses. Other methods exist for likelihood interpolation and extrapolation,
as well as the fast estimation of the Bayesian evidence, best-fit parameters and errors.
See Higden et al. (2012), Rasmussen (2003), Bliznyuk et al. (2008) and references therein
for more information.

4.1. The structure of BAMBI
The flow of sampling and training within BAMBI is demonstrated by the flowchart given
in Figure 1. After convergence to the optimal NN weights, we test that the network is
able to predict likelihood values to within a specified tolerance level. If not, sampling
continues using the original log-likelihood until enough new samples have been made
for training to be resumed. Once a network is trained that is sufficiently accurate, its
predictions are used in place of the original log-likelihood function for future samples in
MultiNest. Consistency checks are made to ensure the NN is not making predictions
outside the range of data on which it was trained.

The optimal network possible with a given set of training data may not be able to
predict log-likelihood values accurately enough, so an additional criterion is placed on
when to use the trained network. This requirement is that the RMSE of log-likelihoods
predictions is less than a user-specified tolerance, tol. When the trained network does
not pass this test, then BAMBI will continue using the original log-likelihood function
to replace the older half of the samples to generate a new training data set. Network
training will then resume, beginning with the weights that it had found as optimal for
the previous data set. Since samples are generated from nested contours and each new
data set contains half of the previous one, the saved network will already be able to
produce reasonable predictions on this new data.
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Figure 2. Marginalised 2D posteriors for the non-flat model (ΛCDM+ΩK ) using only CMB
data. The 12 most correlated pairs are shown. MultiNest is in solid black, BAMBI in dashed
blue. Inner and outer contours represent 68% and 95% confidence levels, respectively.

Once a NN is in use in place of the original log-likelihood function its evaluations
are taken to be the true log-likelihoods. Checks are made to ensure that the network
is maintaining its accuracy and will re-train when these fail. To re-train the network,
BAMBI first substitutes the original log-likelihood function back in and gathers the
required number of new samples from MultiNest. Training then commences, resuming
from the previously saved network. These criteria ensure that the network is not trusted
too much when making predictions beyond the limits of the data it was trained on.

4.2. Accelerated cosmology inference using BAMBI
We implement BAMBI within the standard CosmoMC code Lewis & Bridle (2002).
Bayesian parameter estimation in cosmology requires evaluation of theoretical tempera-
ture and polarisation CMB power spectra (Cl values) using codes such as CAMB Lewis
et al. (2000). These evaluations can take on the order of tens of seconds depending on the
cosmological model. The Cl spectra are then compared to observations. Considering that
thousands of these evaluations will be required, this is a computationally expensive step
and a limiting factor in the speed of any Bayesian analysis. BAMBI has the benefit of not
requiring a pre-computed sample of points as in CosmoNet Auld et al. (2008a), Auld
et al. (2008b) InterpMC Bouland et al. (2011), PICO Fendt & Wandelt (2007), and
others, which is particularly important when including new parameters or new physics
in the model.

We use a standard set of eight cosmological parameters, each with a uniform prior
distribution. A non-flat cosmological model incorporates all of these parameters, while
we set ΩK = 0 for a flat model. We use w = −1 in both cases. The flat model thus
represents the standard ΛCDM cosmology. We use two different data sets for analysis:
(1) CMB observations alone and (2) CMB observations plus Hubble Space Telescope
constraints on H0 , large-scale structure constraints from the luminous red galaxy subset
of the SDSS and the 2dF survey, and supernovae Ia data.

Analyses with MultiNest and BAMBI were run on all four combinations of models
and data sets. In Figure 2 we show the recovered two-dimensional marginalised posterior
probability distributions for the non-flat model using the CMB-only data set. We see
very close agreement between MultiNest (in solid black) and BAMBI (in dashed blue)
across all parameters. Using the full data set one finds similar correspondence in the
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Table 1. Time per likelihood evaluation in a follow-up analysis and speed-up factors with
respect to MultiNest.

Method Model Data tL (ms) factor

MultiNest

flat CMB 2775 —
all 3813 —

non-flat CMB 12830 —
all 10980 —

BAMBI
flat CMB 0.2077 13360

all 0.2146 17770

non-flat CMB 0.08449 151900
all 0.2032 54040

posterior probability contours. The posterior probability distributions for the flat model
with either data set are extremely similar to those of the non-flat flodel with setting
ΩK = 0, as expected. Moreover, the estimated log-evidences obtained by MultiNest

and BAMBI for each case are consistent to within the (chosen) statistical error of 0.1
units.

An important comparison is the running time required. The analyses were run using
MPI parallelisation on 48 processors. We recorded the time required for the complete
analysis, not including any data initialisation prior to initial sampling. We then divide
this time by the number of likelihood evaluations performed to obtain an average time per
likelihood. Therefore, time required to train the NN is still counted as a penalty factor.
If a NN takes more time to train, this will hurt the average time, but obtaining a usable
NN sooner and with fewer training calls will give a better time since more likelihoods will
be evaluated by the NN. We are able to obtain a significant decrease in running time of
order 40%, while adding in the bonus of having a NN trained on the likelihood function.

A major benefit of BAMBI is that following an initial run the user is provided with a
trained NN, or multiple ones, that model the log-likelihood function. These can be used
in any subsequent analysis to obtain much faster results. This is a comparable analysis
to that of CosmoNet Auld et al. (2008a), Auld et al. (2008b), except that the NNs here
are a product of an initial Bayesian analysis where the peak of the distribution was not
previously known. No prior knowledge of the structure of the likelihood surface was used
to generate the networks that are now able to be re-used. When multiple NNs are trained
and used in the initial BAMBI analysis, we must determine which network’s prediction
to use in the follow-up. We decide this by using a computationally cheap method of
estimating the error on predictions suggested by MacKay (1995).

To demonstrate the speed-up potential of using the NNs in follow-up analyses, we
repeated each of the four analyses above, but set the prior ranges to be uniform over
the region defined by xmax(log(L)) ± 4σ, where σ is the vector of standard deviations
of the marginalised one-dimensional posterior probabilities. Table 1 shows the average
time taken per log-likelihood function evaluation when this follow-up was performed with
MultiNest and with BAMBI. In all cases, the BAMBI evidences matched the Multi-

Nest values to within statistical error and the posteriors agreed closely. We can thus
obtain accurate posterior distributions and evidence calculations orders of magnitude
faster than originally possible.

5. SkyNet Classification: identifying gamma-ray bursters
Long gamma-ray bursts (GRBs) are almost all indicators of core-collapse supernovae

from the deaths of massive stars. The ability determine the intrinsic rate of these events
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Figure 3. Actual (black solid) and expected (dashed red) ROC curves for a NN classifier that
predicts whether a GRB will be detected by Swift.

as a function of redshift is essential for studying numerous aspects of stellar evolution
and cosmology. The Swift space telescope is a multi-wavelength detector that is currently
observing hundreds of GRBs Gehrels et al. (2004). However, Swift uses a complicated
combination of over 500 triggering criteria for identifying GRBs, which makes it difficult
to infer the intrinsic GRB rate.

To investigate this issue, a recent study by Lien et al. (2012) performed a Monte Carlo
analysis that generated a mock sample of GRBs, using the GRB rate and luminosity
function of Wanderman & Piran (2010), and processed them through an entire simulated
Swift detection pipeline.

5.1. Form of the classification problem
Our goal here is to replace the simulated Swift trigger pipeline with a classification NN,
which (as we will see) can determine in just a few microseconds whether a given GRB is
detected. We use as training data a pre-computed mock sample of 10, 000 GRBs from Lien
et al. (2012). In particular, we divide this sample randomly into ∼4000 for training,
∼1000 for validation, and the final ∼5000 as a blind test set on which to perform our
final evaluations. For each GRB we have 13 inputs that describe the GRB and how it is
seen by the detector. The two outputs correspond to the probabilities that the GRB is
or is not detected.

5.2. Results
We can investigate the quality of the classification as a function of a threshold probability,
pth , required to claim a detection. As discussed in Feroz et al. (2008), we can compute the
expected number of total GRB detections, correct detections, and false detections, as well
as other derived statistics as a function of pth , without knowing the true classification.
From these, we can compute the completeness ε (fraction of detected GRBs that have
been correctly classified; also referred to as the efficiency) and purity τ (fraction of all
GRBs correctly classified as detected).

Values of the actual and expected completeness and purity are nearly identical. Thus,
without knowing the true classifications of the GRBs as detected or not, we can set pth
to obtain the desired completeness and purity levels for the final sample.

With this information, we can also plot the actual and expected receiver operating
characteristic (ROC) curves (see, e.g., Fawcett (2006)). The ROC curve plots the true
positive rate (identical to completeness) against the false positive rate (also known as
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contamination). In general, the larger the area underneath a ROC curve, the more pow-
erful the classifier. From Figure 3, we can see that the expected and actual ROC curves
for a NN classifier are very close, with deviations occuring only at very low false positive
rates. We conclude that pth = 0.5, the original naive choice, is a near-optimal threshold
value. The curves also indicate that this test is quite powerful at predicting which GRBs
will be detected by Swift.

Using pth = 0.5, we now wish to determine how well the GRB detection rate with
respect to redshift is reproduced, since this relationship is key to deriving scientific results.
The detected GRB event counts as a function of redshift for both our NN classifier and
the original Swift pipeline agree very well. When histogrammed, the error between the
counts differs by less than the Poissonian counting uncertainty on the true values inherent
in this type of process.

6. Conclusion
We present an efficient and robust neural network training algorithm, called SkyNet.

This generic tool is capable of training large and deep feed-forward networks and may be
applied to machine-learning tasks in astronomy. We describe the application of SkyNet

to the regression problem of learning likelihoods, in combination with MultiNest to
create the BAMBI algorithm for accelerated Bayesian inference. This is a generic tool and
requires no pre-processing. We apply BAMBI to the problem of cosmological parameter
estimation and model selection. By calculating a significant fraction of the likelihood
values with the NN instead of the full function, we are able to reduce the running time
by ∼ 40% on an initial run, and subsequent analyses using the resulting trained networks
enjoy speed-up factors of O(104−5). We also demonstrate the application of SkyNet to
the classification problem of identifying gamma-ray bursters.
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