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Summary

In the development of the rotor calculus presented in a previous papei
space-time was taken to be flat. This work is now extended to the case oi
curved space-times, which, in the first instance, is taken to be Riemannian.
(The calculus bears at times a strong formal resemblance to the spinor
analysis of Infeld and van der Waerden, but it is in fact developed quite
independently of this.) Owing to the fact that all general relations had
earlier already been written in a generally covariant form they may be taken
over unchanged into the present context. In particular,

rAkmTBim — xABS*l — eABCX kl

now serves as a defining relation for the connecting quantities xAlcl. A
linear rotor connection is introduced, and the covariant derivative of a
rotor defined. The covariant constancy of the rAkl establishes the relation
between the linear connections in w-space and in r-space. A rotor curvature
tensor is considered alongside a number of other curvature objects. Next,
conformal transformations are dealt with, of which duality rotations may
be considered as a special case. This leads naturally to a gauge-covariant
generalization of the whole calculus. A so-called rotor-derivative is defined,
and some general relations involving such derivatives investigated. The
relation of the rotor curvature tensor to the spin-curvature tensor is touched
upon, after which the introduction of "geodesic frames" is considered.
After this general theory some points concerning the Maxwell field are
dealt with, which is followed by some work concerning basic quadratic
and cubic invariants. Finally, a certain basic symmetric rotor is re-considered
in the context of the classification of Weyl tensors, and the idea of a canonical
representation suggested.

1. Introduction

In a previous paper x (Buchdahl, 1966) I developed the calculus of
1 This paper will be referred to as /, and likewise its numbered sections and equations

will be distinguished by the letter I. It should be remarked that the general introduction
to / and the references to earlier work given there are here taken for granted, as are the
notaton and terminology of / .

424

https://doi.org/10.1017/S1446788700004894 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004894
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rotors, i.e. of the vectors and tensors of a three-dimensional complex
vector space which can be brought into one-one correspondence with self-
dual tensors in space-time. The latter was there supposed to be flat. This
assumption notwithstanding, the general formalism was developed so as
to be invariant under arbitrary ^-transformations, and arbitrary r-trans-
formations, it being implied that one has the freedom to carry these out
independently of one another. This freedom entails the possibility of
generalizing the calculus without undue difficulty to the situation when
w-space is curved. The purpose of this paper is to achieve this generalization
proceeding in a way inevitably reminiscent of the work if Infeld and van der
Waerden (1933) in the context of spinor calculus, not least because no use
is made here of orthonormal tetrads.

In the case of flat a»-space it is possible to arrange the rAkl to have
fixed numerical values; that is to say, corresponding to any Lorentz trans-
formation Lm

n one can find a rotor image AB
A such that the two trans-

formations carried out jointly leave the rAkl numerically invariant, cf. I
Section 3. When ie>-space is curved the rAkl become functions of the w-
coordinates X*, and it is not possible in general to find an r-image of an
arbitrary transformation of the coordinate :e* so as to leave the functional
form of the xAhl invariant. Accordingly r-transformations and w-transfor-
mations are now always to be regarded as being carried out independently
of each other. The rAkl are, as before, the connecting quantities between
simple rotors and self-dual w-tensors, and they are required only to obey
the defining relation I (4.10); where the «.AB are six arbitrary functions
(invariant under w-transformations alone), subject only to the condition
det a.AB =fi 0. The ten components of the metric tensor gkl are now functions
of the coordinates. This tensor is required to be non-singular and of signature
—2 but is otherwise arbitrary, except in as far as it is supposed to satisfy
conditions of continuity and differentiability appropriate to the context.
It need not necessarily be that of a Riemann space but might, for instance,
be that of a Weyl space.

At this point it is convenient to introduce a terminology relating to
the various more or less specialized spaces which may be encountered. A
general Riemann space, — the conditions on gkl mentioned above being
understood, — will be denoted by V. (The dimensional number 4 usually
added as a subscript is omitted since all te'-spaces here contemplated
are 4-dimensional.) Then, in order of increasing specialization, Vo is
a V of zero scalar curvature; VB is an Einstein space, i.e. a V the trace-
free part

(1-1) Ekl = Rkl-%gklR

of the Ricci tensor of which vanishes; VR is a Ricci-flat V, i.e. it is such
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that Rkl = 0; and finally Vc is a V of constant Riemannian curvature,
i.e. it has 2

a n\ ~D JL/y a 7?

•L) ^klmn — 65k[nbm]l1*--

A Weyl space will be denoted by W.
In general outline this paper pursues the following course. After a

discussion of the defining relations for the rAkl in Section 2, a linear rotor
connection is introduced in Section 3 and its relation to the linear con-
nection of a Riemann space established in Section 4, on the basis of the
covariant constancy of the rAkl. The rotor curvature tensor and various
related curvature objects are dealt with in Sections 5 and 6. Conformal
transformations form the subject of Section 7, where conformal transfor-
mations in r-place alone are also contemplated. This leads naturally to the
idea of duality rotations (Section 8). That the whole calculus has a straight-
forward gauge-covariant generalization is established in Section 9, which
deals with rotors on Weyl spaces. From the anti-symmetrized second
covariant derivative of a tensor of any kind one can form a tensor whose
rotor valence exceeds by unity that of the original tensor: its "rotor
derivative". Properties of first and higher rotor derivatives of rotors are
considered in Section 10, and the condition is found for rotor differentiation
to be commutative. Section 11 briefly refers to the connection between
curvature rotors and curvature spinors, after which it is shown in Section
12 how, by suitable transformations, the rAkl can be arranged to take their
standard representative values at any arbitrarily selected point and in a
sufficiently small neighbourhood of it. Some formal considerations con-
cerning the Maxwell field appear in Section 13, including a discussion of
the consequences of representing any such non-null field by the constant
rotor whose components are (1, 0, 0). Basic quadratic and cubic invariants
are considered in Section 14, and a certain scalar density is exhibited as
the divergence of a quantity presented in explicit form as a function of the
components of the linear rotor connection and its first derivative. Finally,
Section 15 deals with a rotor equivalent KAB of the conformal curvature
tensor in somewhat greater detail, with special reference to the classification
of Weyl tensors, and the idea of a canonical representation of the rAkl

is suggested.

2. Defining relation for the TMI

As already remarked in the Introduction the rAkl are now any self-dual
functions of the x" which obey the defining relation / (4.10), i.e.

2 The order of the indices of the Riemann tensor is that adopted by Eisenhart (1949).
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(2-1) rAkmrBlm = gkl<*-AB-~eABCr kl-

The components of the metric rotor xAB are six (w-invariant) functions
which may be prescribed arbitrarily except in as far as the condition

(2.2) det *AB ̂  0

must be satisfied.
All the general relations of / (other than those referring specifically

to flat space which occur in Sections 3 and 10) may now be taken over into
the present context as they stand. In this respect it may be noted that,
superficial appearances notwithstanding, / (4.13) is not stronger than (2.1),
for it can be derived from the latter in the following, albeit somewhat
tedious, way. Arguing as in Section 2b and 6c of / one must have

T u T B _c] _ PABC t
x klx mnx j>« — e Jklmnvi'

where / „ „ , „ is a w-tensor, to be determined. Transvect the left hand
member of (2.3) with T^uvTBuwTCe

tt and the right hand member with — ±eABC;
these two quantities being equal, according to I (2.24). On the left there
then appears a sum of products of ^-tensors, three at a time, which may
be reduced by means of3 S (4.12) and (4.18). It is not necessary to give
the details of this reduction, the outcome of which is that

Iklmnvq — 3b[n[l'lk]m]va'

If one now inserts this in (2.3) and transvects the resulting relation through-
out with TC

M the required relation I (4.13) follows.

3. The linear rotor connection

The analytical part of the calculus rests upon the introduction of a
linear connection FB

Ak in r-space. Given such a connection, covariant
differential equations for rotors can then be written down. Accordingly
the covariant derivative of a covariant rotor <f>A is defined by the linear
relation

The rB
Ak are functions which in any fixed coordinate system and rotor

frame can be assigned arbitrarily but whose transformation properties are
fixed by the requirement that the covariant derivative <f>A;k shall in fact
transform covariantly under w- and /-transformations. This entails that
under w-transformations alone the FB

Ak behave as the components of a

* The letter S distinguishes references to Buchdahl (1962).
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w-vector. Under ^-transformations on the other hand the linear connection
must behave as follows:

(3.2) FB'A,k = A*A,AB'BFB
Ak+AB'BAB

A,,k.

The difference between two distinct linear connections is therefore a
mixed r-tensor. The covariant derivative of a contravariant rotor is

(3.3) </>A
;k = <f>\

(3.1) and (3.3) then ensure that

An arbitrary tensor is to be covariantly differentiated like an outer product
of vectors, e.g.

4>AB;k = <i>AB,k — rC
 Ak<f>CB — rC

 B k ^ ) A C .

Of the covariant derivative of the rotor <f>^ complex conjugate to <f>A one
requires that it be the complex conjugate of the covariant derivative of
tf>A, so that

(3.4) <Ai;fc = <f>A.*-rB
Ak<i>B,

with
pB. _ ~rS

1 Ak — * Ak-

4. Govariant derivative of rotors on Riemann spaces

In a V the components of the linear connection Fm
kl are the Christoffel

symbols, i.e.

(4.i) ^ « = r"fe.(*.!,-fe«..).
which implies the covariant constancy of the metric tensor,

(4-2) gU;m = 0.

Any tensor having both w- and r-indices is to be covariantly differentiated
like the outer product of an appropriate number of r-vectors and i^-vectors,
e.g.

%Ak;l = %Ak, I — r AlXBk — rmklXAm>

and the usual product rule of differentiation continues to hold.
A relation between Fm

hl and FB
An is now established by agreeing

that the tensor equivalent of the covariant derivative of any rotor (f>A be
identical with the covariant derivative of its tensor equivalent. (It is
understood that the tensor equivalent is to be formed simply by transvection
with %rAkl.) Thus it is required that for all <f>A
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or

(4.2) rAkhm = d.

In view of (4.2) it follows that rA
kl.m also vanishes, and then / (2.13)

shows that

(4.3) oiAB;m = 0,

i.e. the r-metric is covariant constant. Writting (4.2) out in full,

rAkl,m * AmrBkl -ln
kmTAnl * "i

whence

(4.4) r*Am =

One can lower the index B on FB
Am:

(4.5) rBAm = *ACr

and then one can infer from (4.4) that

(4.6) r{AB)m =

The work involved is tedious, and the result follows more easily at once
from (4.3). Transvecting with «.AB one gets

(4.7) r v = (J»v«).m
where a = det a.AB; which corresponds exactly to the result

(4.8) r\m = (lnV-g),m.

Note that, in view of (2.1), and (4.1), one can write (4.4) as

(4.9) r*Am = lT™(

In particular, when A and B both have the fixed value / this gives, with
(4.6) and (4.8) and I (6.12), (when <XJJ # 0)

(4.10) fajr^rju^ = (In det xjM\m,

a result which is obvious by inspection of (2.1), with A = B = J; so that
the various equations above are consistent with each other.

5. The rotor curvature tensor

(a) By forming the second skew-symmetrized covariant derivative
of a rotor <f>A one finds that

(5-1) HA;W = PBAk^B,
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where the r-curvature tensor is given by

(5.2) P*Mt = ^ , , , -^ . ,+^,^-^r 'c ,

The index B may be lowered. With (4.5), and using (4.3), one then gets

(5.3) PBAU — *BAl,k— *BAk,l~\-* Ak*CBl— * Al*CBk-

In view of (4.6) it follows at once that

(5-4) P{AB)» = 0,

so that, incidentally, PABkl is trace-free.
(b) Since PCDU is skew-symmetric in the pair of r-indices it is natural

to replace these by a single "dual index", by simply transvecting with
eACD At the same time the skew-symmetric pair of ^-indices may be
replaced by one r-index by the usual device of transvecting with \xBM.
One is thus led naturally to the r-tensor.

(5.5) KAB =

Now

Since <f>B is arbitrary one obtains from this after transvection with rc
kl

(5-6) PCDmn = -\eCDET™Rklmn.

From this and (5.5) it then follows that

(5.7) KAB = -^^tB^Rklmn.

(The synametries of the Riemann tensor, viz.

(5.8—11)
Kk[lmn] — U»

should be constantly kept in mind.) Evidently KAB is symmetric,

(5.12) K[AB] = 0.

The trace of KAB is

(5.13) K=-rj"^Rhtmn = R,

i.e. the scalar formed from KAB is just the scalar curvature of V.
Eq. (5.6) may be inverted to give

(5.14)
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from which Rkimn is obtained by drawing upon the complex conjugate
relation. If (5.14) be transvected with gkm the imaginary part of the left
hand member vanishes on account of (5.11) and one is left with

(5.15) Rkl =

The identity 5 (3.3), i.e.

(5.16) W * T % .

follows easily by multiplying out the first two factors on the left explicitly.
Now insert (5.14) on the left and transvect throughout with eADErDkl,
with the result

(5.17) Vm%<,PBcmn = -

From this one infers that PABki *S self-dual if and only if the V is a VE.
(Cf. the results of Section 7 (ii) of S.) Also, in a Vc

(5.18) PABkl = ±eABCrc
klR, (R = const.).

Some of the equations above may be given a form which brings out
more closely their resemblance to the corresponding spinor equations by
using I (4.9). For example, (5.14) becomes

(5-19) r)ki"R.lmn = lT

which may be compared with S (2.37). (See also Section 11.)
(c) In the heuristic argument leading to the definition (5.5) one

might quite well have replaced rBkl by T-B*1. Consider therefore the alter-
native quantity

(5.20)

With (5.6) this becomes

(5.21)

so that FAB is hermitian,

(5.22)

Using (5.9), (5.21) gives rise to

(5.23) r** = fmnABR

But

(5.24) Q

so that

(5.25)
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It follows that FAB is a zero rotor if and only if the V isaVE. This characteriza-
tion of Einstein spaces is an alternative to that following eq. (5.17). Finally
it may be noted that in view of (5.6) the identity of Bianchi gives rise to

(5-26) PcD[m»;T] = 0.

6. The conformal curvature tensor

Several of the results of the previous section are effectively already
contained in the work of Section 7 of / . For example, granted (5.22), it
follows from / (7.11) that its tensor equivalent is symmetric and trace-
free. Since it is moreover an algebraic concomitant of Rktmn it can therefore
only be a numerical multiple of Ekl. At any rate, it seems appropriate to
turn now to / Section 7a in view of the fact that a symmetric trace-free
rotor is at hand, viz.

(6.1) KAB = KAB-\<x.ABK.

Bearing in mind the remark following eq. / (7.4) one now knows that the
tensor equivalent of KAB has the following properties: (i) it has the sym-
metries of the Riemann tensor, (ii) it is entirely trace-free, (iii) it is equal
to its right and left duals, (iv) it is an algebraic concomitant of Rkimn.
One concludes that it is a numerical multiple of J?*i"C,(mn. In fact it is not
difficult to confirm that

(6-2) \TAMTBmnK
AB = -rjkl"Cstmn

or conversely,

(6.3)

Accordingly the vanishing of KAB is a necessary and sufficient condition
for V to be conformally flat.

7. Conformal transformations

It is of interest to study conformal ^-transformations

directly. Here X is an arbitrary real function of the ic*. The rAhl are taken
to be unaffected under (7.1). No generality would be gained* by laying
down that it takes a factor Xfi, say, where /? is a real number, since the
transformation

* This is analogous to the situation in spinor analysis (cf. Buchdahl, 1959).
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(7.2) rAkl -> 'rAkl = XfirAkl

is tantamount to a mere /-transformation

| I (7.3) AA
A, = XWA.,

which one is always at liberty to carry out. (See, however, (b) below.)
One confirms easily on the basis of (2.1) that a.AB must take a factor X~2.
The behaviour of other quantities is likewise easily determined, e.g. eABC

and rAkl take factors X~3 and 1 respectively. Write

(7.4) X = e*«.

Then it is well known that

(7-5) Tm
kl = rm

kl+2dm
(kq. H-g*^7".

From (4.4) one then infers that

(7.6) AB
An = TB

Am-rB
Am =

Then
AB _ >pB pB =

Akl *• Akl Akl

into which (7.6) is to be inserted. Of the terms which remain only one is
rather complicated, but this may be reduced by means of / (4.13). One
finally arrives at

V / Akl — A. X C \k vi' lint — 2 • l~\ H. • m) — Chi3 • m i /*

'KAB is now easily constructed, and one finds that

M o\ 'V'AB O2a(TfAB\ n^ABlr, m i „ n\™\\
V / ^ 6 \l\. -f-ZOC (q-m ~T~(fm*i ))>

whence

(7.9) 'KAB = e2"KAB,

as must of course be the case, in view of (6.3). A subsequent /-transforma-
tion of the form (7.3), with /? = \, will remove the factor eM on the right
of (7.9). In other words KAB will be invariant under the transformation in
which gkl, rAkl, <tAB take factor X, Xi, X-1 respectively.

(b) It has already been remarked that one might take a conformal
transformation to mean the transition to new basic tensors 'gkl, 'rAkl,
'a.AB which arise from the old by providing them with factors Xa, Xfi, Xy

respectively, subject to the condition that

(7.10) 2a -2 / 3+ 7 = 0;

but that taking /3 ^ 0 represents only an apparent gain of generality on
account of the freedom one has at any stage in making an /-transformation

https://doi.org/10.1017/S1446788700004894 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004894


434 H. A. Buchdahl [11]

of the form (7.3). This remark must now be somewhat modified. It is true
that the results previously derived in this section provide the corresponding
results in the more general case. On the other hand it has to be realized
that in any r-transformation of any equation every rotor contained in it
has to be transformed in the appropriate manner. A conceptually different
situation arises if one lays down that, — under prescribed circumstances,
— the transformation (7.3) be carried out only on the basic rotors rAkl,
ccAB and their concomitants. This amounts to defining a conformal trans-
formation in r-space:

> '<*-AB = **AB,

a special example of which will be met in the next section. Under (7.11)

(which is in harmony with (3.2)), but, of course,

(7.12) A B
A k l = 0.

8. Duality rotations

A duality rotation, as understood by Misner and Wheeler (1957) is a
formal rotation of a skew-symmetric tensor and its dual 5 f*kl = \ekl

mnfmn:

(8-1) 7*i = fki cos <x+/*fc, sin a, 'f*kl = —fkl sin a+/**, cos a,

where a is an arbitrary real angle. fkl defines a self-dual tensor according
to I (2.4), and in terms of this (8.1) reduces to

(8.2) 'Fkl = e"F.kl-

If <f>A is the rotor equivalent of Fkl the duality rotation (8.1) represents
merely the multiplication of <f>A by a phase factor

(8.3) '<f>A = e"<f>A.

(It should, however, be kept in mind that the "square of the length" of </>A,
i.e. <f>A<f>A, is not invariant under (8.3) since the metric is symmetric rather
than hermitian. On the other hand the hermitian tensor <f>A<f>B *'s obviously
invariant under (8.3).)

Now in passing from (8.2) to (8.3) the basic rotors have evidently
been regarded as fixed quantities. One may, however, think of a duality
rotation from the alternative point of view presented in Section 7b. In
other words, one may look upon the duality relation of the field fkl not as

6 This is the dual as defined by these authors. In terms of the present notation
t*ki = t/tfcj.
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induced by the phase transformation of its r-equivalent, but rather as
induced by a unimodular conformal transformation in r-sftace of the form
(7.11) with q — ice, <f>A itself being kept fixed. One then sees particularly
clearly how the effect of a duality rotation on fkl differs essentially from
that of a Lorentz transformation.

9. Gauge covariant theory

Just as spinor analysis can be readily extended to Weyl spaces W
(Buchdahl, 1958) by introducing the gauge-invariant covariant derivative
of spinors, so the same can be achieved for rotors in an essentially similar
way. In this section (and in it alone) the gauge-covariant version of rotor
analysis will be considered in outline. Accordingly any kind of tensor T
(indices suppressed) will be said to be of gauge-weight rj if it takes a factor
X1 when gkt takes a factor X. (X must evidently be required to be real.)
Then the formation of the gauge-covariant derivative is adequately exem-
plified by that of a tensor gAk,

I where rj is the gauge-weight of (Ak. ./"%{is the usual symmetric linear con-
| nection in W, FB

Al the linear rotor connection, and kt is the Weyl vector.
I The gauge-invariant covariant derivative of gkl vanishes, so that, since
| tj = 1,

i where rm
kl is a Christoffel symbol generated by gtt.

To xAkl the gauge-weight /3 will be assigned so that the gauge-weight
I of a.AB must be 2(/?—1) = y, say; cf. Section 7b. The requirement that rAkl

I be covariant constant then gives, after the fashion of Section 4,

j (9.3) rB
Am = rB

An-\{y6B
Akm+eA

B°TCmnk»),

1 where FB
Am is the part of TB

Am independent of k,. Proceeding as in Section 7
| one obtains an expression for the curvature rotor of the form

I where the first term on the right does not contain k,. In place of (5.4)
{ one now has

P(AB)hl

This result is somewhat remarkable in as far as it shows that there is a
choice of gauge-weights for which the curvature rotor is skew-symmetric
in its rotor indices. It seems hardly worth while to investigate the relation
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of PB
Aki to the Weyl curvature tensor, and Weyl spaces will therefore now

be set aside.

10. The rotor derivative

(a) Given any tensor T (indices suppressed) its anti-symmetrized
second covariant derivative 27\ [fcl] may be transvected with rB

kl so that
one ends up with a tensor whose r-valence exceeds that of T by unity.
Accordingly it is of formal interest to define a rotor derivative

(10.1) T.B = 2rB
uT.tl.

In what follows T will be taken to have only r-indices, for this is the more
interesting case

The rotor derivative of a scalar vanishes identically. Next consider a
simple rotor <f>A. One has

(10.2) <j>A.B = 2rB
kl<f>A._kl = rB

klPc
Akl<l>c,

in view of (5.1). Drawing upon (5.5) one then has

(10.3) <j>A,B = eACDKB
c<f>D.

The divergence-like expression CLAB^>A.B vanishes identically:

(10.4) +A* = 0.

One can also contemplate a sort of curl of <f>A:

(10.5) i c = e^c^A. B = (Kdc
D-Kc

D)<j>D.

For rotors of higher valence one has, for instance,

(10-6) <f>AB. c = Kc
D(eADE<j>\+eBDE<l>A

E).

The divergence-like expression <f>AB.B does not vanish in general. However,

(10.7) KAB* = 0.

(b) Next one may go on to form higher rotor derivatives; and here
the most interesting case is the antisymmetrized second derivative. It
suffices to consider the rotor 2cf>A.[BC]. One has to differentiate (10.3)
again and then remove the derivative of <f>D by means of (10.3). The details
of the work need not be reproduced; the result is that

(10.8)

where

(10-9)

with
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(10.10) kAB = KACKB
C-KKAB.

LDABC is remarkable in that it has all the symmetries of the Riemann
tensor, eqs. (5.8—11). Therefore, r-space being 3-dimensional,

(10.11) LDABC = 4:x[A[B(LC]D]— ±«.C]D]L),

where

(10.12) LAB = LC
ABC, L = LA*.

However, from (10.9)

(10.13) L A B = -2kAB+xABk, L = k(= k A
A ) ,

and then (10.11) may also be written as

(10.14) LDABC — — 8ct^A[B(kC f

It may be noted that the relation

(10.15) KA[BKC]D= — 2x[A[B(kC]D]

is implied by (10.9), (10.14). It may be verified by reference to the definition
of KAB in terms of the Riemann tensor, but the work involved is very
tedious.

The necessary and sufficient condition for rotor differentiation to be
commutative is evidently that kAB be a zero rotor, i.e.

(10.16) KA
BKB

C = KKA
C.

In a Vo the scalar R vanishes, so that in a Vo the condition for rotor dif-
ferentiation to the commutative is that the square of the matrix K be zero 6.
(See Section 15.)

11. Relation to the spin curvature

Since the relations of the Riemann tensor to PABla on the one hand
and to the curvature spinor PMl>kl on the other are already known, the direct
relation between PABlcl and PpVkl is at hand. Taking the contraction Fx

Xk

of the linear spinor connection to be zero (as in S) one has by inspection
of (5.14) and S (2.37)

Transvecting throughout with eDGFrDkl it follows that

(11-1) PABmn = -

• Whenever the array of the components of a mixed tensor are thought of as the elements
of a square matrix it may be symbolized simply by its kernel symbol in bold face type.

https://doi.org/10.1017/S1446788700004894 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004894


438 H. A. Buchdahl [15]

where / (9.5) has been used. (11.1) may be inverted to give

(11-2) P/ivmn = — J e ^-Aiiv^BCmn-

Many of the relations derived in Section 5 may then be shown to be more
or less trivially equivalent to relations which appear in Section 5 of S.
For example (5.15) is equivalent to S (5.2), (5.17) is equivalent to 5 (5.5),
and so on. Finally, it may be noted that

(11.3) KAB = -

and

(11.4)

where

(H-5) r w 8 , = \S*\vS
mn

 p<rRklmn.

P/iipa is easily shown to be completely symmetric, and it is this spinor
which forms the starting point of one method of classifying Weyl tensors
(e.g. Jordan, Ehlers and Sachs, 1961).

12. Geodesic frames

At any point Po of V one can introduce coordinates such that the
gkl take their Minkowski values gkl. If at the same time one reduces, —
by means of a suitable r-transformation, — the «.AB to their special forms
%AB = diag (1» li 1). then the xAkl can be chosen to have at Po the values
JAM provided by the standard representation of / , Section 10. Let the
components of the linear connections now have the values rm

kl and FB
M.

A transformation of coordinates

(12.1) a-' = d>',(x'+r>mnx
mxn+ • • •)

leaves the values of the components of the metric tensor unchanged at Po,
but it causes all the Christoffel symbols to take the value 0 at Po. In other
words, geodesic coordinates have been introduced in w-space. In an analogous
way one may carry out the r-transformation

(12.2) AA\ = *'A+VBr*Mi*+ • • :

At Po the <x.AB then retain their values &AB, but the components of the
linear r-connection are reduced to zero. The situation is now that the gkl

and rAkl (and their algebraic concomitants) have their standard values not
only at Po but also throughout a sufficiently small neighbourhood of Po.
A coordinate system and r-frame which are such that these conditions obtain
will be said together to constitute a geodesic frame.
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13. The Maxwell field

(a) The "simplest" object one can form by differentiation from a
given rotor field <f>A is a ^-vector, /* say, according to

If j * is a given vector field one may therefore look upon (13.1) as the sim-
plest differential equation involving a rotor which one can write down.
If Fkl is the (self-dual) tensor equivalent of <f>A, (13.1) reads

(13.2) F".t = j * .

on account of I (2.7). If jk is prescribed to be real and Fkl is generated
by a real bi-vector according to (2.4), (13.2) splits up into the pair of
real equations

(13-3) / " „ = /*. /£«.„] = 0,

and these are just Maxwell's equations in vacuo.
If one introduces a geodesic frame at a point then the relation there

between j>A and the field intensities B, It is

(13.4) 0 1 > * l > ^ ) - * 2 ( J f - . ' £ ) .

(b) In (13.2) the use of Lorentz Heaviside units was understood. In
what follows, however, units are chosen such that the numerical values of
the velocity of light c and Newton's constant G are

(13.5) c = 1, G = l,

whilst Gaussian units are used for electromagnetic quantities. Then the
Einstein-Maxwell equations are

(13.6) Rkl = -2TM,

where

(13.7) Tkl = lgklf,tr-Ul'.

Because of / (2.4), (2.7) and (5.4), (13.7) becomes

(13-8) Tkt= ~ifklAa^.

On the other hand one has from (5.25) that

I since the scalar curvature vanishes here. With (13.8) and (13.9), (13.6)
% now becomes

(13.10) rAs = <f>Acf>B,

where (6.8) has been used.
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(c) One can now go on to discuss the Rainich Problem, (e.g. Misner
and Wheeler 1957) in the present setting. However, the details of this would
be rather similar to what has been done for instance by Witten (1962) and
Peres (1962) and will therefore be omitted, apart from a brief mention of
a point concerning the Rainich uector rk which is defined as

(13.11) rk=(RpqR")-iekutR"»-tRl
m.

Here Rkl may be expressed in terms of </>A by means of (13.9). The resulting
expression may be greatly simplified by means of / (6.7), (6.8) and (2.10).
One ends up with

(13.12) rk = Im ( ^ T ^ , ^ " / ^ )

as an expression for rk in terms of the electromagnetic rotor, where the
field has been assumed throughout not to be null, i.e. <f>A<f>A ^ 0.

The point is now that in an expression such as that on the right of
(13.12) one still has the freedom of making an arbitrary (non-singular)
/-transformation. If one is willing to sacrifice manifest covariance one
may for instance choose AA

A. in such a way that <f>j> = j>K- = 0, where
/ ' , / ' , K' are fixed indices and are a cyclic permutation of 1, 2, 3 (i.e. strictly
speaking of F, II', III'). Since the invariant <f>D<j>D = a.1'1'<f>r<f>r ^ 0, a77'
cannot be zero and one can further impose the condition on AA

A, that
it be such as to make a17' = 1. Then, omitting primes, (13.12) becomes

(13.13) rk = 2 I m r [ j r t
l r V '

In this the rotor <f>A no longer appears explicitly. The particular given field
<f>A has given way, as it were, to a particular representation of the rAkl.

(d) This last remark may be illustrated by a specific example. Since
</>A is non-null one may arrange the </>A, to have the values (1, 0, 0). Taking
tf>1 zfc 0 without loss of generality, this can be achieved for instance by the
transformation

0 1
0 0

It suffices here to take the case of flat w-space, and to adopt as initial
representation the standard representation of / Section 10. Then

(13.15) r1'tl±2Fkl, T » ' W ^ T » M , T » ' « 4 T » W ,

the asterisk serving as a reminder that the equations refer to specific
representations. The electromangetic field rotor <j>A, is everywhere constant,
being simply the unit rotor (1, 0, 0), which by itself says no more than that
the field is non-null. The full information concerning the physical field
has simply been transferred here to r1

kl, that is to say, to the basic rotors
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I xAkl and their algebraic and differential concomitants. Thus (13.1) becomes

(13.16) - 2 ; * 4 ^ ' " n V i .

Using (3.2) the circle of the argument may be completed by verifying
directly that (13.16) is equivalent to (13.1).

In the case of a null-field one may proceed along analogous lines, but
it is not necessary to spell out the details. It may, however, be noted that
the remarks above are intimately related to those of / Section lOd.

14. Concerning some basic invariants

(a) From PABki o n e c a n form two quadratic invariants. The first
of these is

I (14.1) PABuPAmi=K2-,

I in the notation of Buchdahl (1960), where (5.6) and/ (2.17) have been used.
f The second, more interesting, invariant S is
I

C __ gklmnp pAB _= gklmn^stpq D E>

| Using (5.16) or S (3.1) this becomes

I (14.2) S=Ki+2i(K1~4Kz+K3).
it.
| Consider the invariant integral
| (14.2) J Sd*x = j (~g)iSd*x = - J <*lmnPA

BklP
B

AmJ'x,

| extended over some finite region. Under an infinitesimal variation of the
! linear connection which vanishes on the boundary of the region of integration
j | one then has

* 8S=-2Je"™P*Bkl(drB
An).md*x

§ =2Je*l'»»PA
Bkl;mdrB

And*x,
| on integrating by parts, and because of (5.26) it then follows that

(14.3) d J Sd*x = 0.

This provides an elegant proof that the functional derivatives with respect
to gkl of the invariants Kt and K1—4:K2-\-Ks vanish identically. The result
(14.3) will lead one to expect that S can be written as a divergence. In
fact it turns out that

S = t / « > n ,
where

(14.4) U" =
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(b) Invariants formed from the rotor KAB are of considerable interest.
Since this alone, rather than KAB, is to be investigated the superscript 0
will henceforth be omitted, i.e. from (6.3)

(14.5) KAB = ^rA"lrB^Cklmn.

First, there is the quadratic invariant

KABK,„ — nkl nmn C C*'*

Recalling that Cklmn is entirely trace-free one easily obtains the result

(14.6) KABKAB = tr K* = 2(A+iA*) = 2l,

say, where

(14.7) A = CklmnC*1™, A* = - f c ""C M p ,C» f t .

In an entirely similar fashion one next gets the cubic invariant

(14.8) KA
BKB

CKC
A = tr A"3 = -4 (B+*5*) = -4J5,

say, where

(14.9) B = CklmnC*l*°Cm\Q, 5 * = -&»<>•> e*lm»CklpaCmnlt.

In a F B there is no distinction between Rklmn and Cklmn, and ^4, A*, B, B*,
are the only algebraically independent invariants of the Riemann tensor,
i.e. any other invariant is a function of these four basic invariants. (In
special cases even these need not all be distinct from one another.)

The determinant of KA
B is simply

(14.10) det KAB = 6A
D

B
E

C
PK°AKE

BKF
C = - £ S .

With scarcely more labour one infers that the secular determinant of KA
B

is given by

(14.11) - d e t (KA
B-XdA

B) = P

Its zeros are the values of A for which one or more eigenrotors UA ot KB
A

exist, i.e. rotor fields such that

(14.12)

The "eigenvalues" of A of KB
A are of course scalar fields.

15. Remarks concerning the rotor KAB

At the end of Section 10 it was found that commutativity of rotor
differentiation in a Fo , and therefore a fortiori in a FJJ, required that the
square of the matrix KB

A be zero. More generally one may enquire into
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the properties of the matrix 7 K, viz. one may investigate canonical forms
into which it may be cast. Essentially such an investigation would form
a basis for the Petrov classification (e.g. Petrov 1962) of spacetimes, and
since this has been fully covered elsewhere (see, for example, the detailed
account of Kundt (1958)) it would be out of place to consider the problem
here in any detail. A few remarks, appropriate to the present context,
will therefore suffice.

To begin with, since a.AB need not have the "standard form" diag
(1, 1, 1) one has to distinguish clearly between the rotor KA

B and its con-
comitant KAB. It is true that in any frame each of these can be regarded
as defining a square matrix. But if one does so KA

B will not in general be
symmetric. Further, reduction to the canonical form is here to be achieved
by suitable r-transformations. In the case of KAB this does not amount
to a similarity transformation, whereas in the case of KA

B it does. (That
the matrices usually considered are symmetric, yet are subjected to similarity
transformations implies, — when translated into the present context, —
an initial choice of the standard form of the r-metric). As a matter of fact,
there is nothing to prevent one from diagonalizing KAB, indeed reducing
it to the form diag (1, 1, 1), save in the exceptional case when det KAB = 0,
i.e. when S = 0, in view of (14.10). This amounts to shifting the burden of
the complexities of KAB to the metric a.AB, or what comes to the same thing,
to the rAkl, as in the analogous situation of Section 13b, c. (See the example
below.) In short, one has more freedom here to manipulate since one can
always consider arbitrary non-singular r-transformations, rather than merely
orthogonal transformations.

Perhaps the most straightforward procedure here is to classify the
matrix K according to the form of its minimal polynomial. Indeed, suppose
K to be represented, if possible, in terms of two mutually orthogonal rotors
UA and VA,

(15-1) UAVA = 0,

in the following way:

(15.2) KAB = UAUB+VAVB - &ABs,

where

(15.3) s = u+v, u = UAUA, v = VAVA.

KB
A is evidently trace-free, and KAB is symmetric. One confirms at once

that UA and VA, for the moment supposed linearly independent and non-
null, are eigenrotors of KB

A, belonging to the eigenvalues

7 Recall the remark at the beginning of Section 14b.
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(15.4) Xu = $(2u-v), X, = l{2v-u),

respectively. If one defines a rotor

(15.5) WA = eABCUBVc

then, keeping (15.1) in mind,

(15.6) w = WAWA = uv,

and WA is seen also to be an eigenrotor of KB
A belonging to the eigenvalue

(15.7) Xw = - i s .

Of course

(15.8) Xu+Xv+Xw = 0.

From (15.2) one infers quite generally that

(15.9) {K*)*A = -

and

(15.10) ( K * ) * A = ( X J + X ^

One can now distinguish various cases as follows:

(i) UA, VA general.
By simple elimination it follows from (15.2), (15.9) and (15.10) that

(15.11) (K-Xu)(K-Xv)(K-Xw) = 0,

where the unit matrices multiplying Xu etc. are left understood. (15.10)
is an example of the operation of the Cayley-Hamilton theorem, i.e. K
satisfies its own characteristic equation (14.11)

(15.12) P—1-(«2—uv+v*)X—^r(u+v){2u-v)(u—2v) = 0.

Comparison of (15.11) with (14.11) gives the relations between u and v
on the one hand, and A and S on the other. At any rate, (15.11) shows that
for general rotors UA, VA (i.e. excluding the special cases to be enumerated
below) K is of Type I. The eigenvalues of K are distinct, and its eigen-
rotors are non-null and mutually orthogonal.

(ii) UA, VA have equal non-zero norms.
The equality of u = v entails that Xu = Xv and (15.9) shows that

the minimal equation is

(15-13) {K-XJiK+fa) = 0,
i.e. K is of Type Id.
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(iii) UA, VA are zero rotors.
Here K vanishes and so is of Type Idd.

(iv) VA is a null rotor.
Now v = 0 and so kv — Xw, and at the same time VA and WA are

linearly dependent. The minimal equation is in this case

(15.14) (K-2lv)(K+Xv)* = 0,

so that K is of Type II.

(v) UA is a null rotor and VA a zero rotor.
Here

(15.15) K* = 0,

so that K is of Type IId. This case is the one to which the remark at the
beginning of this section refers.

(vi) A special case, with UAVA =£ 0.
So long as UA and VA are mutually orthogonal KB

A, in the form
(15.2), cannot have the minimal equation

(15.16) K3 = 0.

Let the condition of orthogonality be relaxed and lay down that v = — u
and UAVA = iu. Then (15.16) obtains, and KB

A is of Type III. UA and VA

are no longer eigenrotors of KB
A. On the other hand one has the null eigen-

rotor UA+*VA.

As pointed out earlier, although the initial choice a.AB = diag (1, 1, 1)
of the A-metric erases the initial distinction between KAB on the one hand
and KA

B on the other, so that both may then be exhibited as a symmetric
matrix K, an arbitrary r-transformation AA'A (= S, say) gives rise to the
transforms SKStT and SKS"1 respectively, and these are in general distinct.
They coincide if and only if S is an orthogonal transformation O. One can
choose O such that OKO*1 has some particularly simple standard form
'KP, which is of course still symmetric. In fact 'KP may be arranged to
take the Petrov form M-\-iN as given by Petrov (1962). Alternatively S
may be chosen such that SKS-1 becomes a Jordan normal matrix 'Kj

K
0
0

s'

K
0

0
s"

K
where Au, Xv, Xw are the eigenvalues of K as enumerated in the six cases
above, whilst e', e" have the values given in the following Table:
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Type e' e"

I, Id. lad 0 0
II, Hd 0 1
III 1 1.

(b) Here, as in Section 13d it may be apposite to give one, albeit
rather trivial example. If a VR is static and spherically symmetric the
metric may be taken as

i s 2 = — eX(r)dr2-e''(r)(dd2+siiii0d<f>2)+e''iT)dr*
(15.17)

say. By explicit calculation one finds that every component of Cklmn has

as a factor; e.g. C1212 = — JeA+/*%. The basic rotors

0 —a/3 sine 0
0 0

(15.19)

satisfy (2.1), if «.AB — diag (1, 1, 1). They reduce to the standard represen- ]
tatives I (10.6) when a = /S = y = l , e = jr/2, provided the rotor indices j
be cyclically permuted. The KAB may now be calculated, and one finds '

(15.20)

As a check, direct calculation of the invariants A and S yields

(15.21) A = Zx
2, A* = 0, B = -f%3, B* = 0.

(14.11) then gives the secular equation

(X-X)*(X+2X) = 0,

in harmony with (15.10). The metric is of Type Id> and

(15.22) UA = (3z)i(l, 0, 0), VA = (3*)*(0, 1, 0), WA = 3^(0, 0, 1)

is a set of mutually orthogonal eigenrotors of KAB. Of course any linear
sum of the first two of these is also an eigenrotor.
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As observed previously, it is possible to diagonalize KAB whenever
det KAB ^ 0, i.e. the diagonalization can be carried out when KAB is of
Type I, Id, or II. Here KAB is already diagonal. However, it may be reduced
to the form

n o o\
(15.23) KAB = 0 1 Oj

\0 0 1/

by means of the r-transformation

/I 0 0 \
(15.24) AA

A=X-t[0 1 0 .
\0 0 iJx/2/

Then

/IK OKA T vb-r T v^r-r T — i(e)-v\h'r
\ / 1 At L' 6 At i ' w \ A / » '

whilst OLA>B, is of course just given by the right hand member of (15.20).
This, then, illustrates the procedure of choosing a representation of the
rAkl such that the symmetric contravariant rotor KAB takes the form of
the right hand member of (15.23). Any representation having this property
might be called canonical, though this terminology is then restricted to
situations in which det KAB ^ 0. To obviate this difficulty one might
therefore more generally call a representation canonical if, in this, the
components of the rotors in (15.2) have certain prescribed values, con-
sistent with the generic form of these rotors enumerated previously. If
KAB is of Type IId, for instance, one might prescribe UA = (0, 1, i),
VA = (0, 0, 0). In certain cases this definition implies little or no restriction
on the representation; e.g. if KAB is of Type Idd every representation is
canonical.

16. Concluding remark

The present investigation may be broken off at this point, for it has
been adequately demonstrated how, starting from the correspondence
between self-dual w-tensors and the elements of a three-dimensional com-
plex linear vector space, a general calculus can be built up which is covariant
under arbitrary independent transformations in every space contemplated
within the calculus. There is, as might be expected, much formal analogy
between this work and the spinor calculus of Infeld and van der Waerden,
though each can be developed entirely independently of the other. At any
rate, the machinery which is now available allows one to deal in a unified
and straightforward manner with theories which are characterized by the
implicit or explicit occurrence of bi-vector fields as basic elements.
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