A RESULT ON ITERATED CLIQUE GRAPHS

LIM CHONG-KEANG

(Received 21 March 1979; revised 11 February 1981)

Communicated by W. D. Wallis

Abstract

S. T. Hedetniemi and P. J. Slater have shown that if G is a triangle-free connected graph with at least three vertices, then

$$K^2(G) \cong G - \{x \in G \mid \deg(x, G) = 1\}$$

where K(G) is the clique graph of G and $K^2(G) = K(K(G))$ is the first iterated clique graph. In this paper, we generalize the above result to a wider class of graphs.

1980 Mathematics subject classification (Amer. Math. Soc.): 05 C 75, 05 C 50, 05 C 99.

1. Introduction

In this paper, all graphs (possibly infinite) will be undirected, without loops and without multiple edges. For any graph G, we shall use $x \in G$ to indicate that x is a vertex of G. The complete graph on n vertices is denoted by K_n .

A clique of a graph G is defined to be a complete subgraph of G, which is not contained in any larger complete subgraph of G. The clique graph K(G) of G is a graph having the cliques of G as vertices, two vertices of K(G) being adjacent if and only if the corresponding cliques have a nonempty intersection. By $K^2(G)$ we mean K(K(G)), and in general $K^n(G) = K(K^{n-1}(G))$.

Let G^* denote the graph obtained by contracting each component of G which is a complete graph to an isolated vertex. Then $K(G) \cong K(G^*)$. The degree of a vertex x in a graph G is denoted by deg(x, G).

[©]Copyright Australian Mathematical Society 1982

Lim Chong-Keang

The graph G is said to have the *Helly property* if every set $\{C_i | i \in I\}$ of cliques of G, no two of which are disjoint (that is, $C_i \cap C_j \neq \emptyset$ for all $i, j \in I$), has nonempty total intersection (that is, $\bigcap_{i \in I} C_i \neq \emptyset$).

We say that G has the T_1 property if for any distinct vertices $x, y \in G^*$ with $\deg(x, G^*) \ge 2$, $\deg(y, G^*) \ge 2$, there exist C, $D \in K(G)$ with $x \in C, y \notin C$ and $x \notin D, y \in D$.

Hedetniemi and Slater (1972), show that if G is a triangle-free connected graph with at least three vertices, then $K^2(G) \cong G - \{x \in G \mid \deg(x, G) = 1\}$.

The main purpose of this paper is to generalize the above result to a wider class of graphs which satisfy both the Helly property and the T_1 property.

For other terms not defined here see Harary (1969).

2. The main theorem

The main purpose of this paper is to prove the following theorem.

THEOREM 2.1. If G is a graph which satisfies the Helly property and the T_1 property, then

$$K^{2}(G) \cong G^{*} - \{x \in G^{*} | \deg(x, G^{*}) = 1\}.$$

Given a graph G, for any $x \in G$, let K(x) be the induced subgraph of K(G) with vertex set $\{C \in K(G) \mid x \in C\}$.

Before proving Theorem 2.1, we will first prove the following results.

LEMMA 2.2. If G is a graph which satisfies the Helly property, then for any clique A of K(G) there is an $x \in G^*$ with $\deg(x, G^*) \neq 1$ such that A = K(x).

PROOF. Let $\{C_i \in K(G) \mid i \in I\}$ be the vertex set of A. Since A is a clique of K(G), $C_i \cap C_j \neq \emptyset$ for all $i, j \in I$. Now, G satisfies the Helly property, so we have $\bigcap_{i \in I} C_i \neq \emptyset$. Let $x \in \bigcap_{i \in I} C_i$. Then $\{C_i \mid i \in I\} \subseteq \{C \in K(G) \mid x \in C\}$, in fact, equality holds, for if $C \in K(G)$ and $x \in C$, then $C \cap C_i \neq \emptyset$ for every $i \in I$, and therefore C is adjacent in K(G) to every vertex of the clique A, so must actually be one of its vertices. It remains to show that deg $(x, G^*) \neq 1$. Suppose that deg $(x, G^*) = 1$. Then x is adjacent to just one vertex $y \in G^*$, so it belongs to only one clique D of G^* and $D \cong K_2$. From the definition of G^* , we observe that the component of G^* induced by D has at least three vertices. Hence there is some clique D' of G^* such that $y \in D', x \notin D'$. Thus D' is adjacent to D in $K(G^*)$, so no clique of $K(G^*)$ with D as a vertex can have only one vertex. But then the

intersection of the vertices of such a clique cannot contain x, contrary to the choice of x. This contradiction implies $deg(x, G^*) \neq 1$, completing the proof.

REMARK. Not every subgraph K(x) need be a clique, even if G has the Helly property. This is illustrated by the following example.

The following lemma gives sufficient conditions for this to be true.

LEMMA 2.3. Let G be a graph which satisfies the Helly property and the T_1 property. Then for any $x \in G^*$ with deg $(x, G^*) \neq 1$, the subgraph K(x) is a clique of K(G).

PROOF. Let $x \in G^*$ with deg $(x, G^*) \neq 1$. Clearly the result is true if deg $(x, G^*) = 0$. So we let deg $(x, G^*) \geq 2$. Note that K(x) is necessarily a complete subgraph of K(G), so if it is not a clique there exists some $D \in K(G)$ such that $x \in D$ but $C \cap D \neq \emptyset$ for every $C \in K(x)$. Let $S = \bigcap \{C \in K(x)\}$. Now G has the Helly property, and $S \cap D$ is an intersection of pairwise nondisjoint cliques of G, so $S \cap D \neq \emptyset$. We shall prove that D does not exist, and therefore K(x) is a clique of K(G), by deriving the contradiction $S \cap D = \emptyset$.

Evidently $x \in S$, but $x \notin D$, so $x \in S \cap D$. Now consider $y \in G^*$ with $y \neq x$.

Case 1. deg $(y, G^*) = 0$. Then y is not adjacent to x and hence $y \notin S$. Therefore $y \notin S \cap D$.

Case 2. deg $(x, G^*) = 1$. Then y is adjacent to just one vertex in G^* , so it belongs to just one clique of G. But then $y \notin S \cap D$, since this is an intersection of at least two cliques of G.

Case 3. deg $(y, G^*) > 1$. Since G has the T_1 property, there is some $C \in K(x)$ with $y \notin C$, so $y \notin S$. Hence $y \notin S \cap D$.

Thus $S \cap D = \emptyset$, as claimed, whence K(x) is a clique of K(G).

Combining Lemmas 2.2 and 2.3, we have the following theorem.

Lim Chong-Keang

THEOREM 2.4. Let G be a graph satisfying the Helly property and the T_1 property. Then A is a clique of K(G) if and only if there is an $x \in G^*$ with $deg(x, G^*) \neq 1$ such that A = K(x).

We are now in a position to prove Theorem 2.1.

PROOF OF THEOREM 2.1. Let φ : $\{x \in G^* | \deg(x, G^*) \neq 1\} \rightarrow \{A \in K^2(G)\}$ be a function defined by

$$\varphi(x)=K(x).$$

We shall show that φ is a graph isomorphism. By Lemma 2.3, φ is well-defined. To show that φ is one-one, let $x, y \in G^*$ be distinct vertices with deg $(x, G^*) \neq 1$, deg $(y, G^*) \neq 1$. If one of x, y is an isolated vertex, then clearly $K(x) \neq K(y)$ and hence $\varphi(x) \neq \varphi(y)$. So we let deg $(x, G^*) \ge 2$, deg $(y, G^*) \ge 2$. By the T_1 property, there exists $C \in K(G)$ with $x \in C, y \notin C$. Hence $C \in K(x)$ but $C \notin K(y)$, so $\varphi(x) \neq \varphi(y)$. Lemma 2.2 implies that φ is onto. It remains to show that if $x, y \in G^*$ are distinct vertices with deg $(x, G^*) \neq 1$, deg $(y, G^*) \neq 1$, then $\varphi(x)$ is adjacent to $\varphi(y)$ in $K^2(G)$ if and only if x is adjacent to y in G^* . If x and y are adjacent in G^* , they are vertices of some clique C of G^* (and hence of G), so $C \in \varphi(x)$ and $C \in \varphi(y)$. Hence $\varphi(x) \cap \varphi(y) \neq \emptyset$, so $\varphi(x)$ and $\varphi(y)$ are adjacent in $K^2(G)$. The converse argument readily follows.

Thus φ is an isomorphism, and the theorem is proved.

COROLLARY 2.5. Let G and H be two graphs with no vertices of degree 1, and suppose both G and H have the Helly property and the T_1 property. Then

 $K(G) \cong K(H)$ if and only if $G^* \cong H^*$.

3. Special cases

We shall show that the following theorem is a special case of Theorem 2.1.

THEOREM 3.1 (Hedetniemi and Slater (1972)). If G is a triangle-free connected graph with at least three vertices, then

$$K^{2}(G) \cong G - \{x \in G | \deg(x, G) = 1\}.$$

To prove this result, we need the following lemmas, and the result will follow by applying Theorem 2.1. LEMMA 3.2. If G is a triangle-free connected graph, then G satisfies the Helly property.

PROOF. If G has fewer than three vertices, G trivially satisfies the Helly property. Hence we may now suppose G has at least three vertices.

Let $\{C_i | i \in I\}$ be a family of pairwise nondisjoint cliques of G. We will show that $\bigcap_{i \in I} C_i \neq \emptyset$.

Observe that since G is connected and contains no triangles, $C_i \cong K_2$ for each $i \in I$. If C_i , C_j are two distinct cliques, with $i, j \in I$, nondisjointness ensures there is some $x \in C_i \cap C_j$. We claim that $x \in \bigcap_{i \in I} C_i$. Let $x, y, z \in G$ be distinct vertices and that $y \in C_i, z \in C_j$, and suppose $x \notin C_k$ for some $k \in I$. Then $C_i \cap C_k \neq \emptyset$ implies $y \in C_k$ since $C_i \cong K_2$, and similarly $z \in C_k$. But then y must be adjacent to z in G, so G contains a triangle on the vertices x, y, z. This contradicts the choice of G, so $x \in \bigcap_{i \in I} C_i$ follows. Thus G has the Helly property.

LEMMA 3.3. If G is a triangle-free connected graph, then G has the T_1 property.

PROOF. If G has fewer than three vertices, G trivially satisfies the T_1 property. Hence we may now suppose G has at least three vertices.

Let $x, y \in G^*$ be distinct vertices of degree at least 2. Then x is adjacent to some $z \in G^*$, $z \neq y$. Since G is triangle-free, $\{x, z\}$ is the vertex set of some $C \in K(G)$, so $x \in C, y \notin C$. Similarly there is some $D \in K(G)$ such that $x \notin D$, $y \in D$. Thus G has the T_1 property.

PROOF OF THEOREM 3.1. Let G be a triangle-free connected graph with at least three vertices. Then $G = G^*$. By Lemmas 3.2 and 3.3, G satisfies the Helly property and the T_1 property. By Theorem 2.1,

$$K^{2}(G) \cong G^{*} - \{x \in G^{*} | \deg(x, G^{*}) = 1\}.$$

Since $G = G^*$, the result follows.

REMARKS. 1. Theorem 3.1 is also true if connectedness of G is dropped (that is, G is a triangle-free graph with at least three vertices in each component). This is because G has the Helly property and the T_1 property if each of its components has the Helly property and the T_1 property.

2. Theorem 2.1 is a proper generalization of Theorem 3.1 as can be seen from the following graph G, which actually has the property $K(G) \cong G = G^*$.

Let $A = (a_{ij})$ be a (0, 1)-matrix. The row-column graph G(A) of A is a bipartite graph obtained as follows:

The vertices of G(A) are the rows and the columns of A; a row and a column are adjacent if and only if the entry $a_{ij} = 1$. Observe that if every row and every column of A contains at least two ones, then G(A) will have no vertices of degree 1. Thus

COROLLARY 3.4 (Cook (1970)). If A is a (0, 1)-matrix and G(A) is its rowcolumn graph, then

$$K^2(G(A)) \cong G(A)$$

provided that every row and every column contain at least two ones.

Acknowledgement

The author wishes to thank the referee for his constructive suggestions.

References

C. Cook (1970), Graphs associated with (0, 1) arrays, (Ph.D. Thesis, University of Iowa).

F. Harary (1969), Graph theory (Addison-Wesley, Reading, Mass.).

S. T. Hedetniemi and P. J. Slater (1972), 'Line graphs of triangleless and iterated clique graph', *Graph theory and applications*, edited by Y. Alavi, D. R. Lick and A. T. White, pp. 139-147 (Springer-Verlag, Berlin).

Department of Mathematics University of Malaya Kuala Lumpur Malaysia