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OVERRINGS OF BEZOUT DOMAINS 

BY 

RAYMOND A. BEAUREGARD 

In [2] Brungs shows that every ring T between a principal (right and left) ideal 
domain R and its quotient field is a quotient ring of R. In this note we obtain similar 
results without assuming the ascending chain conditions. For a (right and left) 
Bezout domain R we show that T is a quotient ring of R which is again a Bezout 
domain; furthermore Tis a valuation domain if and only if T is a local ring. 

All rings considered are (not-necessarily commutative) integral domains with 
unity. A weak Bezout domain (also known as a 2-fir) is a ring in which the sum 
and intersection of any two principal right ideals with nonzero intersection are 
again principal. In the definition if we omit the phrase "with nonzero intersection" 
we obtain the definition of a right Bezout domain. It is shown in [3] that the 
definition of a weak Bezout domain is left-right symmetric; in contrast, a right 
Bezout domain need not be a left Bezout domain. By a local ring we mean a ring in 
which the set of nonunits is an ideal. Let us call R a weak valuation domain if 
aR nbRy^O implies either aR <= bR or bR <= aR. The left-right symmetry of this 
definition follows from the following. 

PROPOSITION 1. A ring R is a weak valuation domain if and only if R is a local 
weak Bezout domain. 

Proof. Assume R is a local weak Bezout domain and let aR n bRj^O. Writing 
dR=aR+bR we have d=ax+by, a=dal9 b=db1 and l=a1x+b1y. Therefore 
either axx or bxy must be a unit. This yields, respectively, either bR <= aR or 
aR c bR. If R is a weak valuation domain then R is obviously a weak Bezout 
domain. To show that R is local it suffices to show that for a, b e R, if a+b is a 
unit then either a or b is a unit. Accordingly, let 

(1) (a + b)u = 1. 

Multiplying (1) on the right by a we obtain 

(2) bua = a(l—ua). 

If either a or b is zero then, respectively, b or a is a unit. If both a and b are non
zero then (2) shows that aR n bR?£0. Hence either aR <= bR or bR <= aR. Assume 
aR <= bR (the other case is similar). Then a=bc for some c; substituting this into 
(1) we find that b has a right inverse and is therefore a unit. 
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We remark that a weak valuation ring can be characterized as a ring in which any 
two factorizations of the same element have common refinements. This is proved 
in [4, Proposition 1] where large classes of such rings are constructed. We say that 
jR is a right valuation domain if its poset of principal right ideals is a chain. If we 
assume in Proposition 1 that JR is a right Ore domain (aR n bR^O for all nonzero 
a, b eR) then we have the following. 

COROLLARY. A ring R is a right valuation domain if and only if R is a local right 
Bezout domain. 

Each right Bezout domain is a right Ore domain and therefore has a right 
quotient field K={ab~1 | a, b e R, b^O}. The construction of Kis a particular case 
of the following which is valid in any integral domain R. Let JR* be the monoid of 
nonzero elements of R. A submonoid S of R* is a right Ore system in R if for 
each a e R, b e S we have 

aS nbR^ 0. 

In this case R8={ab^11 a e R, b e S} is a ring under operations that extend those of 
R (see the references given in [1] or [2] for details). If R is a right Bezout domain 
(or just a right Ore domain) then JR^* is the right quotient field of R and contains 
each right quotient ring Rs. It is easy to check that if R is a right Bezout domain 
then so is each Rs. For right and left Bezout domains the same is true according to 
the following. 

PROPOSITION 2. Let Rbe a {right and left) Bezout domain and let S be a right Ore 
system in R. Then T=RS is again a (right and left) Bezout domain. 

Proof. Since r i s a right Bezout domain (and therefore a weak Bezout domain) 
it suffices to show that Tis a left Ore domain. Let x—ab"1, y=cd~1 e T*. Choose 
b\ d' eR* such that db'=bd'. Then Rad' n Rcb'^O and consequently Rx n 
Ry^O. 

If a right Ore system S in R is saturated, that is, if ab e S implies both a and b 
are in S then S is called a right quotient monoid in R. It is shown in [1, Lemma 3] 
that in a right Bezout domain JR a saturated submonoid S of R* is a right quotient 
monoid if and only if elements similar to members of S are also in S. Recall that 
two elements a and a' in a ring R are similar (ar^Ra!) if RjaR^Rja1R as i^-modules. 
It is shown in [3] that a~Rd iff there is a relation aV—ba! in R which aR+bR=R 
and Ra'+Rb'=R. Thus if R is a subring of Tand if a~Ra' then a~Ta'. 

THEOREM. Let R be a (right and left) Bezout domain with quotient field K. Any 
subring T between R and K is a quotient ring T=Rsfor a suitable right quotient 
monoid S in R. The ring T is a (right and left) Bezout domain, and is a (right and left) 
valuation domain if and only if it is a local ring. 
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Proof. Let S={s e R | sr1 e T}. Clearly S is a saturated submonoid of R*. If 
a, a! ER and a~Ra' then a~Ta' from which it follows that a e S iff a' e S. Thus 
S is a right quotient monoid in R. Clearly Rs c: T. To show the reverse contain
ment let z=ab~1 e T9 let Rd=Ra+Rb, with a=a1i , è = M - Then R^+Rb^R so 
we may find x, j G R such that 

(3) 1 = xcii+ybi. 

If we multiply (3) on the right side by bï1 we obtain b^^xz+y eTso that Rs—T. 
The last statement of the theorem follows from Propositions 1 and 2. 

The example given in [2] shows that our results are not valid for rings satisfying 
only a onesided condition. 
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