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FRACTURE CRITERION FOR ICE USING 
A DISLOCATION MODEL 

By V. R. PARAMESWARAN 

(Division of Building Research, National Research Council of Canada, Ottawa, Ontario 
K lA OR6, Canada) 

ABSTRACT. The propensity for crack forma tio n o n basal and prism a tic planes and twin nucleation on two 
pyramida l planes in hexagona l ice is examined on the basis of fracture theo ries and ani sotropic elastic theories o f 
dislocatio ns. C alculations sho w that the ease of crack formation is almost the same in the basal and prismatic 
planes, whereas it is almost impossible to produce mechanical twinning in ice by stress alone. 

RESUME. Conditions de fracture de la glace d 'apres une theorie des dislocations. Sur la base des theories de la 
fr acture et des theories elas tiques a ni sotropiques des dislocations on examine les possibilites pour la formation de 
fi ssures sur les plans de base et sur les faces pyramidales ainsi que la nucleation des m acles sur deu x faces 
pyramida les dans de la glace hexagon ale. Les ca lculs montrent que la form a tion de fi ssure es t presque aussi facil e 
sur le pla n de base et sur les faces prismatiques, a lors qu ' il est presque impossible de produirc des macles dans la 
glace par le seul exercice d 'un effort mecanique . 

Z USAMMENFASSUNG. Ein Bruchkriterium Jiir Eis, gewonnen aus einem Versetzungsmode/l. Auf der 
G rundlage von Bruchtheorien und Theorien zur ani sotropen elasti schen Versetzung wird die Neigung zur 
Ri ssbildung an Grund- und prismatischen Fliichen und zur Zwillingskernbildung an zwei pyra midischen Fliichen 
in hexagona l em Eis untersucht. Berechnungen zeigen, dass sich Risse ebenso leicht in Grundfl iichen wie in 
prismati schen Flachen bilden ko nnen, dass es a ber fast unmiiglich ist, mech anische Zwillingsbildung im Eis allein 
durch Druckspannung zu erzeugen. 

INTRODUCTION 

To formulate the failure criterion of a solid it is important to know the elastic strain energy E 
of the solid containing cracks and the crack extension force G, which is equal to the negative of 
the derivative of the elastic energy with respect to crack length . In considering stress fields due to 
cracks in fracture mechanics, it is customary to distinguish the three cases shown in Figure I 
(Bilby and Eshelby, 1968): 

Mode [ crack: 
(tensile crack) 

Mode 1I crack: 
(shear crack) 

Mode 1lI crack: 
(tearing type of crack) 

Oxy = 0, 0 xx = 0, Oyy *0, on the plane y= O. 

The elastic stress field and the energy of such cracks in terms of externally applied stress 
fields have been derived by several workers: Stroh (1958) has formally treated the problem for a 
general anisotropic medium using the method of Fourier transforms and dual integral equations, 
and Barnett and Asaro (1972) have used the method of double-ended pile-up of continuously 
distributed, infinitesimal dislocations, to solve the problem of a slit-like crack in an arbitrarily 
anisotropic elastic medium under uniform stress. Yoo (1979, 1980) has used these solutions to 
calculate the elastic energy of slit cracks in hexagonal crystals and to develop a dislocation 
model for twinning and fracture in metals of hexagonal close-packed structure. 

In this paper the above solutions are used for ice having a hexagonal structure to calculate 
the ratios of the critical stresses for crack initiation on the basal and prismatic planes, as well as 
the ratios of the surface energies associated with cracks. The ratios of the critical stresses for 
basal cleavage and {I012 } twin and for prismatic cleavage and {l011l twin are also calculated. 
From these ratios a prediction is made of the tendency for twinning and cleavage in ice. 
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Fig. 1. The three modes of crack propagation in a solid. 

BACKGROUND OF THE CALCULATIONS 

Yoo (1979, 1980) derived the equations for critical stresses for crack and twin initiation from 
the Bilby and Eshelby (1968) theory. By considering a crack as a double-ended pile-up of 
dislocations, the critical stresses for formation of the three modes of cracks shown in Figure 1 
are as follows (Yoo, 1979): 

for a Mode I crack under a uniaxial stress a22 : 

* _ ( 4y ) 1/ 2 a22- -- , 
naB22 

for a Mode 11 crack under a shear stress a21 : 

* _ ( 4y ) 1/ 2 
a21- -- , 

naB l1 

and for a Mode III crack under a shear stress a23 : 

* _ ( 4y ) 1/2 
a23- --

naB33 

(1) 

(2) 

(3) 

The subscripts 1, 2, and 3 correspond to the cartesian coordinates x, y, and z. The elastic 
compliance factor Bij is the symmetrical second-rank tensor defined by Stroh (1958), depending 
on the elastic constants Cl} and crack orientation ; i, j take any of the values 1, 2, and 3; 2a is the 
length of the crack. The surface energy y associated with the crack plane X2 = 0, is given by 
(Yoo, 1979) 

Yhkl =( ~) 2 (Chd)hkl (4) 

where Ch is the transformed elastic stiffness constant with respect to the crack plane (hkl) 
having interplanar spacing d. 
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For an orthotropic medium (a solid with three mutually perpendicular planes of symmetry) 
Bijs are the inverse of the energy factors Kij for a dislocation, and expressions for these in terms 
of standard elastic constants have been obtained by Savin and others (1976). For a dislocation 
lying on the basal plane with Burgers vector b=j(l21O), they show that 

K _ 1 _( 12 C C){ C44(.-t2C33 - Cl3 ) } 1/ 2 22----11. 33+ 13 2 ' 
B22 CII(A C33 + C l3 +2C44 ) 

(5) 

(6) 

and 

(7) 

where 

.-t2=(~::r2. (8) 

From Equation (4), the ratio of the surface energies associated with cracks in the basal and 
prismatic planes is given by (Yoo, 1979) 

Yp a a C II 
(9) 

where a = J3 for { lOIO} planes and 2 for { 1120} planes. c and a are the lattice parameters for 
the hexagonal lattice, in the present case of ice. Equations (1) to (9) can be used to give the ratio 
of the critical stress for crack extension in the basal and prismatic planes as (Yoo, 1979) 

The subscripts 11 and ..1 indicate whether crack extension occurs parallel or perpendicular to the 
c-axis. 

To calculate the critical stress for twin nucleation, Yoo (1980) treats a micro-twin as a slit 
crack, for simplicity, neglecting the finite thickness of the twin and the welded boundary 
conditions for twin interfaces. Although far from rigorous, this treatment enables one to estimate 
the propensity for twin nucleation versus crack propagation. Two cases are considered: (a) basal 
cleavage versus {1O I 2) twin, and (b) prismatic cleavage versus { 10 T I} twin. 

From Equation (I) the critical stress for crack extension on the basal plane can be written as 

a
c 
= at; =(~) 1/ 2 

naB22 
(12) 

where Ic is the total inelastic resistance to crack extension; this includes both the lattice 
resistance to dislocation motion and the surface energy associated with the crack forces. 
Considering a micro-twin as a Mode II slit crack, the condition for twin extension from the 
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Bilby- Eshelby theory , is given by Yoo (1980) as 

It "' B' ( ,)2 B' I I - :::::: 11 012 + 12 0 12 0 22 (13) 
na 

where oij denotes the stress components with respect to the twin axis xi inclined at an angle 8 
with the original coordinate axis Xi, and It is the total inelastic resistance to twin extension. 

For a uniaxial stress 022, 

012 = 022 sin 8 cos 8, 

oh = 022 cos2 8. 
(14) 

For a {1O 1 2} < 10 11 > twin , which is the most common type in hexagonal close-packed crystals 
(see Fig. 2a), 

s108= -- --+ -. ( 3a
2 

/ ( 3a
2 

c2 )) 1/2 

4 4 4 ' 

(
c

2
/( 3a2 c

2
)) 1/ 2 cos 8= - --+-

4 4 4 

(15) 

Using Equations (14) and (15) in (13), the critical stress 0~2 for twin propagation is given by 

* (It) 1/2( (3 + (2)2 ) 1/2 

°t = 022 = na (3p2 Bll + J3 p3 B 12 ) 
(16) 

where p= cia. For the isotropic case, Bb = 0 and Bll = Bb; hence, from Equations (12) and 
(16), the ratio of the critical stresses for basal cleavage and { 10 1 2} < 1011 > twin is 

( 17) 

Next, considering the ratio of the critical stresses for prismatic cleavage and a { 101 I f twin, for a 

r. c 

I a ) ( b ) 

Fig. 2. Geometry a/a {l012 1 ( lOll ) twin (a) , and a {I01 If ( 1072) twin (b) . 
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{loTq ( 1012) twin (see Fig. 2b): 

. (3a 2
/( 3a2 2)) 1/2 Sin B= -- -- + c 

4 4 ' 
( 18) 

cos B = - c / (3:
2 

+ C2) 1/2 

Using the conditions of Equations (18) and (14) In (13), the critical stress O'~ for twin 
propagation can be derived as (Yoo, 1980) 

* (It) 1/2( (4fJ2 + 3)2 ) 1/2 
at =0'22 = na 4fJ2(3B~1 -2y3fJB12 ) (19) 

Analogous to Equation (12), the critical normal stress for extension of a Mode I crack on the 
{IOTO} prism plane is 

ac = atl =(~) 1/2 (20) 
naB II 

From Equations (19) and (20), and assuming B~2 =0 for the isotropic case, the ratio of the 
critical stresses for prismatic cleavage and a {1O T I} < 10 12) twin is; 

ac 213fJ (fc)l12 
~= (4fJ2 + 3) It (21) 

Equations (9) to (11), (17), and (21) may now be used to calculate the surface energies of 
cracks in the basal and prism planes, and the ratios of the critical stresses for crack formation 
and twinning at various temperatures in ice. For a hexagonal lattice, the non-zero elastic 
constants are 

CII = C22 , C 12 ' C l3 = C23 ' C33 , C44 = C55 ' and C66 = (CII - CI2 )/2. 

The temperature dependence of these constants for ice has been given by Dantl (1968), and the 
temperature dependence of the lattice parameters c and a for ice by Lonsdale (1958). 

RESULTS AND DISCUSSIONS 

Values of the elastic constants Cl} and the lattice parameters c and a calculated for various 
temperatures from Dantl's (1968) and Lonsdale's (1958) equations are shown in Table 1. Figure 
3a and b shows the variation of Cl} ' c, a, and cia with temperature. Using these values in 
Equations (9) to (11), the ratios of surface energies (Yb/Yp) and the critical stresses for crack 
formation (ab / ap) in the basal and prismatic planes were calculated. Assuming fc =/t (fc andlt 
are the lattice resistance to crack and twin propagation, and these include surface energies) in 
Equations (17) and (21), the ratios of the critical stresses for crack and twin propagation, namely 
ac /at, were also calculated. All these values are shown in Table 11. The value of YbIYp (lOIOI is 
about 1.03 showing that the probability or ease of crack formation is almost the same in the 
basal and {1 0 TO} prismatic planes. The ratio of the surface energies in the basal and the {1120} 
planes, however, is about 0.89, indicating that crack formation in the {1120} plane is more 
difficult than that in the basal or {IOTO} planes. The value of the ratio ab/ap of critical stresses 
for crack extension in the basal and prismatic planes is almost equal to 1 for all temperatures, for 
cracks extending parallel or perpendicular to the c-axis. 

These results suggest that, under a uniaxial stress, cracks could propagate in ice with equal 
ease, either along the basal or along the prism planes, although the probability of their 
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TABLE J. VALUES OF ELASTIC CONSTANTS Cij (UN ITS: 10) MPa) 
AND LATTICE PARAMETERS C AND a (UNITS: 1O - 10 m) 

(77 K) (4 K) 
- Iooe - 20oe - 30oe - 40°C - 50oe - 75°e - 196°e - 269°C 

C ll 13.0938 13.2787 13.4589 13.6344 13.8050 14.2108 15.7529 16.3452 
C l2 6.6191 6.7464 6.8691 6.9871 7.1004 7.3630 8.2193 8.4034 
C ll 5.7274 5.8327 5.9381 6.0434 6.1488 6.4122 7.6870 8.4561 
C44 2.8631 2.9052 2.9452 2.9832 3.0192 3.1001 3.3116 3.2946 
C)) 14.3002 14.5171 14.7257 14.9261 15.1183 15.5626 16.9847 17.2585 

(Cll - C I2)/ 2 = C66 3.2374 3.2662 3.2949 3.3238 3.3523 3.4239 3.7668 3.9709 
;.2= (C II / C l3 )1 /2 0.9569 0.9564 0.9560 0.9558 0.9556 0.9556 0.9631 0.973 2 

C l2 
v = 

2(C12 + C66 ) 
0 .3358 0.3368 0.3379 0.3388 0.3396 0.3413 0.3429 0.3396 

c 7.3639 7.3609 7.3581 7.3554 7.3528 7.3470 7.3307 7.3 305 
a 4.5207 4.5 184 4.5162 4.5 141 4.5121 4.5075 4.4928 4.4900 

cia 1.6289 1.6291 1.6293 1.6294 1.6296 1.6300 1.6317 1.6326 

occurrence on the basal and the {lOTO} planes is slightly more than that along the {1120} plane. 
(In this paper, crack propagation along planes at other angles to the c-axis, such as the 
pyramidal planes, has not been considered.) This coincides with observations made by Gold 
(1972), who carried out detailed and extensive studies on various aspects of cracking activity in 
ice. He found that in polycrystalline ice subjected to uniaxial compressive stress at temperatures 
between -5 and -30°C, about 25% of the observed cracks are along the grain boundaries, 42% 
in the basal plane, and 20% perpendicular to the basal plane; the rest were irregular. He also 
observed that the most probable direction of crack propagation is parallel to the compressive 
stress direction. Parameswaran and Jones (1975) tested single-crystal and poly crystalline ice at 
-196°C (77 K) under uniaxial compression. No particular orientation dependence was observed 
for crack propagation. The modes of failure were in general: (a) axial cleavage with one or more 

TABLE 11. VALUES OF ENERGY FACTORS K I}= I /BI} (UNITS: 10) MPa) AND RATIOS OF SURFACE 
ENERGY AND CRITICAL STRESSES FOR CRACK AND TWIN PROPAGATION 

- Iooe - 20oe - 30oe - 40°C - 50oe - 75°e - 196°e - 269°e 

Anisotropic K22 = I /B 22 5.1063 5.1792 5.2484 5.3156 5.3747 5.5133 5.8603 5.8025 

C66 
5.0269 5.0762 5.1980 5.7325 6.0129 Isotropic K 22 =-- 4.8741 4.9249 4.9764 

I - v 

I cC)) Yb - J3 
1.0299 1.0306 1.0158 0 .9953 ---=-pOIO}, a = 3 1.0271 1.0283 1.0292 1.0304 

a a C II Yp 

Yb -
- pI20} , a = 2 
YP 

0.8895 0.8905 0.8913 0.8919 0.8923 0.8925 0.8796 0.8619 

ab/ aplpl {IOIO } 1.0361 1.0369 1.0376 1.0380 1.0384 1.0385 1.0269 1.01 13 
ab/aplpr {IOIO } 1.0374 1.0398 1.0420 1.0435 1.0445 1.0445 1.0190 0.9801 
ab /ap lpl {l120} 0.9641 0.9649 0.9656 0.9659 0.9663 0.9664 0.9556 0.9411 
ab /aplpr {l120} 0.9654 0.9677 0.9697 0.9711 0.9720 0.9730 0.9483 0.9120 

a c (basal) 
0.4991 0.4990 0.4991 0.4991 0.4991 0.4991 0.4991 0.4991 

at POI2} ( lOll ) 

ac (prism {IOlO }) 
0.4145 0.4145 0.4144 0.4144 0.4144 0.4143 0.4141 0.4140 

at pOll} ( 1012) 
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Fig. 3(a). Variation of elastic constants Cl} of ice with temperature. (b) . Variation of lattice parameters c and a 
with temperature. 

major cracks splitting the sample along the loading direction, and (b) cataclasis or general 
internal crumbling by formation of multiple cracks. The cracks did not follow any particular 
pattern or crystallographic plane. 

https://doi.org/10.3189/S0022143000011862 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000011862


168 JOURNAL OF GLACIOLOGY 

Considering the ratio f!.. e/ at of the critical stress for basal c1ea vage and {1 0 I 2} twin, or 
prismatic cleavage and {lOll} twin, it may be seen from Table 11 that ae/at has values of 0.5 and 
0.41 respectively for the two cases. This shows that mechanical twinning is almost impossible in 
ice, because the critical stress required for twin initiation is twice that for cleavage crack 
propagation. This explains why no one so far has observed mechanical twinning in ice crystals, 
although several workers have studied the deformation behaviour of ice under various 
conditions. This does not preclude the existence of growth twins in ice. The peculiar shapes of 
snow crystals (grown under both natural and artificial conditions) observed by investigators such 
as Bentley and Humphreys (1931), Nakaya (1954), Kikuchi (1970), Kikuchi and Hogan (1976), 
and Yamashita (1971), have recently been explained as twins by Kobayashi and others (1976) 
on the basis of the generalized concept of coincidence-site lattice (CSL) theory. Kobayashi and 
Furukawa (1975) have also discussed the formation of the twelve-branched snow crystals 
observed by Doi (1832, 1840), Bentley and Humphreys (1931), and Nakaya (1954), in terms of 
rotation twinning. 

From Equation (1) a theoretical value of the critical stress for crack extension can also be 
estimated. The critical stress intensity factor or strain-energy release rate for ice was found to 
depend on temperature and strain-rate, and under conditions of crack arrest associated with 
thermal shock Gold (1963) calculated the strain-energy release rate to be about 300 ergs cm- 2

• 

This means that 

2y+ p= 300 ergs cm- 2 (3 x 10- 7 MN m- I) 

or 

y+P/2= 150 ergs cm- 2 (1.5 x 10- 7 MN m-I) 

where y is again the surface energy and P is the external work done. Gold (1972) uses a value for 
y = 1 00 ergs/cm - 2 (10 - 7 MN m - I). One can also calculate the width 2a of a critical crack by 
considering it as a pile-up of n freely slipping edge dislocations (Bullough, 1964) 

f.m
2b2 

2a=----
4n(I-v)y 

(22) 

where f.l is the shear modulus (C66 for ice), and b is the magnitude of the Burgers vector 
(4.523 x 10- 10 m). The width of the critical crack depends on the choice of n, the number of 
dislocations in a pile-up. Bullough (1964) suggested a value of n = 300-700 and Friedel (1964) 
suggested that n could be 102 to 103

• Using the values of f.l (= C66 ) and v from Table I, and 
assuming y= 100 ergs cm- 2 (1 x 10-7 MN m-I), 2a=0.23 mm at -196°C and 0.2 mm at 
-10°C for n = 500, and 2a = 0.92 mm at -196°C and 0.8 mm at -10°C for n = 103

• These 
values are in good agreement with the experimentally observed value of 1 mm for the first large 
crack in ice subjected to a compressive stress (Gold, 1972). 

U sing these values of a in Equation (1), the critical stress values calculated for crack 
formation at -lOoC were 2.49 and 1.25 MPa, respectively. These agree very well with the 
observed failure stresses for ice measured under tension, namely, 1 to 3 MPa (Michel, 1978). The 
critical stress values calculated from Equation (1) for ice at -196°C, using n=500 and 1000, 
were 2.52 MPa and 1.26 MPa, respectively. These values are about one order of magnitUl;le 
smaller than the fracture stresses observed by Parameswaran and Jones (1975)*. The values bf 
failure stress under compression measured at -196°C were in the range of 24 to 39 MPa for 
natural as well as artificially grown single and polycrystalline ice. They observed, however, that 
the first crack appeared in the very early stages of deformation in the stress range 0.1-0.5 MPa. 

* The numbers along the ordinates in figures 4, 5, and 9 of this reference are incorrect. The correct values of 
fracture stress in figures 4 and 5 vary between 10 and 100 MN m - 2 (or MPa), not 100 to 1000 MN m - 2

• In figure 9 
the fracture stresses are in units of MN m - 2 (or MPa), not 10 4 MN m - 2.) 
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CONCLUSION 

A di slocation model based on theories of fracture and anisotropic elasticity has been used to 
calculate the ratio of surface energies and the critical stresses for formation of cracks in the basal 
and prismatic planes of hexagonal ice. These calculations show that crack formation occurs with 
almost equal ease in both basal and prismatic planes. The calcuiations also show that it is almost 
impossible to produce mechanical twinning in ice by stress alone, because the critical stress for 
twin initiation is twice that required for cleavage crack formation, and this explains why no one 
so far has observed mechanical twins in ice. 
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